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Abstract

Many real-world applications are characterized by multiple conflicting objectives. In such
problems optimality is replaced by Pareto optimality and the goal is to find the Pareto frontier,
a set of solutions representing different compromises among the objectives. Despite recent
advances in multi-objective optimization, achieving an accurate representation of the Pareto
frontier is still an important challenge. Building on recent advances in reinforcement learning
and multi-objective policy search, we present two novel manifold-based algorithms to solve
multi-objective Markov decision processes. These algorithms combine episodic exploration
strategies and importance sampling to efficiently learn a manifold in the policy parameter
space such that its image in the objective space accurately approximates the Pareto frontier.
We show that episode-based approaches and importance sampling can lead to significantly
better results in the context of multi-objective reinforcement learning. Evaluated on three
multi-objective problems, our algorithms outperform state-of-the-art methods both in terms
of quality of the learned Pareto frontier and sample efficiency.

Keywords: multi-objective, reinforcement learning, policy search, black-box optimization,
importance sampling

1 Introduction

Many real-world problems are characterized by the presence of multiple conflicting objec-
tives, such as economic systems [38], medical treatment [22], control of robots [27, 1], water
reservoirs [8] and elevators [10]. These applications can be modeled as multi-objective rein-
forcement learning (MORL) problems, where the standard notion of optimality is replaced by
Pareto optimality, a concept for representing compromises among the objectives. Despite the
increasing interest in multi-objective problems and recent advances in reinforcement learning,
MORL is still a relatively young field of research.

MORL approaches can be classified in two main categories [43] based on the number of
policies they learn: single policy and multiple policy. While the majority of MORL approaches
belong to the former category, in this paper we focus on the latter and aim to learn a set of
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policies representing the best compromises among the objectives, namely the Pareto frontier.
Providing an accurate and uniform representation of the complete Pareto frontier is often
beneficial. It encapsulates all the trade-offs among the objectives and gives better insight
into the problem, thus helping the a posteriori selection of the most favorable solution.

Following the same line of thoughts of RL, initially MORL researchers have focused on
the development of value function-based approaches, where the attention was posed on the
recovery of the optimal value function (for more details, we refer to the survey in [36]).
Recently1, policy search approaches have also been extended to multi-objective problems [30,
34]. However, the majority of MORL approaches perform exploration in the action space [40].
This strategy, commonly known as step-based, requires a different exploration noise at each
time step and many studies [15, 37] have shown that it is subject to several limitations,
primarily due to the high variance in the policy update. Furthermore, common algorithms
involve the solution of several (independent) single-objective problems in order to approximate
the Pareto frontier [30, 17, 3, 44]. This approach implies an inefficient use of the samples,
as each optimization is usually carried out on-policy, and most of MORL state-of-the-art
approaches are inapplicable to large problems, especially in the presence of several objectives.

In this paper, we address these limitations and present the first manifold-based episodic
algorithms in MORL literature. First, these algorithms follow an episodic exploration strat-
egy (also known as parameter-based or black-box ) in order to reduce the variance during the
policy update. Second, they perform a manifold-based policy search and directly learn a man-
ifold in the policy parameter space to generate infinitely many Pareto-optimal solutions in a
single run. By employing Pareto-optimal indicator functions, the algorithms are guaranteed
to accurately and uniformly approximate the Pareto frontier. Finally, we show how to incor-
porate importance sampling in order to further reduce the sample complexity and to extend
these algorithms to the off-policy paradigm. To the best of our knowledge, our algorithms
are the first ones to tackle all these issues at once.

The remainder of the paper is organized as follows. In Section 2, we introduce the multi-
objective problem and discuss related work in MORL literature. Section 3 includes the main
contributions of this paper: an episodic manifold-based reformulation of the multi-objective
problem, two policy search algorithms and two Pareto-optimal indicator functions to solve
it, and an extension to importance sampling for reusing past samples. Section 4 provides a
thorough empirical evaluation of the proposed algorithms on three problems, namely a water
reservoir control task, a linear-quadratic Gaussian regulator and a simulated robot tetherball
game. Finally, in Section 5 we discuss the results of this study and propose possible avenues
of investigation for future research.

2 Preliminaries

In this section, we provide the mathematical framework and the terminology as used in this
paper. Moreover, we present a categorization of the multi-objective approaches presented in
MORL literature and we briefly discuss their advantages and drawbacks.

