
Goal-Driven Dimensionality Reduction for Reinforcement Learning

Simone Parisi1, Simon Ramstedt1 and Jan Peters1,2

Abstract— Defining a state representation on which optimal
control can perform well is a tedious but crucial process.
It typically requires expert knowledge, does not generalize
straightforwardly over different tasks and strongly influences
the quality of the learned controller. In this paper, we present
an autonomous feature construction method for learning low-
dimensional manifolds of goal-relevant features jointly with an
optimal controller using reinforcement learning. Our method
combines information-theoretic algorithms with principal com-
ponent analysis to performs a return-weighted reduction of
the state representation. The method does not require any
preprocessing of the data, does not assume strong restrictions on
the state representation, and substantially improves the perfor-
mance of learning by reducing the number of samples required.
We show that our method can learn high quality controller
in redundant spaces, even from pixels, and outperforms both
classical and state-of-the-art deep learning approaches.

I. INTRODUCTION

In recent years reinforcement learning (RL) has become
increasingly important in the field of robot learning [1], [2].
RL algorithms search for optimal controllers, also called
policies, in a subset of the controller space using the ex-
perienced reward from the sampled trajectories as quality
assessment for the controller. To perform the search, they
often rely on concise and dense, but informative, state
descriptions and are particularly well-suited for solving tasks
in continuous state-action spaces. However, the quality of
the learned controller strongly depends on the state rep-
resentation and a poor representation is likely to result
in an unsuccessful controller. Nonetheless, complex tasks
often result in large sparse spaces. Such high-dimensional
representations can contain features which are redundant or
even irrelevant for both the description of the state and the
goal of the agent. Scaling up RL by learning a parsimonious
state representation is thus an important step towards more
autonomous and widely applicable algorithms on real-world
robotics problem.

Furthermore, learning a state representation for an RL
algorithm jointly with an optimal controller introduces a
circular dependency into the learning process. To learn
goal-relevant features a large part of the state space needs
to be explored using a goal-achieving controller. At the
same time, learning a locally or globally optimal controller
requires a concise feature representation. For this reason,
common approaches separate the problem of learning the
state representation from the RL task by preprocessing the

This work was funded by a DFG grant within the priority program
“Autonomous learning” (SPP1527).

1Autonomous Systems Labs, Technical University of Darmstadt, 64289
Darmstadt, Germany {last name}@ias.tu-darmstadt.de

2Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany

Fig. 1: A real-world example of learning with high-
dimensional redundant input. The robot has to hit the green
ball given pictures of its surroundings. However, only few
pixels (the ball and the paddle) are relevant for the task.

feature space [3], [4] (Figure 2a). As it precedes the RL
procedure, such a separated dimensionality reduction (DR)
step requires additional state samples that are frequently
not helpful for the learning itself. The state representation
resulting from a preceding DR step, in fact, does not consider
the importance of features for optimal controller but only
for general controller. Thus, the state representation will
not optimally support the RL algorithm as it may establish
features that are only relevant for suboptimal or even poor
controller.

Temporal difference approaches, on the other hand, do not
require additional steps and reduce the dimensionality of the
features while learning, e.g., by regularizing the states value
function approximation or by random projections [5], [6],
[7], [8], [9], [10], [11], [12], [13]. However, the quality of
these approaches depends on the quality of the value function
approximation, which is challenging in high-dimensional
continuous spaces. A notable exception is deep learning
algorithms, which use deep neural networks as approxima-
tors [14], [15]. These algorithms have achieved impressive
results, being able to learn complex controllers from raw
pixels input, but are computationally demanding and require
many samples.

On the other hand, RL has been very favorable in many
domains such as robotics as it allows task-appropriate pre-
structured policies to be integrated straightforwardly and ex-
pert’s knowledge can be incorporated with ease. By selecting
a suitable controller parametrization, the learning problem
can be simplified and stability, as well as robustness, can
frequently be ensured [16].

