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Abstract— Manipulating unknown objects in a cluttered en-
vironment is difficult because object composition is uncertain.
Because of this uncertainty, earlier work has concentrated
on finding the “best” object composition and based on this
composition decided on manipulation actions. Contrary to
earlier work, we 1) utilize different possible object compositions
in decision making, 2) take advantage of object composition
information provided by robot actions, 3) take into account the
effect of different competing object hypothesis on the actual task
to be performed. We cast the manipulation planning problem
as a partially observable Markov decision process (POMDP)
which plans over possible hypotheses of object compositions.
The POMDP model chooses the action that maximizes the long-
term expected task specific utility, and while doing so, considers
the value of informative actions and the effect of different object
hypotheses on the completion of the task. In experiments with
a physical robot arm and an RGB-D sensor, our approach
outperforms an approach that only considers the most likely
object composition.

I. INTRODUCTION

Service robots in domestic environments need the ability
to manipulate objects without good prior models in order to
cope with the variability of such environments. This need is
usually approached by attempting to model the objects on-
line using sensors based on stereopsis or structured light.
When multiple measurements can be acquired around an
isolated object, this approach works quite satisfactorily as
the generated 3-D models can often be used for successful
manipulation.

In cluttered scenes with multiple unknown objects, the
segmentation of objects, also known as object discovery in
perception research, becomes a major problem. Typically, the
problem is to decide which of the segments in an overseg-
mented scene belong to the same object. This is challenging
especially because objects can be partially occluded by oth-
ers. A promising approach towards solving object discovery
is interactive perception, where the object configuration is
actively examined typically by manipulating the objects and
observing the results. Another line of work is to use learned
priors to find the most likely object composition. Despite
the recent advances, manipulation of unknown objects in
cluttered environments is still an open problem.
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In this paper, a solution to manipulation planning is
proposed, which plans over hypotheses of possible object
compositions instead of trying to determine a single best
hypothesis. The approach combines earlier ideas of interac-
tive perception and learned composition priors in a planning
under uncertainty framework. The manipulation planning
problem is cast as a partially observable Markov decision
process (POMDP), which integrates active exploration to
planning. In contrast to earlier work, our approach 1) utilizes
different possible object compositions in decision making, 2)
takes into account the effect of competing hypotheses on the
goal task, and 3) actively explores the hypothesis space if
that benefits the task.

The paper is structured as follows: We begin by surveying
works related to object discovery, interactive perception and
planning under uncertainty in Section II. Our framework
of manipulation planning over object compositions is then
introduced in Section III. Section IV proposes our approach
for estimating the distribution over object hypotheses. The
state space of hypotheses is then used for manipulation
planning as described in Section V. Experiments with a
physical robot arm and an RGB-D sensor presented in
Section VI demonstrate that the proposed approach is able to
integrate perception to the manipulation task and that the use
of multiple hypotheses improves system performance when
compared to considering only the most likely hypotheses.
Section VII concludes the paper.

II. RELATED WORK

Object discovery. Scene segmentation is a classic problem
in computer vision tightly coupled to object recognition so
that it can be argued that the segmentation problem does
not have unique solutions if the objects are not known.
Nevertheless, there is a need to discover objects from scenes
even when the objects are not known in advance. Recent
works in the area are often based on learning general models
used to recognize object classes from segments (e.g. segment
labeling in [1]), to detect segments based on their “object-
ness” [2], or to choose which segments belong to a single
object [3], [4]. Our work follows the line of work of [3], [4]
but instead of trying to find a single optimal composition,
considers the distribution of possible compositions.

Active and interactive perception. Instead of a passive
approach (the scene is purely observed) such as the ones
presented above, object discovery can be approached from
the point of view of active perception [5]. Gaze control and
foveation, which are purely perceptual processes, have been
proposed for object discovery [6]. Furthermore, interactive
perception has been proposed as a promising solution for



object discovery with the goal of singulating [7] or clearing
[8] a pile of objects. Both approaches use poking or pushing
actions to estimate the object composition. This paper fol-
lows the interactive perception paradigm but in contrast to
the works above, integrates the perception with goal-directed
planning so that perceptual actions are only used when they
are expected to support the task goal.