2.1 Problem Statement and Notation

Multi-objective Markov decision processes (MOMDPs) are an extension of MDPs in which
several pairs of reward functions and discount factors are defined, one for each objective.
Formally, a MOMDP is described by a tuple 〈S,A,P,R,γ,D〉: S ⊆ Rds is a continuous state
space, A ⊆ Rda is a continuous action space, P is a Markovian transition model and P(s′|s, a)

defines the transition density between state s and s′ under action a, R =
[
R1 . . .Rdr

]T
and

1The first seminal work dates back to 2001 [38].
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γ =
[
γ1 . . . γdr

]T
are vectors of reward functions Ri : S × A → R and discount factors

γi ∈ [0, 1), respectively, and D is the initial state distribution.
The policy followed by the agent is described by a conditional distribution π(a|s) specifying

the probability of taking action a in state s. In MOMDPs, a policy π is associated to dr

expected returns Jπ =
[
Jπ1 , . . . , J

π
dr

]
∈ F , where F ⊆ Rdr is the policy performance space.

Using the trajectory-based definition, the i-th expected return is

Jπi = Eτ∼p(·|π) [Ri(τ )] ,

where τ = {st, at}Hτ
t=1 ∈ T is a trajectory (episode) of length Hτ (possibly infinite) drawn from

the distribution p(τ |π), with return Ri(τ ) =
∑Hτ

t=1 γ
t−1
i Ri(st, at). Since it is not common to

have multiple discount factors (the problem becomes NP-complete [16]), we consider a unique
value γ for all the objectives.

Unlike in single-objective MDPs, in MOMDPs a single policy dominating all others usually
does not exist. When conflicting objectives are considered, no policy can simultaneously
maximize all of them. For this reason, in multi-objective optimization a different dominance
concept based on Pareto optimality is used. A policy π strongly dominates a policy π′ (denoted
by π � π′) if it outperforms π′ on all objectives, i.e.,

π � π′ ⇐⇒ ∀i ∈ {1 . . . dr} , Jπi > Jπ
′

i .

Similarly, policy π weakly dominates policy π′ (which is denoted by π � π′) if it is not worse
on all objectives, i.e.,

∀i ∈ {1, . . . , dr} , Jπi ≥ Jπ
′

i ∧ ∃i ∈ {1, . . . , dr} , Jπi = Jπ
′

i .

If there is no policy π′ such that π′ � π, then the policy π is Pareto-optimal. We can also
speak of locally Pareto-optimal policies, for which the definition is the same as above, except
that we restrict the dominance to a neighborhood of π.

Our goal is to determine the set of all Pareto-optimal policies Π∗ =
{
π | @π′, π′ � π

}
,

which maps to the so-called Pareto frontier F =
{
Jπ
∗
| π∗ ∈ Π∗

}
.2 More specifically, in this

paper we consider parametric policies π ∈ Πθ ≡ {πθ | θ ∈ Θ ⊆ Rdθ}, where Θ is the policy
parameters space. For simplicity, we will use θ in place of πθ to denote the dependence on
the current policy, e.g., J(θ) instead of Jπθ .

2.2 Related Work

MORL approaches can be divided into two categories based on the number of policies they
learn [43]. Single-policy methods aim to find the best policy satisfying a preference among
the objectives. The majority of MORL approaches belong to this category and differ for the
way in which preferences are expressed. They are easy to implement, but require a priori
decision about the type of the solution and suffer from instability, as small changes on the
preferences may result in significant variation in the solution [43]. The most straightforward
and common single-policy approach is the scalarization where a function is applied to the
reward vector in order to produce a scalar signal. Usually, a linear combination (weighted
sum) of the rewards is performed and the weights are used to express the preferences over
multiple objective [6, 26, 44]. Less common is the use of non linear mapping [41]. Although
scalarization approaches are simple and intuitive, they may fail in obtaining MOO desiderata,
e.g., a uniform distribution of the weights may not produce accurate and evenly distributed
points on the Pareto frontier [12]. On the other hand, several issues of the scalarization are
alleviated in RL due to the fact that the Pareto frontier is convex when stochastic policies are

2As done in [18], we suppose that locally Pareto-optimal solutions that are not Pareto-optimal do not exist.
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considered [42, 36]. For example, the convex hull of stochastic policies, each one being optimal
w.r.t. a different linear scalarization, represents a viable approximation of the Pareto frontier3.
Different single-policy approaches are based on thresholds and lexicographic ordering [17] or
different kinds of preferences over the objective space [24, 25].