New

Controller

Rollouts

in the

Environment
Expected Returns

Reinforcement

Learning

State

Observations

Dimensionality

ReductionLow-Dimensional

State Representation

Pre-Processing
State Observations

Pre-Learned

Transformation

(a)

New

Controller

Rollouts

in the

Environment
Expected Returns

Reinforcement

Learning

State Observations

Weighted

Dimensionality

Reduction

Low-Dimensional

State Representation

(b)
Fig. 2: In classical robot learning approaches (a), the learning of a low-dimensional state representation is decoupled from
the learning of an optimal controller. On the contrary, our approach (b) directly integrates DR with RL to lean goal-relevant
features jointly with a goal-achieving controller.

In this paper, we present a novel approach addressing
the limitations of current state-of-the-art in feature con-
struction and RL for optimal control. First, unlike temporal
difference approaches, our method performs return-based
feature construction without relying on the value function
to select the optimal action. It is therefore applicable to
problems with continuous state-action spaces. Second, unlike
subspace invariant approaches, it is goal-directed and learns
an approximate state representation which is relevant for
the RL task. Third, it is sample-efficient, as it does not
require any additional samples for preprocessing the state
representation.

The remainder of the paper is organized as follows. We
start by introducing the notation used in this paper and
discuss the problem we aim to solve. We then present
our approach, showing how to combine the learning of an
optimal controller with the learning of a low-dimensional
state representation. Subsequently, we evaluate our approach
on two problems and compare it to related approaches in
RL. Finally, we summarize the contributions of our paper and
propose possible avenues of investigation for future research.

II. PROBLEM STATEMENT AND NOTATION

We consider finite-horizon Markov Decision Processes
(MDPs), a mathematical framework described by the tuple
〈X ,U ,P,R, µ〉, where X ⊆ RdX is the continuous state
space and U ⊆ RdU is the continuous action space. P is
a Markovian transition model and P(x′|x, u) defines the
transition density between states x and x′ under action u.
The mapping R : X × U → R is the reward function and µ
the initial state distribution (x1 ∼ µ). The goal of the agent
is to learn a controller π maximizing the expected cumula-
tive reward (or expected return). The controller is typically
described by a conditional distribution π(u|x) specifying the
probability of taking action u in state x. The optimal control
problem we want to solve is

max
π

∫∫
µπ(x)π(u|x)R(x, u) dxdu, (1)

where the stationary state distribution µπ represents the
probability of visiting state x when following π. Here, we
consider parametric controllers π ∈ Πθ = {πθ|θ ∈ Θ ⊆
Rdθ} and we want to learn the parameters θ representing a

locally or globally optimal controller. For simplicity, in the
remainder of the paper we write just π or θ instead of πθ.

RL algorithms approximate the integrals above by sample
trajectories τ = {xt, ut}Ht=1 of length H drawn from the
conditional distribution µπ(x)π(u|x). However, their perfor-
mance is highly coupled to how proficiently they explore
the state space. Usually, the controller relies on some basis
functions (or features) φ : X → F ∈ Rm to represent
relevant state information. We denote this dependence by πφ.
Nonetheless, using generic basis functions (e.g., polynomials,
radial basis functions) often results in large feature spaces,
potentially containing redundant information for the agent’s
goal. Similarly, large rich state input (e.g., full images) can
contain irrelevant information for the task (e.g., if the goal of
the agent is to hit a ball, it may be irrelevant to know other
objects positions). In the light of the above, we assume that,
given a generic state representation φ, the features of interest
for the RL problem lie on an embedded lower-dimensional
manifold F̃ ∈ Rn with n < m. We reformulate Eq. (1) as

max
π,φ̃

∫∫
µπ(x)πφ̃(u|x)R(x, u) dx du. (2)

where φ̃ : X → F̃ . That is, we want to optimize the
state representation and the controller at the same time.
Consequently, the state space is explored by a goal-achieving
controller, which simultaneously is optimized with the aid of
parsimonious features. Therefore, we combine goal-directed
DR techniques with RL. The idea of our method, summarized
in Figure 2b, is to use the experienced return R to update
both the low-dimensional state representation φ̃ and the
controller π at each iteration k, i.e.,