Grasping unknown objects. Grasping unknown objects
has got significant attention in the research community,
especially after Saxena’s work [9] which proposed the use
of machine learning for planning good grasps. Many of the
current methods analyze point cloud data locally (e.g. [10],
[11]) to determine parts of objects that afford good grasps.
The point cloud can be first transformed to another domain
for easier analysis, as for example in the surface height
accumulated features of [12]. It is also possible to analyse
a segmented object as a whole (e.g. [13], [14]), for example
to align a robot hand according to the principal axes of the
point cloud. In this work, grasping according to this latter
line of work is used as a component for both informative
and goal-directed actions.

Manipulation planning under uncertainty. In planning
manipulation under uncertainty, such as planning where to
grasp an object, classical deterministic planning can be used
to reduce uncertainty. For example, Dogar et al. [15] plan
pre-grasp pushing actions that collapse pose uncertainty of
a target before executing a grasping action. This type of
approach is usually only available for completely known
objects.

With limited knowledge, POMDP-like approaches can be
used to plan over a distribution of states. Hsiao et al. [16]
proposed the partitioning of a one-dimensional configuration
space to yield a discrete POMDP which can be solved for
an optimal policy. In planning grasp locations, the state-of-
the-art includes probabilistic approaches with a short time
horizon. The goal can be formulated either as positioning the
robot accurately as in [17] or maximizing the probability of
a successful grasp as in [18]. The short-term planning can
also be extended to include information gathering actions
[19]. Besides pose uncertainty in grasping, Monso et al.
have proposed to formulate clothes separation as a POMDP
[20]. Of the above, only Monso et al. consider, similar to
this paper, the case of a complex cluttered scene with more
than one object. In contrast to them, this paper does not
assume that each object is uniform in color, but instead,
complex multi-colored and textured objects are considered
for object discovery. Moreover, their state space model is
clothes separation specific modeling the number of clothes in
different areas. Our approach reasons about objects directly.

III. MANIPULATING OBJECT COMPOSITIONS

We consider the scenario of a robot manipulating unknown
objects based on RGB-D data. The manipulation goal is
defined in terms of simple features that can be observed
incompletely from the point clouds. For example, the goal
could be to move all objects with a certain color to a
particular location. Manipulating unknown objects is difficult

because even if RGB-D data is available, the robot does not
know in advance the shape or color of the objects. Thus, it
has to guess which parts of the point cloud belong to the
same object. Occlusion and noisy sensor readings make this
task hard. Attempting to segment individual objects from
the point cloud typically results in oversegmentation, which
leads to the problem of deciding which segment belongs to
which object, in other words, forming object hypotheses.

In previous works such as [12], the choice of an action is
based on the most probable hypothesis of object composition.
The shortcoming of this approach is that it does not take into
account the long term effects of uncertainty or the value of
information gathering actions. We propose to choose instead
the action that maximizes reward over the distribution of
possible compositions. By considering a temporally evolving
system, the robot can infer from past grasp attempts the
likelihood of object hypotheses.

A. Overview

At each time instant, the robot performs the following
steps:

1) Obtain RGB-D data of the current scene and segment
the RGB-D data

2) For each pair of segments, estimate the probability of
the segments being part of the same object

3) From the estimated probabilities create a probability
distribution over possible object compositions that con-
forms with past grasp attempts (Section IV)

4) Use a POMDP to select the best long-term manip-
ulation action for the current object distribution and
execute the action (Section V)

For steps 1 and 2, for segmenting RGB-D data and estimating
probabilities for segment pairs, we use an existing approach
from [4]. The novel steps 3 and 4 are described in Sections
IV and V, respectively.

B. Robotic manipulation as a partially observable Markov
decision process (POMDP)

Before going into belief estimation and manipulation plan-
ning, we describe how to model robotic manipulation as a
POMDP. A POMDP defines optimal behavior for an agent
in an uncertain world with noisy,partial measurements, when
the stochastic world model is accurate and when the agent’s
goal has been defined precisely. Previously, POMDPs have
yielded good results in different robotic applications [20],
[21]. We utilize a POMDP because it takes uncertainty in
action effects and observations into account. Moreover, a
POMDP assigns the correct long-term value to informative
actions which are needed when exploring object hypotheses.