Multiple-policy approaches, on the contrary, aim at learning multiple policies in order
to approximate the Pareto frontier. Building the exact frontier is generally impractical in
real-world problems, thus, the goal is to build an approximation of the frontier containing so-
lutions that are accurate, evenly distributed and have a range similar to the true frontier [50].
Whenever possible, multiple-policy methods are preferred, as they permit a posteriori se-
lection of the solution and encapsulate all the trade-offs among the multiple objectives. In
addition, a graphical representation of the frontier can give better insights into the relation-
ships among the objectives that can be useful for understanding the problem and the choice
of the solution. However, all these benefits come at a higher computational cost, that can
prevent learning in online scenarios. The most common approach to approximate the Pareto
frontier is to perform multiple runs of a single-policy algorithm by varying the preferences
among the objectives [6, 44]. It is a simple approach but suffers from the disadvantages of
the single-policy method used. Besides this, few other examples of multiple-policy algorithms
can be found in literature. Barrett and Narayanan [4] proposed an algorithm that learns
all the deterministic policies that define the convex hull of the Pareto frontier in a single
learning process. Recent studies have focused on the extension of fitted Q-iteration to the
multi-objective scenario. While Lizotte et al. [23, 22] have focused on a linear approximation
of the value function, Castelletti et al. [7] proposed an algorithm to learn the control policy
for all the linear combination of preferences among the objectives in a single run. Finally,
Wang and Sebag [45] proposed a Monte-Carlo Tree Search algorithm able to learn solutions
lying in the concave region of the frontier.

Nevertheless, classic approaches discussed above exploit only deterministic policies result-
ing in scattered Pareto frontiers, while stochastic policies give a continuous range of com-
promises among objectives [36, 30]. Shelton [38, Section 4.2.1] was the pioneer both for the
use of stochastic mixture policies and policy search in MORL, proposing a gradient-based
algorithm to learn mixtures of Pareto-optimal policies. To the best of our knowledge, only
the studies in [30, 34] followed the work of Shelton in combining policy search and multi-
ple policy concepts. The former presented two MORL algorithms, called Radial (RA) and
Pareto-Following (PFA) that, starting from an initial policy, perform gradient-based policy
search procedures aimed to find a set of non-dominated policies. These algorithms, however,
rely on several optimization procedures and are therefore sample inefficient. Differently, the
algorithm provided by [34] learns a function defining a manifold in the policy parameters
space. At each step the function is optimized performing a single gradient ascent w.r.t. a in-
dicator function that assesses the Pareto optimality of the manifold. Although interesting and
promising, this approach is subject to many limitations. First, by following a gradient-based
optimization, the indicator function must be differentiable. Therefore, common indicator
functions in MORL, e.g., the hypervolume [43], cannot be employed. Second, the definition
of the manifold parametrization is a non-trivial task and might require deep knowledge about
the MOMDP.

Furthermore, all these approaches perform exploration in the action space. As already
discussed, this strategy is subject to several limitations [15, 37]. First, it causes a large
variance in the parameter update estimate due to the per-step randomization. Second, in
many real world applications (e.g., robotics) random exploration in every time step might be
dangerous and can lead to uncontrolled or undesired behaviors of the agent.

3In episodic tasks, we can even exploit deterministic optimal policies by constructing mixture policies, i.e.,
policies stochastically choosing between deterministic policies at the beginning of each episode.
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Figure 1: Transformation map from the high-level distribution % to approximate frontiers in
the objective space F . A high-level parameter vector ωi maps to a manifold in the policy
parameter space Θ. Subsequently, the manifold maps to an approximate frontier Fi, with
each vector θ[j] mapping to a return vector J(θ[j]).

3 Manifold-based Episodic Policy Search

In order to overcome limitations of state-of-the-art approaches, we present two novel algo-
rithms that combine manifold-based policy search approach with episodic exploration strate-
gies. By employing an episodic approach, our algorithms are more effective and efficient than
step-based ones, since they reduce the variance during the policy update [47]. Furthermore,
by following a manifold-based approach, they are able to efficiently generate infinitely many
Pareto-optimal solutions in a single run, without the need of several optimization procedures.
Note that the most related approach in MOO is an evolutionary algorithm defined in [19].

3.1 The Episodic Multi-objective Reinforcement Learning Problem

In single-objective episodic RL, exploration is performed directly in the parameter space. The
policy parameters θ are sampled at the beginning of each episode from a (high-level) para-
metric distribution % : Ω→ Θ. Instead of directly finding the policy parameters maximizing
J(θ), methods following this approach aim to solve the problem defined by

max
ω∈Ω
J (ω) ≡ max

ω∈Ω

∫
Θ

% (θ|ω) J(θ) dθ. (1)