φ̃k+1 = DR
(
φ̃k,dk

)
, πk+1 = RL

(
πk, φ̃k+1

)
,

where DR is a dimensionality reduction algorithm with
return-based weights d, and RL is a reinforcement learning
algorithm. Although this formulation does not rely on any
specific algorithm, some controller update strategies might
be inapplicable, e.g., when the number of parameters θ
is fixed, as in gradient-based approaches. Furthermore, the
quality of the state representation strongly depends on the
weights d. As the goal of the agent is to maximize the
cumulative sum of the rewards, weighting a sample by the

corresponding immediate reward would not result in a state
representation φ̃ helpful for maximizing the expected return.
In the next sections, we address these issues and present
suitable algorithms for our approach.

III. REINFORCEMENT LEARNING WITH
INTEGRATED DIMENSIONALITY REDUCTION

We begin by discussing our method in the classical RL
scenario introduced in Section II. We formulate an algorithm
allowing the controller to change its number of parameters at
each iteration. This trait is essential, as the low-dimensional
state representation learned at each iteration influences the
number of controller parameters. Subsequently, we identify a
return-weighted procedure to construct the low-dimensional
features exploited by the RL algorithm.

A. Relative Entropy Policy Search

Expectation-maximization (EM) is a well-know algorithm
for finding the maximum likelihood (ML) solution of a
probabilistic latent variable model. The problem of learning
the optimal controller parameters can be formulated as an
EM problem [17]: the goal is to find the controller parameters
θ (the model) maximizing the probability p(R|τ) of expe-
riencing rewards (the observed variable) during a trajectory
(the latent variable). That is, we want to find the parametric
distribution pθ(R) =

∫
τ
pθ(R, τ) dτ maximizing the log-

likelihood of the observed data. This update strategy has
several advantages. First, many types of controller, including
non-parametric ones, can be fitted. Second, for controllers
belonging to the exponential distribution family the ML can
be determined in closed form. Third, EM updates would
particularly benefit from dimensionality reduction, as the
number of the controller parameters depends on the number
of basis functions used to represent the state. Therefore, less
parameters require less samples for an accurate fit. Finally,
as we will show below, this update strategy also provides
reasonable return-based weights applicable for the DR step.

One of the most prominent EM-based algorithms is Rel-
ative Entropy Policy Search (REPS) [18]. REPS performs
EM while keeping a sufficient level of statistical information
w.r.t. a reference distribution q — typically the previous
sampling distribution — in order to balance exploration and
exploitation. The level of statistical information is measured
using the KL divergence and the corresponding optimization
problem is

max
π

∫∫
µπ(x)π(u|x)R(x, u) dxdu

s.t.
∫∫

µπ(x)π(u|x) dxdu = 1∫∫
µπ(x)π(u|x) log

µπ(x)π(u|x)
q(x, u)

dx du ≤ ε∫∫
µπ(x)π(u|x)P(x′|x, u) dx du = µπ(x

′), ∀x′ (3)

where the first constraint ensures that π is a distribution, the
second constrain the KL divergence between the controller
and the reference distribution, and the third guarantees that

the stationary state distribution µπ comply with the given
state dynamics and the controller. However, in continuous
spaces, this formulation results in infinitely many constraints.
To keep the problem tractable, we require that the distribu-
tions only match on their expected features φ(x). Therefore,
we need to resort to matching feature expectations instead
of matching single probabilities.∫∫∫

µπ(x)π(u|x)φ(x′)P(x′|x, u) dxdudx′ =∫
µπ(x

′)φ(x′) dx′.

