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Abstract—Many real-world applications are characterized by
multiple conflicting objectives. In such problems, optimality is
replaced by Pareto optimality and the goal is to find the Pareto
frontier, a set of solutions representing different compromises
among the objectives. Despite recent advances in multi-objective
optimization, the selection, given the Pareto frontier, of a Pareto-
optimal policy is still an important problem, prominent in practi-
cal applications such as economics and robotics. In this paper, we
present a versatile approach for selecting a policy from the Pareto
frontier according to user-defined preferences. Exploiting a novel
scalarization function and heuristics, our approach provides
an easy-to-use and effective method for Pareto-optimal policy
selection. Furthermore, the scalarization is applicable in multiple-
policy learning strategies for approximating Pareto frontiers.
To show the simplicity and effectiveness of our algorithm, we
evaluate it on two problems and compare it to classical multi-
objective reinforcement learning approaches.

I. INTRODUCTION

Many real-world problems are characterized by the pres-
ence of multiple conflicting objectives, such as economic
systems [1], medical treatment [2], robotic control [3], [4],
water reservoirs [5] and elevators [6]. These applications can
be modeled as multi-objective reinforcement learning (MORL)
problems, where the standard notion of optimality is replaced
by Pareto optimality, a concept for representing compromises
among the objectives. Despite the increasing interest in multi-
objective problems and recent advances in RL, MORL is still
a relatively young field of research. MORL approaches can be
divided into two categories based on the number of policies
they learn [7], [8], [9]. Single-policy methods aim to find the
best policy satisfying some preferences among the objectives.
The majority of MORL approaches belong to this category and
differ in the way preferences are expressed. The most straight-
forward and common single-policy approach transforms the
reward vector into a scalar signal by a scalarization function.
Usually, a linear combination (weighted sum) of the rewards
is performed and the weights express the preferences over the
objectives [10], [11], [12]. Less common is the use of non-
linear mappings [13]. Other single-policy approaches are based
on thresholds and lexicographic ordering [14] or different kind
of preferences over the objective space [15], [16].

Multiple-policy approaches, on the contrary, aim at learning
many policies to build the Pareto frontier, i.e., the set of all
Pareto-optimal policies. Building the exact frontier is generally
impractical, thus, the goal is to build an approximation of
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the frontier containing solutions that are accurate, evenly
distributed and have a range similar to the true frontier [17].
Whenever possible, multiple-policy methods are preferred,
as they enable a posteriori selection of the solution and
encapsulate all the trade-offs among the multiple objectives.
In RL literature, most prominent approaches directly learn the
Q-function of non-dominated policies if the action space if
finite [8], while a manifold in the policy parameters space is
learned when continuous actions are considered [9]. However,
choosing a policy among all non-dominated solutions is not
trivial: it can be inefficient if the Pareto frontier has a large
number of solutions or there may be several similar solutions
reflecting the selection criteria. It is therefore necessary to
identify a procedure allowing both the user (i.e., the decision
maker) to clearly define preferences over the objectives and
the agent to choose a unique policy according to them.

In RL literature, there is little work on the policy selection
problem, with most of the approaches focusing on linear
scalarization functions. Although very simple, a linear scalar-
ization suffers from some limitations. First, it cannot find solu-
tions lying in concave regions of the Pareto frontier [18]. Sec-
ond, even if the frontier is convex, some solutions cannot be
found because a loss in one objective may not be compensated
by an increment in another one [19]. Other approaches, such as
Chebychev scalarization [12] and lexicographic ordering [14],
can overcome these limitations, but usually restrict the way
preferences are expressed. On the contrary, Pareto frontier
post-processing methods have a long history in Multi-objective
Optimization (MOO). Some of the most famous algorithms
rely on percentile ordinal rankings [20], sweeping cones [21]
and clustering [22], [23], [24]. However, these approaches
only group solutions with similar characteristics and prune
the Pareto frontier to obtain a subset of preferred solutions,
without tackling the issue of selecting the final one. Typically
in MOO, if the Pareto frontier is convex, a knee point — i.e., a
point for which an improvement in one objective will result in
a severe degradation in at least another one — is chosen [25].
However, such a choice is not guaranteed to reflect the user
preferences, or a knee point may not even exist.