The temporal model of a POMDP is defined by the
transition probability P(s'|s,a) from state s to the next
time step state s’, when action a is executed, and the
probability P(o|s’,a) of observing o, when action a was
executed and the world moved to the state 5. A real-valued
reward R(s,a) for executing action a in state s encodes
the objective. An optimal policy © maximizes the expected
reward E [):[T:*OI R(s(t),a(t))|m,bo| over T time steps, where



bg denotes the initial belief, that is, a probability distribution
over world states. At each time step, the agent decides on
an action a based on its current belief. In principle, the
belief can be kept up-to-date given an accurate temporal
model. However, because an accurate model is in practice
not available, we instead estimate the belief at each time
step from current visual sensor data and past history, and
use the online POMDP method introduced by us in [21] to
compute a new policy. To cope with a huge state space, the
POMDP method in [21] uses a state particle representation
for the belief b(s).

[21] defines robotic manipulation as a POMDP, in which
the probabilities of successfully grasping an object, and
observing its attributes (for example color), depend on how
occluded the object is. The POMDP state s = (s1,52,...,5N)
is a combination of object states s; = (s1°¢, 53" shist) where
1°° is the semantic object location, s3" object attributes, and
f““ historical information for object i. The POMDP model in
this paper differs from the model in [21]: [21] assumes a sin-
gle object composition, here we use a probability distribution
over possible object compositions. For example, grasping
actions occur in the space of object compositions which
will be discussed in more detail in the following sections.
Furthermore, in this paper, the grasp success probability
is not a probability distribution conditional on the number
of failed and succeeded grasps. Instead, we assume that a
previously failed grasp can not succeed unless the occlusion
on the grasped object changes.

IV. BELIEF ESTIMATION

The belief consists of state particles and their probabili-
ties. In [21], a state consists of multiple objects and their
relationships including information on which object is in
front of which object, and object attributes. Here, instead
of objects, each state consists of a set of object hypotheses
called an object composition. An object hypothesis consists
of a set of segments, where every segment is connected either
directly or in-directly to each other. The segments are not
connected to segments outside this set. Two segments can be
directly connected if they occlude each other or if another
object occludes both (the direct connection is then behind
this occluding object).

The probability of a sampled belief state is proportional to
the probability of the object composition, which is part of the
belief state, to exist, when considering the grasp history. The
key insight is that previously performed grasps must have
failed for an object hypothesis, otherwise the object would
have been moved. Furthermore, a grasp can only succeed for
a wrong hypothesis, when the wrong hypothesis is part of a
hypothesis, for which the grasp succeeds.

To estimate the belief, we segment the observed point
cloud and compute the connectedness probability for each
segment pair. Based on these probabilities, and based on
whether segments can be directly connected, we define
a Markov chain which converges to a distribution over
object compositions. We sample object compositions from
this Markov chain after a burn-in period. A belief state

corresponds to a sampled object composition with sampled
object attributes. The probability of the belief state is set
proportional to the probability of the sampled object com-
position, which is computed (for uniform priors) as the
probability of the observation/action history conditional on
the object composition. This means that the belief over object
compositions is shaped by past events: for example, if the
robot fails to grasp an object hypothesis, which should be
easy to grasp when the object hypothesis is correct, then the
hypothesis is likely incorrect, and the belief will reflect this.
Next, we will discuss how to sample object compositions
and then show how to estimate the conditional probability
of an object composition given past events.