Using the method of Lagrangian multipliers, we can solve
the problem above and obtain an analytical solution for the
new controller

π(u|x) ∝ q(u|x) exp
(
δ(x, u, V)

η

)
, (4)

δ(x, u, V) = R(x, u) +
∫
V (x′)P(x′|x, u) dx′ − V (x) (5)

where η and V (x) are the Lagrangian multipliers and
δ(x, u, V) denotes the Bellman error. The Lagrangian mul-
tipliers are obtained by minimizing the dual function of the
original optimization problem

g(η,V)=ηε+η log

∫∫
q(x,u)exp

(
δ(x,u,V)

η

)
dxdu. (6)

Since we have access only to trajectories sampled by q, we
update our controller π by fitting a parametric distribution
to our samples. This parametric distribution is obtained by
a weighted ML estimate on the samples {x[i], u[i]} with
weightings d[i] = exp

(
δ(x[i], u[i], V)/η

)
.

Therefore, REPS reduces RL to an iterative schema where
at each step the new controller parameters are derived
from the weighted ML estimate on samples collected by
the previous controller. If the controller relies on features
φ, samples φ(x[i]) are used for the ML estimate as well.
Furthermore, since the weights d[i] account for the Bellman
error — not the immediate reward — they are suitable for
our purpose of samples weighting.

B. Constructing Goal-Relevant Features

Given a set of observed features Φ = {φ(x[i])}Ni=1, the
DR problem consists of finding a lower-dimensional set
Φ̃ = {φ̃(x[i])}Ni=1 by learning a mapping from φ(x) to φ̃(x)
which preserves as much as information as possible about
the state. However, we are concerned with transformations
that aid the learning process, i.e., we aim to find a mapping
that keeps only information relevant for the RL task. As
the goal of the agent is to maximize the expected return,
we want to perform a weighted DR taking into account the
previously learned weights d[i]. For this purpose, building
on [19], [20] we develop return-weighted principal com-
ponent analysis (rwPCA). rwPCA solves the eigenproblem
Cov(DΦ)T = λT , where DΦ is the return-weighted obser-
vation matrix, D is the diagonal matrix of the weights d,
λ are the eigenvalues and T the matrix of the eigenvectors.

Algorithm 1 Relative Entropy Policy Search with Return-
Weighted Dimensionality Reduction

Initialize πφ̃(u|x), φ̃← φ

Repeat until convergence
Execute i = 1 . . . N trajectories and collect samples

Observe state: X =
{
x
[i]
1:H ,

}
Draw action: U =

{
u
[i]
1:H−1

}
, where u ∼ πφ̃(·|x)

Store complete features: Φ =
{
φ
(
x
[i]
1:H−1

)}
Solve g(η, V) and compute Lagrangians η, V
Compute sample weights d[i] ∝ exp

(
δ
(
x[i], u[i], V

)
/η
)

Update feature mapping φ̃← DR(Φ, d)
Compute reduced features Φ̃← φ̃ (Φ)

Update controller θ ← ML(U, Φ̃, d)

By considering the first n largest eigenvalues λ we obtain
the desired mapping. The resulting set of basis functions
is orthogonal and uncorrelated, describing as much of the
variance in the original space as possible. The choice of n
is performed by using the explained variance ν, a measure
used in statistics to calculate the fraction of variance in the
original data accounted for by the low-dimensional model. In
the case of PCA, the variance explained by each component
is expressed by the eigenvalues λ, i.e., νi = λi/

∑n
j=1 λj .

Finally, our approach can be extended to kernel PCA [21]
by reformulating the problem in a higher-dimensional space
using a return-weighted kernel function. The corresponding
eigenproblem is Cov(Kd)T = λT , where Kd = DK is
the return-weighted kernel matrix, K is a matrix of entries
kij = κ(φ(xi), φ(xj)), and κ is a kernel.

Algorithm 1 shows the complete procedure. At each itera-
tion the current controller draws new samples by exploiting
the features φ̃ obtained at the previous step. Subsequently,
the samples are used both to update the controller and the
feature mapping.