To the best of our knowledge, MOO and MORL literature
lack a versatile approach for processing a Pareto frontier and
selecting a final policy according to refined user preferences.
In this paper, we present the Local-utopia Selection Algorithm
(LUSA), an algorithm for selecting an appropriate solution
according to a novel non-linear scalarization function, called
local-utopia distance, and to some heuristics. First, the local-
utopia distance allows the user to straightforwardly express
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Fig. 1: Solutions found by LUSA on
varying the local-utopiaw for a two-
dimensional normalized frontier.
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Fig. 2: After finding the closest point P to the local-utopia, the algorithm searches for
nearby solutions J USR in the δ-neighborhood of P . Different final solutions J∗ are then
found according to different heuristics. Here, w = [0.0, 0.3, 0.6] and δ = 0.3.

preferences over the objectives and to identify a subset of
suitable solutions. Subsequently, the heuristics enable the user
to refine the decision and to incorporate more sophisticated
selection criteria. Furthermore, the local-utopia distance scalar-
ization function can be used for approximating a Pareto
frontier as done in multiple-policy approaches. To illustrate
the advantages of our algorithm, we evaluate LUSA on two
problems and we show that it outperforms the widely-used
weighted sum and Chebychev scalarizations in both choosing
preferred solutions and approximating Pareto frontiers.

II. PROBLEM STATEMENT AND NOTATION

Multi-objective Markov decision processes (MOMDPs) are
an extension of MDPs in which several pairs of reward
functions and discount factors are defined, one for each
objective. Formally, a MOMDP is described by a tuple
〈S,A,P,R,γ,D〉: S ⊆ RdS is the continuous state space,
A ⊆ RdA is the continuous action space, P is the Markovian
transition model and P(s′|s, a) defines the transition density
between state s and s′ under action a, R =

[
R1 . . .RdR

]T
and γ =

[
γ1 . . . γdR

]T
are vectors of reward functions

Ri : S × A → R and discount factors γi ∈ [0, 1),
respectively, and D is the initial state distribution1. The policy
followed by the agent is described by a conditional distribution
π(a|s) specifying the probability of taking action a in state
s. In MOMDPs, a policy π is associated to dR expected
returns Jπ =

[
Jπ1 , . . . , J

π
dR

]
∈ F , where F ⊆ RdR is

the policy performance space. Given a trajectory (episode)
τ = {st, at}Hτ

t=1 ∈ T of length Hτ (possibly infinite) drawn
from the distribution p(τ |π), the i-th expected return is

Jπi = Eτ∼p(·|π) [Ri(τ )] ,

where Ri(τ ) =
∑Hτ

t=1 γ
t−1
i Ri(st, at) is the i-th return.

Unlike in single-objective MDPs, in MOMDPs a single
policy dominating all others usually does not exist. When
conflicting objectives are considered, no policy can simultane-
ously maximize all of them. For this reason, in multi-objective

1We consider stationary MDP, where the transition model does not change.

optimization a different dominance concept based on Pareto
optimality is used. A policy π strongly dominates a policy π′

(denoted by π � π′) if it outperforms π′ on all objectives, i.e.,

π � π′ ⇐⇒ ∀i ∈ {1 . . . dR} , Jπi > Jπ
′

i .

If there is no policy π′ such that π′ � π, then the policy π
is Pareto-optimal. The set of all Pareto-optimal policies Π∗ =
{π | @π′, π′ � π} maps to the so-called Pareto frontier J ∗ =
{Jπ

∗
| π∗ ∈ Π∗}.

Typically, in MORL solving a MOMDP means approximat-
ing the whole Pareto frontier. However, from a practical point
of view, in real-world tasks the learning agent must execute
one final policy. Our goal is therefore to find the best policy
from a Pareto frontier given some user-defined preferences.

III. LOCAL-UTOPIA SELECTION
FOR A POSTERIORI PARETO FRONTIER PROCESSING

There are two major concerns to be considered when de-
signing an a posteriori selection algorithm. First, the algorithm
has to easily incorporate the user-defined preferences and to
allow the identification of solutions in concave regions of
the frontier. Second, since many similar solutions — not a
unique one — could actually reflect the user preferences, the
algorithm has to allow the user to refine his choice and to
provide him additional versatile selection criteria. Finally, the
algorithm has to be consistent, i.e., it has to select the same
solution when the preferences are expressed a priori, e.g.,
in multiple-policy learning strategies approximating Pareto
frontiers by repeated searches with difference preferences.