The above problem can be solved using several techniques, including gradient-based [46] or
distribution-matching methods [15]. However, these techniques cannot be directly applied to
MORL problems since the function J(θ) is a vector. As a consequence, the max operator in
Equation (1) is no longer well defined. Nonetheless, we can extend the definition of Pareto
optimality by applying a indicator function I : F → R (also called metric or indicator in
MORL literature) that assesses the Pareto optimality of a return vector J(θ). Assuming
that the manifold in the policy parameter space mapping to the Pareto frontier F∗ can be
approximated by the parametric distribution % (θ|ω), the episode-based problem we aim to
solve is given by

max
ω∈Ω
JI(ω) ≡ max

ω∈Ω

∫
Θ

% (θ|ω) I (J(θ)) dθ. (2)

Figure 1 shows a graphical representation of the mapping between high-level distribution
and the policy performance space. The above problem can be solved by any episodic RL
approach and there is no constraint on the indicator function I since it does not depend on
the optimization variable ω.
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3.2 Learning the Manifold by Policy Search

The algorithms we present to solve Problem (2), namely Multi-Objective eREPS (MO-eREPS)
and Multi-Objective Natural Evolution Strategy (MO-NES), are novel adaptations of state-of-
the-art policy search algorithms. The algorithms have been chosen according to their recent
successes in RL literature and their sample-efficiency.

MO-eREPS is an extension of Relative Entropy Policy Search [32], recently successfully
applied on complex real-world tasks [29]. The algorithm aims to solve Problem (2) while
keeping a sufficient level of statistical information w.r.t. a reference distribution %̄. The level
of statistical information is measured using the Kullback-Leibler (KL) divergence and the
resulting constraint can be formalized as

max
ω∈Ω

∫
Θ

% (θ|ω) I (J(θ)) dθ,

s.t. KL (% (·|ω) | %̄) ≤ ε, ε > 0.

This constrained optimization problem can be solved in closed form by the method of La-
grangian multipliers and the solution is given by

% ∝ %̄ exp

(
I (J(θ))

η

)
,

where η is the Lagrangian multiplier. The distribution % (θ|ω) is subsequently obtained by a

weighted maximum likelihood estimate of samples θ[i] and weights δ[i] = exp(I(J(θ[i]))/η).
The resulting algorithm implements an iterative schema where at each iteration the optimiza-
tion is solved w.r.t. the distribution recovered at the previous iteration (i.e., %̄k = %k−1(·|ω)).

MO-NES is the multi-objective counterpart of Natural Evolution Strategy [46]. It exploits
natural gradient ascent for solving Problem (2), i.e., it updates the high-level distribution by

ωk+1 = ωk + α∇̃ωJ (ω)|ω=ωk
,

where ∇̃ωJ (ω) = F−1ω ∇ωJ (ω) is the natural gradient and Fω is the Fisher Information
Matrix (FIM) [2]

∇ωJ (ω) =

∫
Θ

% (θ|ω)∇ω ln% (θ|ω) I (J(θ)) dθ,

Fω =

∫
Θ

% (θ|ω)∇ω ln% (θ|ω)∇ω ln% (θ|ω)
T

dθ.

Both terms can be approximated using samples {θ[i], I(J(θ[i]))}i=1...N . However, for some
classes of distributions %, the FIM can be computed exactly [39], making the algorithm
particularly sample efficient.

It is worth noting that the most similar approach to MO-NES defined in MOO literature
exploits covariance matrix adaptation evolution strategy (CMA-ES) to perform the optimiza-
tion [19]. However, natural gradient has proved to be more effective and efficient in many
real-world problems, overcoming the issues of CMA-ES approach. For a complete comparison
of these techniques we refer the reader to [46].

3.3 Indicator Functions for Pareto Optimality

The choice of the indicator function is crucial as it has to encourage the learning of a distribu-
tion that generates policies around the true manifold rather than on a local region of it. We
call this property consistency. Intuitively, a consistent indicator function must be maximized
by the true Pareto frontier and must induce a partial ordering over the frontiers, i.e., if the
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Figure 2: Example of hypervolume and ref-
erence points for a 2-objective problem. The
utopia point Ju optimizes both objectives at
the same time. The antiutopia Jau represents
an arbitrary low quality solution and it is used
as reference for computing the hypervolume
(gray area). The contribution of each solu-
tion to the hypervolume growth is denoted by
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Figure 3: Example of non-dominance sorting.
Node labels denote the ranking (the lower, the
better). Non-dominated solutions (black cir-
cles) get the highest ranking of zero. After re-
moving them, a new sub-frontier is identified
(blue diamonds) and its solutions are given a
dominance count of one. Finally, the last so-
lution (green square) gets the lowest rank of
two.

solutions of a manifold F2 are all dominated by the ones of a manifold F1, then the indicator
function score associate to F1 must be better than F2 one. Formally, let F be the set of all
(dr − 1)-dimensional manifolds associated to a MOMDP with dr objectives, Θk ∈ Θ be the
manifold in the policy parameters space mapping to Fk ∈ F and ωk ∈ Ω be the high level
distribution parameters mapping to Θk. Let F∗ be the real Pareto frontier and JI(ω) be the
manifold performance measure defined in Problem 2. An indicator function I is consistent if