IV. EVALUATION

In this section, we evaluate our algorithm and compare its
performance in different versions: vanilla (without any DR),
preprocessing-aided (we first collect samples to learn a low-
dimensional state representation and subsequently we learn
the controller), PCA-aided and rwPCA-aided. We also com-
pare with Deep Deterministic Policy Gradient (DDPG) [14],
a state-of-the-art deep RL algorithm, and with dimension-
ality reduction based on conditional mutual information
(CMI) [22]. The latter consists of filter-type feature selection
that evaluates the independence between return and state-
feature sequences using their CMI. At each iteration the
features with the highest CMI are selected for learning. For
DDPG, we used the non-convolutional network architecture
described in the original paper without dropout but with the
same hyperparameters. For PCA and rwPCA, the threshold
on the explained variance is set to 0.99 in all tasks.

Fig. 3: The pixelworld environment as observed by the agent.
It consists in a 21× 21 pixel image where the blue cross is
the agent, the yellow dot is the coin and the green dot is the
goal. The wall (black line) moves along the y-axis with a
constant clock time at half of the agent speed, and its hole
width is twice the agent size. The agent has to collect the
coin and to deliver it to the goal, while not touching the wall.

We evaluate the quality of the learned noise-free policies,
i.e., with zero variance, and the sample efficiency. In the
first problem, we present a continuous gridworld-like task,
where the agent needs to learn optimal actions by receiving
only a noisy pixelated representation of the world. In the
second problem, we study the application of our method on a
simulated robot tetherball game. For each case study, first, the
experiments are presented and then the results are reported
and discussed. In both problems, Algorithm 1 converges
when the KL divergence between the current and the new
controller is less than 0.1 or when the maximum number of
iterations is reached.

A. Pixelworld

Description. In the pixelworld, shown in Figure 3, the blue
agent has to pick the yellow coin and place it on the green
goal while avoiding the moving black wall. The agent posi-
tion is defined in [0, 1]2, its action in [−0.05, 0.05]2. Both the
initial agent position and the center of the wall hole are drawn
from a uniform distribution. At each time step the agent
receives a penalty equal to its distance from the coin (if not
collected yet) or from the goal (otherwise). Additionally, it
receives a bonus of +1 for collecting the coin and for placing
it on the goal, and a penalty of -1 for bumping into the wall
or into the environment boundaries. However, the agent does
not know the true state of the environment, i.e., the position
of itself, the coin, the goal and the wall. Instead, it receives
21× 21 pixels images of the environment (Figure 3). Using
this representation has two major consequences. First, being
the true space continuous, the pixel discretization entails a
loss of information, as the agent cannot distinguish between
similar states. Second, some pixels, although relevant for
representing the environment, are non-informative for the
task. For instance, it is irrelevant to identify the whole
wall, as knowing just the hole center is sufficient for a full
representation of the true state.

No DR PCA rwPCA Preprocessing CMI DDPG

1 2 3 4 5 6 7

−1,000

−500

Steps [105]

E
xp

ec
te

d
R

et
ur

n

1 2 3 4 5 6 7
100

200

300

400

Steps [105]

N
um

be
r

of
Fe

at
ur

es

Fig. 4: Pixelworld results averaged over 20 trials (shaded area denotes standard deviation). Left Figure shows that only
interleaving PCA and RL leads to high quality policies. The return-weighting step further increases the performance, as
rwPCA-aided RWR trend is the most stable and converges quickly to the best controller.