A. Markov chain sampling of object compositions

We sample object compositions from a Markov chain. The
Markov chain moves from one object composition to another:
the Markov chain randomly selects a direct connection
candidate between two segments, and then samples whether
the direct connection exists from a probability which depends
on the probabilities of the composition with and without
the direct connection. The computation is efficient because
we only have to consider segments connected (indirecly) to
either segment under consideration. In more detail, denote
connectedness probabilities with P(c; j), where variable ¢;
denotes whether segments i and j are part of the same object
(cij=1) or not (c; ; = 0). Moreover, denote with /; an object
composition, the kth state of a Markov chain. The Markov
chain starts from kg, which contains only disconnected
segments. To sample /| from A we first sample uniformly
randomly a segment pair 7, j from segment pairs which may
be directly connected. Denote with 6,:’ the state of the direct
connection between i and j in h;. Second, assuming an
uniform prior P(6k ll) compute the conditional probablhty

P(8)], = 1|hx), where fy denotes hy when &7 =
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where U =i and V = j, when ¢;; =1 in fzk, otherwise
U=iU(uleiy=1) and V = jU(|cjy = 1). Z(U,V, k) is
a function containing a normalization term and the joint
probability of all segment pairs m,n, where m or n is not
in U or V. Note that Z(U,V, fzk) cancels out in Equation (1).
Finally, we sample 6k+1 using P(5kJ£l = 1|ly) to get ;.

B. Probability of an object composition given past events

In general, the probability of an object composition i =
(h1,...,hy), where h; is a single object hypothesis, depends
on the sequence of past actions and observations 6; =
(a(0),0(1),a(1),0(2),...,a(t—1),0(t)), where ¢ denotes the



current time step. We assume uniform priors, independent
object hypotheses, and independent history events:
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For object hypothesis manipulation, we maintain a history
of unique executed grasps. In our model, there is no need to
remember multiple identical grasps; a previously failed grasp
cannot succeed again, unless the occlusion of the object,
for which the grasp is optimized, changes because then the
grasp also changes. The composition probability conditional
on past independent grasps (graspy,...,grasp,,) is

HHP graspy | ;). 3)

i=1k=1

P(h]6,)

V. MANIPULATION PLANNING

After the robot has estimated the current belief it decides
on its next action based on the belief. As discussed earlier,
we use a POMDP for decision making. Next, we discuss
parts of our system that the POMDP requires for planning.
We will discuss the actions available to the robot, how to
sample a new state, how to sample an observation, and how
to compute the observation probability.

A. Actions.

In our problem setting, the robot may grasp an object
and move it. We employ top-down grasping. For selecting
the finger distance and rotation of the robot hand, we
use a simple approach based on computing a vector at a
narrow part of the unknown object with principal component
analysis (PCA). The approach 1) projects the point cloud PC;
of the target object hypothesis onto a plane, which is parallel
to the wrist of the down-pointing robot hand, 2) makes the
point density of the projected point cloud uniform to get the
point cloud PC,, and 3) projects the centroid of PC, towards
PC; along the wrist-plane normal, by the distance between
the centroids of PC; and PC,, to get the grasp centroid.
The approach computes the PCA decomposition of PC,. In
PCA, the first eigenvector aligns to the largest variance in the
point cloud data and the second eigenvector aligns along the
second largest variance in the data. For example, for a long
object, the first eigenvector could be aligned along the length
of the object, and the second eigenvector along the width
of the object. The approach uses the second eigenvector in
order to get a narrow grasp. In more detail, the approach
projects two points in opposite directions from the grasp
centroid, along the computed second eigenvector, far enough.
Finally, the approach selects the two points from PC; which
are closest to the projected points, as the two grasp contact
points. In addition, the approach checks whether some part
of another object hypothesis blocks the direct path up from
the two grasp contact points, and if so, sets the probability
of a successful grasp to zero.

1) Restricted action set: In order to restrict the compu-
tational load, we bound the number of possible grasps, and
thus actions, by a predefined maximum number. Instead of
restricting the number of possible object hypotheses, we se-
lect a subset of all hypotheses to use for grasping. Optimally,
we would like to choose a set of grasps, which yields the best
policy among all possible grasp sets. However, because we
do not know the best policy, we settle for computing an ac-
tion set that maximizes the expected grasp success probabil-
ity. The grasp success probability Pyrasp prob (SUCCESS|h;,A)
defines the probability of successfully grasping and moving
an object hypothesis #; when the robot chooses the best
action from the action set A. The expected grasp success
probability is

A =arg mjlxngrasp prob(SUCCESS|hi7A)P(hi) )]
hi

where the number of actions is |A|. A can be found by
an integer linear program. Unfortunately, integer linear pro-
gramming is in the worst case NP-hard. As an approxima-
tion, we use a greedy approach which incrementally selects
object hypothesis which increase the expected grasp success
probability the most. In the experiments, the expected grasp
success probability using a restricted action set remained
usually close to the probability with the complete set of
possible actions.