∀ωk 6= ωh, JI(ωh) > JI(ωk) ⇐⇒ Fh ≡ F∗ and (a)

∀Θh,Θk, ∀θi ∈ Θk, ∃θj ∈ Θh, πθj
� πθi

=⇒ JI(ωh) > JI(ωk). (b)

Several Pareto optimality indicator functions have been provided in literature, especially
in the field of genetic algorithms. Here, we present and discuss the consistency of two indi-
cator functions built on hypervolume [5] and non-dominance [13]. The former, denoted by
Ihv(J(θ)), ranks a solution according to its contribution to the hypervolume of the approxi-
mate frontier (the higher, the better). As shown in Figure 2, the hypervolume hv of a frontier
is defined as the volume of the portion of the objective space dominated by the frontier w.r.t.
a reference point [43]. Formally, it can be defined as the Lebesgue measure (i.e., the volume)
of the union of the hypercuboids in the objective space [9]

hvr(D) = lebesgue

 ⋃
J(θ)∈nondom(D)

{
J(θ[i])

∣∣∣ J(θ) ≺ J(θ[i]) ≺ R, i = 1 . . . N
} ,

where D is a dataset of points D = {J(θ[i])}i=1...N , R is a reference point and nondom(D)
is the set of all non-dominated points in D. The hypervolume-based indicator of a sample
J(θ[j]) ∈ D is defined by

Ihv

(
J(θ[j])

)
= hvr(D)− hvr

(
D \ J(θ[j])

)
− Υ

(
J(θ[j])

)
,

where Υ (J(θ[j])) ≥ 0 is a penalization that is positive when J(θ[j]) is dominated in D and zero
otherwise. This penalization is necessary in order to obtain a consistent indicator function.
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It has been shown that the Pareto frontier achieves the highest hypervolume and that adding
a non-dominated point to a set of points results in the growth of the hypervolume of such
a set [49]. However, as the hypervolume contribution of dominated solution is zero, it is
possible to add infinite dominated solutions and still achieve the same performance JI . This
behavior might bias the learning in favor of broad distributions % that generate as many
solutions as possible — including the true Pareto frontier — without truly converging to one
that generates only Pareto-optimal solutions. By penalizing dominated solutions, this issue
is solved.

The second indicator function ranks a solution according to its non-dominance count nd
(the lower, the better). The non-dominance count is computed iteratively as follows. First, the

sub-frontier F̃0 = nondom(D) is identified. Solutions belonging to it are given a dominance
count of zero and are filtered out from D. Subsequently, the new sub-frontier is identified, i.e.,
F̃1 = nondom(D \ F̃0), and its solutions are given a dominance count of one. The procedure
ends when all sub-frontiers are identified and all solutions are assigned a dominance count.

F̃0 = nondom (D) ,

F̃i = nondom

D \ i−1⋃
j=1

F̃j

 ,

nd
(
J(θ[i])

)
= j, J(θ[i]) ∈ F̃j .

An example is shown in Figure 3. Solutions with the same dominance count are additionally
ranked according to a crowding distance cd, in order to achieve spread frontiers. The non-
dominance-based indicator function of a sample J(θ[j]) ∈ D is defined by

Ind

(
J(θ[j])

)
= −nd

(
J(θ[j])

)
+ cd

(
J(θ[j])

)
,

cd
(
J(θ[j])

)
∝

∑
J(θ[i])∈F̃ [j]

dist
(
Jn(θ[j]),Jn(θ[i])

)
,

Jn(θ[j]) =
J(θ[j])−min{F̃ [j]}

max{F̃ [j]} −min{F̃ [j]}
.

where dist is the Euclidean distance operator and F̃ [j] is the sub-frontier where a solution
J(θ[j]) belongs to. Solutions are normalized (denoted by Jn) as the magnitude of the ob-
jectives can introduce bias. Additionally, the crowding distance is normalized to sum to
unity in order to ensure that cd(J(θ[j])) ∈ [0, 1]. However, this indicator function is not
consistent, as observable from a simple counter-example: assume 2-objective frontiers, where
F1 = {(2, 1), (1, 2)} dominates F2 = {(1, 0), (0, 1)}. All solutions have the same dominance
count of 1 and the same crowding distance of 0.5 and, therefore, the same performance mea-
sure JI , thus violating condition (b). Nonetheless, given its large usage in the evolutionary
algorithms field, in the evaluation section we will investigate this indicator function as well.