The proposed Local-utopia Selection Algorithm (LUSA)
addresses these issues by exploiting a non-linear scalarization
function, called local-utopia distance, which evaluates a solu-
tion according to the distance to a desired locally ideal point.
Subsequently, once such a point is identified, the algorithm
allows the user to refine his preferences and to select a nearby
solution according to some heuristics. Below, we describe in
details the complete procedure. In the experiments section, we
show that the proposed scalarization can be used in multiple-
policy approaches to approximate Pareto frontiers as well.
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Fig. 3: Solutions found by different heuristics on the three-dimensional water reservoir problem, using three different preferences
w. In Figure a, solutions found using the gain-loss ratio heuristics are overlapping, as well as the ones found by the minmax
regret and the utopia distances. In Figure c, the same happens for J∗GL and J∗WGL. We notice that some heuristics, such as
the gain-loss ratio, are more prone to stay close to the solution P̃ found by the local-utopia distance, while others, such as
the antiutopia distance and the minmax regret, allow the agent to move away from it.

A. Local-utopia Selection Algorithm

LUSA receives as input a set of non-dominated policies, the
user preferences expressed by the local-utopia w ∈ RdR and
a relaxation coefficient δ ∈ [0, 1]. The local-utopia represents
a locally ideal compromise between objectives and directly
maps to the desired solution in the objective space. However,
such a point could not exist (i.e., it could lie outside the space
of admissible solutions) or be sub-optimal (i.e., dominated).
Therefore, the algorithm determines the closest point P to the
local-utopia, i.e.,

P = arg min
J∈J ∗

||w − J ||. (1)

This scalarization is inspired by the more general [12]

arg min
J∈J ∗

 dR∑
i=1

ki||Ji − zi||p
1/p

,

setting k = 1, p = 2 and z = w. However, since the search
is strongly influenced by the magnitude of the objectives —
it would be biased to optimize high-magnitude objectives —
it is necessary to normalize the frontier such that Ji ∈ [0, 1].
A common normalization2 is [26], [27]

Ĵ =
J − P U
P AU − P U

, (2)

where P U and P AU are the utopia and antiutopia point,
respectively. The former represents an ideal solution maxi-
mizing all the objective at the same time, while the latter
an arbitrarily bad solution. This normalization allows for a
magnitude-invariant comparison of different policies and the

2The ratio between two vectors a/b is a component-wise operation.

local-utopia is normalized in [0, 1]dR as well. Examples of
solutions found by different preferences are shown in Figure 1.

The reader may notice some similarities between the nor-
malized local-utopia and the weights of classical scalariza-
tions, such as the weighted sum. However, there is a funda-
mental difference between the two: the local-utopia provides
a direct mapping from the preferences to a point in the
objective space without any intermediate weighting. Therefore,
the user directly expresses the exact desired performance on
each objective in a very straightforward way. This selection
is particularly useful in many-objective problems — i.e.,
problems with more than three objectives — where a visual
representation of the frontier is not possible, and whenever
expressing the preferences in terms of weights is ambiguous
or not simple to the user. Furthermore, the local-utopia does
not represent a convex combination of the objectives. As a
consequence of being a non-linear scalarization, the local-
utopia distance can tackle concave frontiers. We will come
back to topic in the experiments section.

After identifying the point P , LUSA relaxes the preferences
expressed by the local-utopia and searches for alternative
admissible solutions according to the coefficient δ. The co-
efficient is a percentage indicating how much the algorithm
can extend its search w.r.t. each objective, i.e., how much
the user can afford to stray from his initial preference. For
instance, with a range of zero LUSA would not search for
alternative solutions, while with a range of one it would
consider every point on the frontier. Examples are shown in
Figure 2. Formally, the set of admissible relaxed solutions is
defined as

J USR = {J̃ ∈ Ĵ ∗ : ||J̃ − P || < δ}, (3)

where Ĵ ∗ is the normalized frontier.
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Fig. 4: Histograms showing how many preferences find the same solution in the water reservoir selection setup. As can also
be seen by the entropy in Table I, using the local-utopia distance we find a sparse set of points, all evenly selected (most of
them found by 3 ∼ 4 different preferences). On the contrary, the WS and the Chebychev distance histograms are more sparse,
since these scalarizations focus more on some solutions rather than on others. In particular, the WS selects one single point
with 60 different weights and misses most of the remainders, despite the frontier being convex.