2) Grasp success probability: A grasp is parameterized
by the distance of the finger tips, rotation of the hand, and
the location of the robot wrist. The grasp success probability
is the product of the grasp quality and an occlusion specific
grasp probability. When computing grasp probabilities we
take previously executed grasps into account: a failed grasp
cannot succeed again, unless the occlusion of the object
changes for which the grasp is optimized (when the occlusion
changes the grasp usually changes also). Grasp quality is
intended to capture the quality of a grasp which is optimized
for another object hypothesis. Grasp quality is equal to 1
when using a grasp which was computed for the same
object hypothesis that the robot tries to grasp. The grasp
quality decreases when the grasp centroid moves away from
the optimized grasp centroid, and becomes zero when it
is outside the object. We compute the grasp quality for
grasping object hypothesis X with a grasp optimized for
object hypothesis Y as follows

1) Inside X, find starting point y; and end point y;
between the grasp points of ¥

2) If there is no y; or y, then the grasp quality is zero
because the line of grasp is outside object X

3) Compute centroid cy of y; and y;

4) Project cy into the robot arm wrist plane along the
plane normal

5) Project grasp centroid of X into the wrist plane along
the plane normal to get cy

6) Denote with X the projection of X onto the wrist plane.
Project a point starting from cy through cy so that it
is outside X and find the closest point x; in X



7) Finally, compute the grasp quality as (distance from
cy to x1) / (distance from cy to x1), that is, the grasp
quality decreases when the effective grasp centroid
cy moves closer to the surface, away from the grasp
centroid cx optimized for X.

B. Temporal model of the world

In order to use the POMDP method in [21] for planning,
we need to model the evolution of the state of the world
over time. We need state transition and observation proba-
bilities. Because probability distributions use a state particle
representation, we need, in particular, a way to sample states
and observations, and a way to estimate the likelihood of a
state particle given an observation. Next, we discuss how to
accomplish these tasks.

State sampling. As discussed earlier, a world state consists
of an object composition i = (hy,...,hy), and contains for
each h; a semantic object location, attributes, and history. To
sample a new state for a grasp action a, select the object
hypothesis #; that has the highest grasp probability for a.
Sample grasp success of a on h; according to the grasp
success probability. If the grasp fails, add the grasp to the
grasp failure history of ;. If moving an object succeeds, the
semantic location of the object is changed to the destination
location.

Observation sampling. After executing the grasp action,
the robot observes which object was moved, and in the case
of a successful move, the robot makes an observation about
the attributes (color in the experiments) of a limited number
of objects behind the moved object. Assuming independence
between attribute observations, the observation probability
is TI;P(oilhi), where o; is the observation of h;. As in
[21], P(o0;|h;) is computed from the occlusion of /; and the
attribute instances of #;.

Observation probability. The probability of making an
observation o in state s is zero if the moved object hy-
pothesis differs from the observed one, or if the move fails
and the attribute observations do not match with previous
attribute observations. Otherwise, the probability is defined
by T1; P(0;i|h;) discussed above.

VI. EXPERIMENTS

In the experiments, an RGB-D sensor (Microsoft Kinect)
observes objects on a table and a 6-DOF Kinova Jaco arm
with an integrated 3-fingered hand manipulates the objects.
The setup is shown in Fig. 1. In the experimental task, the
table contains different kinds of toys which occlude and can
be very close to each other (see Fig. 2). The goal of the robot
is to find and move an unknown number of fully red toys into
a target area (Area 1). In 9 of 10 experimental scenes, only
one of the toys is red, while one scene (Scene 9) has 3 red
toys. To remove occlusions that hinder color detection and
grasping, the robot can also move toys to a free area (Area
2). Moving a red object into Area 1 yields 1$. Moving a
non-red object into Area 1 or moving a red object into Area
2 costs 1$. Note that both areas 1 and 2 are at the bottom
in Fig. 1.