3.4 Sample Reuse by Importance Sampling

Pareto-optimal policies can show similar behaviors and visit similar areas of the state-action
space. Thus, reusing past samples is crucial for increasing the sample efficiency of a MORL
algorithm and its applicability to large problems, especially in real-world tasks where sample
parsimony is an important feature (e.g., in robotics). Furthermore, in real-world problems
collecting samples of optimal policies might be dangerous (e.g., in the presence of stochastic
environments or stochastic policies). Therefore, the possibility of using an off-policy paradigm
may be decisive in the choice of the learning algorithm. However, it is not straightforward to
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Algorithm 1: Episodic Multi-objective Policy Search with Sample Reuse

1 Initialize % (θ|ω) ,M, k ← 1
2 Repeat until terminal condition is reached
3 Collect i = 1 . . . nk samples

4 Draw policy parameters θ[k,i] ∼ % (·|ωk)

5 Evaluate policy parameters J(θ[k,i])← Eτ∼p(·|θ[k,i]) [R(τ )]

6 Reuse past samples and compose dataset Dθ ←
{
θ[m,i]

}
i=1...nk, m=k−M...k

7 Scalarize returns and compose dataset DI←
{
I
(
J(θ[m,i])

)}
i=1...nk, m=k−M...k

8 Compute importance sampling weights w[m,i] ←
%
(
θ[m,i]

∣∣∣ ωk)∑k
j=k−M αj%

(
θ[m,i]

∣∣∣ ωj)
9 Update distribution % by MO-eREPS or MO-NES

10 k ← k + 1

reuse past samples in common multiple-policy MORL approaches. When several optimization
procedures are performed, it can be questioned if samples collected from parallel runs should
be reused. If not, sample redundancy persists, as procedures with similar preferences over the
objectives may collect similar samples. On the other hand, reusing samples from procedures
with different preferences might not help the learning at all. On the contrary, following a
manifold-based approach, our algorithms perform a single optimization procedure and are
not affected by this issue. In this section, we show how to extend MO-eREPS and MO-NES
to the off-policy paradigm by incorporating importance sampling (IS) [28].

IS is a technique for estimating the expectation Ep[f(x)] w.r.t. a distribution p by us-
ing samples drawn from another distribution g. Several unbiased IS estimators have been
presented in the literature [28]. In this paper, we focus on multiple IS, where N samples
are observed from M distributions {gm}Mm=1, each one providing nm samples such that∑M
m=1 nm = N . Let xmi ∼ gm, i = 1 . . . nm, m = 1 . . .M , and wm(x) be a partition of

unity 0 ≤ wm(x) ≤
∑M
m=1 wm(x) = 1. Under mild assumptions on the distributions4, an

unbiased multiple IS estimator is

Ep[f(x)] ≈
M∑
m=1

1

nm

nm∑
i=1

wm(xmi)
f(xmi)p(xmi)

gm(xmi)
.

This estimator generalizes stratified sampling but can also be reduced to the case of mixture
IS when the mixture distributions are independent. Among the several heuristics for wm
defined in literature, we exploit the balance heuristic [28]

wm(x) =
nmgm(x)∑M
j=1 njgj(x)

.

In RL, IS has already been successfully applied for the estimation of the expected return
both in step-based [35, 14] and episodic settings [11, 48]. In our case, we want to solve

Problem 2 having access to N samples θ[m,i] drawn from multiple distributions % (·|ωm). The

4Assume that gm(x) > 0 where wm(x)f(x)p(x) 6= 0.
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multiple IS estimate of the integral is

E%(·|ω)[I (J(θ))] ≈ 1

N

M∑
m=1

nm∑
i=1

I
(
J(θ[m,i])

) %
(
θ[m,i]

∣∣∣ ω)∑M
j=1 αj%

(
θ[m,i]

∣∣∣ ωj)︸ ︷︷ ︸
w[m,i]

, (3)

where αj = nj/N and I is some indicator function as described in Section 3.3. This estimator
is equivalent to mixture sampling with mixture responsibilities αm and independent distribu-
tions. Algorithm 1 summarizes the complete algorithmic procedure. Note that the proposed
IS extension can be directly used even in single-objective episodic algorithms, where I (J(θ))
is the scalar expected return J(θ).