TABLE I: Results for the water reservoir problem. The reference frontier was provided by state-of-the-art algorithm [9] and
has 333 points. The local-utopia distance scalarization outperforms both competitors according to all evaluation criteria. In the
selection setup, even though its hypervolume improvement is small, its cardinality and diversity (i.e., entropy) are higher.

Learning setup Selection setup
#Preferences #Solutions Hyperv. #Preferences #Solutions Hyperv. Entropy

Local-utopia distance 230 136± 5 0.83± 0.009 280 121 0.852 4.4252
Weighted sum 230 111± 14 0.76± 0.018 280 43 0.843 2.6104
Chebychev distance 230 116± 10 0.79± 0.024 280 108 0.844 4.1078

This procedure allows the user to possibly find more useful
compromises. It can happen, for instance, that a nearby solu-
tion loses a small performance on one objective but substan-
tially improves the others, potentially being more desirable.
For this refinement and the selection of the final solution
J∗ ∈ J USR, the user is aided by some heuristics h , i.e.,
different selection criteria from the local-utopia. We stress
that applying the heuristics on J USR is easier than selecting
a solution from the “raw” frontier. Only a subset of solutions
is considered after the local-utopia pre-preprocessing, and the
user has more control over the searching area thanks to the
coefficient δ. Many different heuristics are proposed in the
following section, while the complete LUSA procedure is
described in Algorithm 1.

B. Selection Heuristics

Selection heuristics help the agent to decide on which
final policy has to be executed given a set of admissible

Algorithm 1 Local-utopia Selection Algorithm (LUSA)

1: Input: J ∗,w, δ, h
2: Ĵ ∗ ← NORMALIZE(J ∗) // Eq. (2)
3: P ← GETCLOSESTPOINT(Ĵ ∗,w) // Eq. (1)
4: J USR ← GETPOINTSINRANGE(Ĵ ∗,P , δ) // Eq. (3)
5: J∗ ← REFINE(J USR,P , h) // Sec. III-B
6: Output: J∗

solutions J USR. Below we present the most notable ones in
literature and we propose some novel ones. Examples are
shown in Figures 2 and 3. We stress that these heuristics are
not limited to LUSA, but can be used by any Pareto frontier
post-processing algorithm.

Utopia distance. This heuristic chooses the closest point to
the utopia

J∗U = arg min
J∈J USR

{||J − P U||} .

Antiutopia distance. Contrary to the previous heuristic, here
the farthest point from the antiutopia is selected

J∗AU = arg max
J∈J USR

{||J − P AU||} .

Minmax regret. This heuristic aims to minimize the highest
regret of a solution, i.e., the maximum distance from the utopia
w.r.t. each objective

J∗MM = arg min
J∈J USR

{
max ||Ji − PU,i||

}
.

Antiutopia / utopia ratio. Here we mix the utopia- and
antiutopia-based heuristics considering their ratio. As a result,
solutions that are simultaneously far from the antiutopia and
close to the utopia are preferred [28]

J∗UAU = arg max
J∈J USR

{
||J − P AU||
||J − P U||

}
.

Gain / loss ratio. The gain-loss ratio of a point is defined
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Fig. 5: Histograms showing how many preferences find the same solution in the ZDT3 selection setup. Once again, using the
local-utopia distance we find a sparse set of points, all evenly selected (most of them selected exactly once). The WS, on the
contrary, performs extremely poorly and selects the same solution up to 30 times.

TABLE II: Results for the ZDT3 function (the true frontier has 136 points). In both setups, the local-utopia distance performs
the best, achieving the highest value in all evaluation criteria. Results are notably positive in the learning setup, where the
local-utopia scores a 15% higher hypervolume compared to the Chebychev distance.