Results. We use a Gaussian controller with diagonal
covariance π(u|x) ∼ N (k + Kφ(x),Σ), where φ(x) are
the pixels representing the world. The controller is initialized
with zero mean and identity covariance. The evaluation
is performed over 1,000 episodes of at most 1,000 steps,
while during learning the agent collects only 25 episodes
per iteration. Figure 4 shows the results with KL bound
ε = 1. Not performing any DR or just preprocessing the
state representation led to a very poor controller. In the first
case, the state dimensionality is too high compared to the
few number of samples used for a controller update step.
In the second case, the pre-learned state representation is
not informative. The preprocessing is performed, in fact, on
500,000 samples collected by the random initial controller.
Therefore, such samples do not include many goal-relevant
states, since the agent mostly bumps into the wall or into
the environment boundaries, thus rarely experiencing positive
rewards. As a consequence, the state representation is neither
parsimonious nor return-driven. Similarly, CMI-aided RWR
achieves poor results, not being able to even collect the
coin. The algorithm used 256 features, chosen among the
ones with the highest CMI. This dimensionality was chosen
as equal to the one learned by preprocessing with PCA.
On the contrary, interleaving PCA and RL tremendously
improved the learning performance, as both vanilla PCA
and rwPCA are able to converge to high quality policies.
However, rwPCA outperforms the former both in terms of
quality of the final controller and stability of the learning. As
already discussed, some pixels, although relevant for the state
description, are irrelevant for the agent’s goal. Therefore,
applying a return-weighted procedure allows the agent to
construct features that better support the RL algorithm.
Finally, DDPG is not able to solve the task. Instead of
collecting the coin and delivering it to the goal, the agent
learns to get close to the coin in order to get minimal
penalties, but then avoids collecting it in order not to receive
the following highly negative rewards (for not being close to
the goal). This behavior may be due to DDPG’s ineffective

‘dithering’ exploration in the action space, in contrast to
the exploration in the controller space of our algorithm.
Another reason may be DDPG’s inaccurate value function
approximation. For example, even though the agent received
episodic returns of about -300, the value function predicted
returns of about -60. Similar inaccuracies have been reported
by Lillicrap et al. [14], however without severe consequences
on the learning.

B. Simulated Robot Tetherball Game
Description. The simulated robot tetherball game [23],

shown in Figure 5 (left), is a contextual episodic task charac-
terized by complex system dynamics and high-dimensional
actions. An episode is defined by each player turn, which
starts when the opponent hits or misses the ball. At the
beginning of each episode, the robot plans its trajectory
according to its observation of the environment (i.e., the
context), consisting in 20 variables: its joints position, the
paddle position and orientation, the ball position and es-
timated velocity and the pivot point of the ball. However,
not all variables are relevant, e.g., the paddle position and
orientation can be determined by the robot joints position.
For details of the reward function we refer the reader to the
original paper.

Results. The robot is controlled by dynamic motor primi-
tives [24] for a total of 24 parameters. These parameters are
drawn by a Gaussian distribution π, initialized by imitation
learning on 20 demonstrations in random context. Note that
since DDPG performs exploration in the action space, it is
not applicable to this task. Similarly to the original work, the
KL divergence bound is 0.9 and at each iteration the agent
collects 50 new trajectories and keeps track of the last 450.
As shown in Figure 5 (right), rwPCA-aided REPS once again
achieves the best results, reducing the context space to eight
features on average. Vanilla PCA-aided version reduces the
space to the same dimension, but is not able to attain the
same results. Preprocessing the space by PCA on 10,000
samples led to a 18 dimensional space, which did not help
the player. CMI, which exploits 13 features, fails as well.

10 20 30 40 50 60 70 80 90 100

−40

−20

Iterations

A
ve

ra
ge

E
xp

ec
te

d
R

et
ur

n

No DR
PCA
rwPCA
Preprocessing
CMI

Fig. 5: In the tetherball game (left) one robot has to hit a ball hanging from a pole without giving the opponent the chance
to unwind it. On the right, the results averaged over ten trials. rwPCA outperforms all other algorithms, training the agent
to return the ball 85% of the time. With the second best policy, learned by PCA, the robot achieves only 75% of accuracy.