4 Evaluation

The proposed algorithms, indicator functions and sample reuse were evaluated on three do-
mains and compared against some state-of-the-art MORL algorithms. The quality of the
approximate frontiers is evaluated by its hypervolume. For its computation, we consider the
normalized frontier, i.e., each point J(θ[i]) is normalized in the interval [0, 1]dr by

Jn(θ[i]) =
J(θ[i])− Jau

Ju − Jau
,

where Ju and Jau are the utopia and anti-utopia points, respectively. As shown in Figure 2,
the former represents an ideal solution that simultaneously maximizes all the objectives,
the latter an undesirable solution. For 2-objective problems, the hypervolume is exactly
computed. For problems involving more objectives, given its high computational complexity,
the hypervolume is approximated with a Monte-Carlo estimate as the percentage of points
dominated by the frontier in the cube defined by the utopia and antiutopia points. For the
estimation, one million points were used. Furthermore, we compare the sample complexity
of each algorithm, meant as the total number of episodes collected during learning before
convergence, and the number of Pareto-solutions returned. To this aim, the algorithms are
executed for a fixed amount of iterations and are evaluated at each iteration. Tables report
the number of iterations after which the hypervolume trend is constant.

First, a water reservoir control task is chosen to evaluate the two proposed indicator
functions and the effects of IS on MO-eREPS and MO-NES. This task has already been used
in literature [8, 30, 34] and, although not highly complex, it is helpful to assess the indicator
functions performance and to show how the proposed IS can effectively reduce the sample
complexity. The algorithms are then compared with state-of-the-art competitors, namely
a weighted sum approach with episodic REPS (WS-eREPS, it consists of episodic REPS
to solve several single-objective optimization on varying the weights that linearly combine
the immediate rewards), S-Metric Selection Evolutionary Multi-objective Algorithm (SMS-
EMOA) [5], Pareto-Following (PFA) and Radial (RA) Algorithms [30] and Pareto Manifold
Gradient Algorithm (PMGA) [34]. Afterwards, the algorithms are evaluated in the presence
of many objectives on a linear-quadratic Gaussian regulator and on the more complex task
of tetherball robot hitting game.

We recall that, by learning a manifold in the policy parameters space, MO-eREPS and
MO-NES can generate an infinite number of solutions. However, for the evaluation, a finite
number of solutions was drawn and dominated ones were filtered out and, therefore, their
frontier are discretized. For the computation of the hypervolume-based indicator function, a
constant penalty of Υ = 0.1 was applied to dominated solutions. For each case study, domains
are first presented and then results (averaged over ten trials) are reported and discussed. For
the details of the algorithms setup, e.g., the learning rates, we refer the reader to the Appendix.
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4.1 Water Reservoir Control

In this task, originally presented by Castelletti et al. [7], an agent has to control the amount of
water to be released from a reservoir while pursuing three conflicting objectives, i.e., prevent-
ing flooding along the lake shores and satisfying both water and electricity demands. Below,
we present results related to both the 2-objective scenario (in which only flooding and water
demand are considered) and the 3-objective one. The environment is stochastic, as the initial
state is drawn from a discrete set and a random inflow determines the transition function P,
i.e.,

s′ = s+ ξ −max(a,min(a, a)),

where s ∈ R represents the water volume stored in the reservoir, a ∈ R is the amount of
water released by the agent and ξ ∼ N (40, 100) is the stochastic water inflow. The constrains
a and a are the minimum and the maximum releases associated to storage s defined by the
relations a = s and a = max(s− 100, 0). The reward functions are

R1(s, a, s′) = −max(h′ − h, 0),

R2(s, a, s′) = −max(ρ− ρ, 0),

R3(s, a, s′) = −max(e− e′, 0),

where h′ = s′/S is the reservoir level, S = 1 is the reservoir surface, h = 50 is the flooding
threshold, ρ = max(a,min(a, a)) is the release from the reservoir, ρ = 50 is the water demand,
e = 4.36 is the electricity demand and e′ is the electricity production

e′ = ψ g η γH2O ρ h
′,

where ψ = 10−6/3.6 is a dimensional conversion coefficient, g = 9.81 the gravitational accel-
eration, η = 1 the turbine efficiency and γH2O = 1, 000 the water density. R1 denotes the
negative of the cost due to the flooding excess level, R2 is the negative of the deficit in water
supply and R3 is the negative of the deficit in hydro-power production. The discount factor is
set to 1 for all the objectives and the initial state is drawn from a finite set. As the problem
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Table 1: Comparison of proposed indicator functions I on the 2-objective water reservoir
problem (margins denote standard deviation over ten trials). The hypervolume-based one
attains the best results, both in terms of quality of the frontier and sample efficiency.

I Hypervolume #Episodes (103)

MO-eREPS
nd 0.3972± 0.0165 414± 110

hv 0.4124± 0.0098 133± 32

MO-NES
nd 0.4048± 0.0110 278± 67

hv 0.4114± 0.0048 82± 12

Table 2: Effects of using importance sampling on the 2-objective water reservoir problem.
IS successfully improves the algorithms performance and substantially reduces the samples
required for learning.