Learning setup Selection setup
#Preferences #Solutions Hyperv. #Preferences #Solutions Hyperv. Entropy

Local-utopia distance 150 50.1± 3.6 0.498± 0.011 150 89 0.516 4.1923
Weighted sum 150 28.4± 2.9 0.293± 0.021 150 34 0.488 2.6589
Chebychev distance 150 44.6± 3.5 0.425± 0.036 150 87 0.514 3.9952

as the ratio between all increasing rewards and all decreasing
rewards w.r.t. w. This heuristic, inspired by the notion of knee
point, selects the point with the highest ratio

J∗GL = arg max
J∈J USR

{∑dR
i=1 max(Ji − Pi, 0)∑dR
i=1 max(Pi − Ji, 0)

}
.

Weighted gain / loss ratio. Built on the previous heuristic,
this ratio additionally weighs the gain-loss ratio with the
preferences w in order to stay close to the original solution

J∗WGL = arg max
J∈J USR

{∑dR
i=1 wi max(Ji − Pi, 0)∑dR
i=1 wi max(Pi − Ji, 0)

}
.

IV. EXPERIMENTS

The evaluation of a policy selection algorithm is not
straightforward. To the best of our knowledge, there is no
standard quality measure for these algorithms, since, in a
typical scenario, the decision maker does not know a priori
the best policy to select, or there could be multiple policies
reflecting his preferences. As an example, we consider a two-
objective frontier with three points, A = [1, 0], B = [0.8, 0.2],
C = [0, 1], and utopia U = [1, 1]. The decision maker wants
a “reasonable trade-off” between the objectives and decides to
be assisted by two different selection algorithms. The first one
minimizes the distance to the utopia and selects B, while the
second one uses a weighted sum with weights [0.5, 0.5] and
selects either A or C. In this scenario, we cannon state which
selection algorithm is better, since we do not know the true
goal of the decision maker and both algorithms fairly reflect
the preference of “reasonable trade-off”.

Nonetheless, it is necessary to assess the quality of selection
algorithms as objectively as possible. We therefore decided to
compare the local-utopia scalarization, core of our algorithm,
against two of the most used scalarization in MORL, the
weighted sum (WS) and the Chebychev distance. The com-
parison is done in two setups. In the former, called learning
setup, we solve a multi-objective problem in a multiple-policy
fashion by varying the scalarization preferences. The algo-
rithms are compared on the cardinality and the hypervolume
of the returned approximate frontiers. The hypervolume is a
benchmark quality measure in MORL [7] and it is defined as
the volume of the portion of the objective space dominated
by a set of points w.r.t. a reference point. It is particularly
representative of the quality of a learning algorithm since
any improvement in a desirable characteristic of a frontier —
accuracy, extent, diversity — is reflected in an improvement
of the hypervolume. The goal of this setup is to evaluate
the learning ability of our scalarization, crucial in a priori
learning scenarios. Results are averaged over ten trials and the
hypervolume is computed using 0 as reference since frontiers
are normalized. For learning, we used Model-Based Relative
Entropy Stochastic Search (MORE) [29], a state-of-the-art
black-box learning algorithm.

In the second setup, called selection setup, we perform
LUSA on the true frontier with δ = 0 and different prefer-
ences. The goal of this setup is to evaluate the capability of
the algorithm to find as many and as much diverse solutions as
possible in an a posteriori scenario. To this aim, in addition to
the cardinality and the hypervolume, we evaluate the diversity
of a frontier by its entropy: an algorithm finding often the same
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Fig. 6: Frontiers learned by the three different scalarizations
for the water reservoir problem. The WS finds few but evenly
spread solutions, while Chebychev scalarization finds many
similar solutions close to the center of the frontier. On the
contrary, our local-utopia distance approximates the frontier
with many uniformly spread solutions.
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Fig. 7: Solutions selected by the three different scalarizations
for the ZDT3 function (points have been shifted for better
comparison). As the frontier is concave, the WS is able to
find only few points in the convex regions. On the contrary,
the local-utopia and the Chebychev distances achieve better
performance, being able to identify most of the points.

solutions will result in low-entropy frontiers, not providing the
user enough flexibility to distinguish between solutions.