Fig. 1. Experimental setup. Based on RGB-D data from a Microsoft Kinect,
a 6-DOF Kinova Jaco robotic arm tries to move red toys into a target area
at the bottom of the picture.

In the experiments, segmentation and segment-pair prob-
ability computation was performed using the approach pre-
sented in [4]. In short, the approach assigns probabilities to
segment pairs using support vector machines (SVMs) trained
with RGB-D data of household items which are not in all
ways similar to the toys we use in the experiments. For grasp
probability we used parameters estimated for coffee cups in
[21] and we set the first color observation parameter (see [21]
for details) to —0.5 and the second to —0.02 for both red
and non-red observations. The models were not optimized
for the particular objects used in this paper because in the
real-world the robot would need to be able to generalize to
new objects.

We compare our POMDP based approach against a
method called “Baseline” which uses the most probable
object composition and tries to grasp the object which has
the highest grasp success probability of all objects observed
red. If such an object does not exist, then it finishes. The
method does not condition the object composition on the
grasp history. For the POMDP approach, we set rewards
to the task specific goal and in addition assign a penalty
of 0.01$ for failed grasps. Note that our POMDP based
approach is not restricted to the objective in this task but
can optimize any goal. The POMDP policy size was set to
3x3 (see [21] for details) in the experiments.

For each scene shown in Fig. 2, we placed objects on a
table and ran both methods on the placed objects. After each
first run on a particular scene, we reconstructed the object
positions manually. Table I shows the results. In four of the
ten scenes, the POMDP outperformed the Baseline approach,
while having otherwise identical performance.

There are two main reasons why the POMDP approach
outperformed the Baseline approach. First, it planned its
actions over the distribution of compositions. For example, in
Scene 5 the POMDP succeeded while the Baseline approach
finished execution prematurely because the most probable
object composition did not contain red object hypotheses,
although some other compositions did, as shown in Fig. 3.
Second, the POMDP utilized information gathering actions.
For example in Scene 1, it moved several non-red objects
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Fig. 2. Cropped kinect images for each experimental scene. The order of images corresponds to the order of scenes in Table 1.

away, thus reducing occlusion.

TABLE I
EXPERIMENTAL RESULTS FOR MOVING FULLY RED OBJECT(S) INTO
AREA 1. x IN THE ENTRY V(x,y,z) DENOTES HOW MANY OBJECTS WERE
MOVED TO THE CORRECT RED (x) OR NON-RED (y) AREAS, AND HOW
MANY TO AN INCORRECT AREA (z). BOLD DENOTES HIGHER VALUES V
(V=x—2). POMDP OUTPERFORMED BASELINE IN FOUR SCENES AND
HAD OTHERWISE IDENTICAL PERFORMANCE.

Scene
Method ! 2 3 4 >
Baseline 0 0o» | 000 | -1 0on | 0w©on | 0000
POMDP 1020 | 0020 0 000 | 00on | 100
Scene
Method 6 7 8 K 10
Baseline 0 000 | 0 ©00 0 000 | 3 Gon | 0 w©oo
POMDP 0020 | 1,10 0 000 | 3Gon | 0040
¥ ¥
= ;l' 5
e -
Fig. 3. Object compositions at time step 9 in scene 5 for the Baseline

approach. The edges of each object hypothesis are marked with color.
The baseline approach finishes prematurely because it considers only the
most likely object composition and not the other compositions which may
have red objects. Left: Most likely object composition: the (non-red) object
hypothesis 333 contains both a red block and the top of a cup. Right: 2nd
most probable object composition: the (red) object hypothesis 263 contains
only the red block.

VII. CONCLUSIONS

Manipulating unknown objects in a cluttered environment
is a hard problem. A lack of object models and a noisy partial
view make object discovery difficult. Instead of utilizing only
the most likely object composition, we plan manipulation
actions in the state space of object compositions. In experi-
ments, our approach outperformed an approach based on the
most likely object composition.
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