V. CONCLUSION

Learning a parsimonious and informative state representa-
tion is crucial for RL. Methods to date usually rely either on
filter-type preprocessing procedures, without considering a
more structured integration of DR into RL, or on computa-
tionally and samples demanding deep networks to handle
high-dimensional spaces. With this paper, we studied the
integration of DR into RL and presented a method for helping
an agent to learn both a low-dimensional state representation
altogether with an optimal controller. We provided a method
able to perform return-based feature construction without
relying on the value function to select the optimal action and
without requiring to fix the dimensionality of the constructed
space representation. Even though the explained variance has
to be fixed, its choice is usually much easier than choosing
the number of features a priori. Evaluated on two problems,
our method outperformed both classical and state-of-the-art
deep learning approaches both in terms of sample efficiency
and quality of the final controller, and it was successful in the
presence of both high-dimensional state and action spaces.

Our method opens several avenues of research and real
world applications, as it can be easily applied to systems
relying on high sensory input (e.g., real robotic or vision
problems). Real robot tetherball would be a suitable applica-
tion, as vision data can be easily added to the context, as well
as features describing the opponent state. In follow-up work,
we will also study the integration of more complex controller
representations, e.g., deep networks [14], and more sophis-
ticated exploration strategies, e.g., entropy-bounded [25].

REFERENCES

[1] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics.” Foundations and Trends in Robotics, 2013.

[2] S. Levine and V. Koltun, “Guided policy search,” in ICML, 2013.
[3] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality

reduction to exploit constraints in reinforcement learning,” in IROS,
2010.

[4] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in IJCNN, 2010.

[5] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation
in temporal difference reinforcement learning,” Annals of Operations
Research, 2005.

[6] P. W. Keller, S. Mannor, and D. Precup, “Automatic basis function con-
struction for approximate dynamic programming and reinforcement
learning,” in ICML, 2006.

[7] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in
least-squares temporal difference learning,” in ICML, 2009.

[8] A. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor, “Reg-
ularized fitted Q-iteration for planning in continuous-space markovian
decision problems,” in AAC, 2009.

[9] M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos, “LSTD
with random projections,” in NIPS, 2010.

[10] Y. Sun, M. Ring, J. Schmidhuber, and F. J. Gomez, “Incremental basis
construction from temporal difference error,” in ICML, 2011.

[11] C. Painter-Wakefield and R. Parr, “Greedy algorithms for sparse
reinforcement learning,” in ICML, 2012.

[12] M. M. Fard, Y. Grinberg, A. Massoud Farahmand, J. Pineau, and
D. Precup, “Bellman error based feature generation using random
projections on sparse spaces,” in NIPS, 2013.

[13] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in ICML, D. Blei and F. Bach, Eds., 2015.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in ICLR, 2015.

[15] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep
Q-Learning with Model-based acceleration,” in ICML, 2016.

[16] D. P. Bertsekas, “Dynamic programming and suboptimal control: A
survey from ADP to MPC*,” European Journal of Control, 2005.

[17] M. Toussaint and A. Storkey, “Probabilistic inference for solving
discrete and continuous state markov decision processes,” in ICML,
2006.

[18] J. Peters, K. Muelling, and Y. Altun, “Relative entropy policy search,”
in AAAI, 2010.

[19] H. H. Yue and M. Tomoyasu, “Weighted principal component analysis
and its applications to improve fdc performance,” in CDC, 2004.

[20] F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, “Reconstruction
of reflectance spectra using weighted principal component analysis,”
Color Research & Application, 2008.

[21] Q. Jiang and X. Yan, “Weighted kernel principal component analysis
based on probability density estimation and moving window and its
application in nonlinear chemical process monitoring,” Chemometrics
and Intelligent Laboratory Systems, 2013.

[22] H. Hachiya and M. Sugiyama, “Feature selection for reinforcement
learning: Evaluating implicit state-reward dependency via conditional
mutual information,” in ECML/PKDD. Springer, 2010.

[23] S. Parisi, H. Abdulsamad, A. Paraschos, C. Daniel, and J. Peters,
“Reinforcement learning vs human programming in tetherball robot
games,” in IROS, 2015.

[24] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in NIPS, 2002.

[25] R. Akrour, A. Abdolmaleki, H. Abdulsamad, and G. Neumann,
“Model-free trajectory optimization for reinforcement learning,” in
ICML, 2016.