The problems chosen for the evaluation are a water reservoir
control [30], a MOMDP characterized by a three-dimensional
convex frontier, and the ZDT3 function [17], a MOO problem
characterized by a two-dimensional discontinuous concave
frontier. In both setups, WS and Chebychev weights are
linearly sampled in [0, 1]dR (

∑dR
i=1 wi = 1), while normalized

local-utopia points are linearly sampled in the hypercube
[0, 1]dR with the constraint

∑dR
i=1 wi >= 1.

A comparison of the heuristics proposed in Section III-B is
out of the scope of this paper, as their purpose is to provide
the user more flexibility in the selection of his final policy and
a numerical comparison is not straightforward.

A. Water Reservoir
Description. This problem, first presented by [30] and later

by [9], is particularly interesting because the environment
is stochastic, the solution space is large and frontiers are
three-dimensional and easy to visualize, allowing a graphical
comparison between the algorithms. The goal of the agent
is to control the amount of water to be released from a
reservoir in order to prevent flooding along the lake shores
and to satisfy both water and electricity demands, for a
total of three conflicting objectives. States and actions are
continuous and the agent exploits a stochastic Gaussian policy
π(a|s) = N

(
µ+ φ(s)Tκ,Σ

)
, where φ(s) are radial basis

functions and θ = {µ,κ,Σ} are the policy parameters. For
additional details of the problem, we refer the reader to the
original paper.

Results. Figure 6 shows a graphical comparison of the
learning setup, while numerical results are presented in Table I.

In both setups, our local-utopia approach outperforms the
competitors, returning broad frontiers with evenly spread solu-
tions, and achieving the highest hypervolume, cardinality and
diversity. The WS performs surprisingly bad, since, despite
the frontier being convex, many solutions are not found and
the hypervolume of its approximate frontier is the lowest. The
reason is that a loss in one objective may not be compensated
by an increment in another one and therefore, even varying the
weights uniformly, some solutions are missed. This behavior
is further highlighted by Figure 4, where one single solution
is found by 60 different weights. The Chebychev distance
performs better than the WS, finding more solutions. However,
its solutions are very close to each other, resulting in a lower
hypervolume compared to the local-utopia distance.

B. ZDT3
Description. The ZDT3 problem is a widely used bench-

mark problem in MOO [17]. Despite not being a MOMDP
(we can compute the expected return in closed form), it is
particularly interesting because of its difficulty: the frontier is
discontinuous and concave, composed of several noncontigu-
ous convex parts, and there are 30 parameters to learn.

Results. Table II reports numerical results and Figure 7
shows the solutions found in the selection setup. In the
learning setup, the local-utopia distance outperforms both
the Chebychev distance and the WS, returning on average
the frontier with the highest hypervolume. In the selection
setup, the local-utopia distance achieves similar results to the
Chebychev distance, but the entropy of the selected solution
is significantly higher for the former, as further highlighted by
Figure 5. In both setups, results are particularly poor for the
WS, because of the shape of the frontier.



V. CONCLUSION

Despite recent advances in multi-objective optimization, the
selection, given the Pareto frontier, of a Pareto-optimal policy
is still an open problem. In this paper, we presented the Local-
utopia Selection Algorithm (LUSA), an algorithm for selecting
an appropriate solution according to a novel non-linear scalar-
ization function, called local-utopia distance, and to some
heuristics. We showed that the local-utopia distance allows
the user to straightforwardly express preferences over the
objectives and to easily identify a subset of suitable solutions,
while the heuristics help the user to refine his decision and to
incorporate more sophisticated selection criteria. Furthermore,
we showed that our algorithm can tackle concave frontiers,
unlike some of the most used scalarizations in MORL, and it
is applicable to multiple-policy learning approaches aimed at
approximating a Pareto frontier.

Evaluated on two problems and on two different setups,
our algorithm outperformed common scalarizations used in
MORL. LUSA proved to be able to accurately approximate
both concave and convex frontiers in learning scenarios, and
to identify a uniform and large set of Pareto-optimal points
given the true Pareto frontier.

This work opens several avenues of real world applications.
Due to its flexibility and the capability of identifying concave
Pareto frontier regions, LUSA can significantly aid decision
makers in the selection of a desired compromise between
conflicting objectives. Furthermore, the evaluation on real
scenarios allows for assessing the quality of the proposed
heuristics and the identification of novel ones. Therefore,
follow-up work will focus on the application of LUSA on
real multi-objective problems, such as robot tetherball [9].
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