IS Hypervolume #Episodes (103)

MO-eREPS
3 0.4179± 0.0124 42± 6

7 0.4124± 0.0098 133± 32

MO-NES
3 0.4199± 0.0117 45± 4

7 0.4114± 0.0048 82± 12

is continuous we exploit a Gaussian policy

πθ(a|s) = N
(
µ+ ν(s)

T
κ, σ2

)
,

νi(s) = exp

(
−||s− ci||

2
2

bi

)
,

where θ = {µ, κ, σ} and ν : S → Rdθ are radial basis functions with centers ci and bandwidths
bi. We used four basis functions uniformly placed in the interval [−20, 190] with bandwidths
bi of 60, for a total of six parameters to learn, i.e., |θ| = 6. The sampling distribution is also
Gaussian

% (θ|ω) = N (µ,ΛTΛ),

where Λ is an upper triangular matrix. The high-level parameters to be learned are ω =
{µ,Λ}, with |ω| = 27. For this distribution, the FIM can be computed in closed form [39].
Being episode-based, WS-eREPS performs its searches over the same distribution.

For learning, given the stochasticity of the policy and of the environment, MO-eREPS and
MO-NES collect 100 episodes of 100 steps for estimating the quality of a sample θ[i]. For the
evaluation, each solution is evaluated over 1,000 episodes of 100 steps. As reference frontier,
solutions returned by Stochastic Dynamic Programming (SDP) have been used [7].

4.1.1 Evaluation of Proposed Indicator Functions

Our first concern is to evaluate the indicator functions I. To this aim, we compare the
frontier returned by MO-eREPS and MO-NES without IS using both the hypervolume-based
(hv) and the non-dominance-based (nd) indicator function on the 2-objective case. At each
iteration, the algorithms collect 50 new samples to perform a policy update. An example of
learning process with Ihv is shown in Figure 4. Table 1 shows no significant differences in
hypervolume between the two indicator functions. However, the hypervolume-based indicator
function attains greater sample efficiency and lower hypervolume variance. This behavior is

12
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Figure 6: Visual comparison for the 2-objective water reservoir problem. The frontiers re-
turned by MO-eREPS and MO-NES are comparable to the ones of state-of-the-art algorithms.
In this example, WS-eREPS and RA attains the worst results, as their solutions are domi-
nated by competitors’ frontiers.

not unexpected, considering that Ind is not consistent, unlike Ihv. Therefore, for the remainder
of the evaluation we will use the hypervolume-based indicator function.

4.1.2 Evaluation of Importance Sampling

The next setup aims to evaluate IS. IS-aided algorithms collect only ten samples at each
iteration and reuse samples collected by the last four policies for a total of 50 samples per
policy update. Table 2 shows numerical results, while Figure 5 shows the hypervolume trend
for MO-eREPS. From the results, we can assert that IS effectively increases the algorithms
performance in terms of sample efficiency without affecting the quality of the approximate
frontier.

4.1.3 Comparison of State-of-the-art Methods

Finally, we compare MO-eREPS and MO-NES with state-of-the-art algorithms in MORL on
both the 2- and 3-objective scenario. For the latter, IS is performed similarly as described
above, with the difference that 50 new samples are collected at each iteration, for a total of
250 samples exploited for a policy update.

Figure 6 shows the frontiers returned by all the algorithms for the 2-objective case, while
Tables 3 and 4 shows numerical results for both scenarios. For the 2-objective case, PMGA
performs slightly better than MO-eREPS and MO-NES in terms of hypervolume, but its
sample efficiency is substantially lower. However, for the 3-objective scenario, MO-REPS
and MO-NES attain the best results. Their hypervolume is the highest and MO-NES sample
complexity is on par with PMGA. Furthermore, MO-eREPS and MO-NES sample complexity
scale better with the number of objectives than PMGA. For the formers, in fact, the number
of collected samples increased by a factor of ∼1.5 (e.g., from 45, 000 to 62, 000), while for
the latter of ∼3.8 (from 16, 000 to 62, 000). This behavior might be due to both the use
of episodic exploration and IS. We recall that extending IS to competing algorithms is not
straightforward. PFA, RA and WS-eREPS perform several policy searches, while PMGA
and SMS-EMOA do not rely on any sampling distribution and IS, as proposed in this paper,
cannot be applied.
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Table 3: Numerical comparison for 2-objective water reservoir (margins denote standard
deviation over ten trials). The SDP reference frontier has a hypervolume of 0.4955. PMGA
attains the best results, followed by MO-NES and MO-eREPS.

Algorithm Hypervolume #Episodes (103) #Solutions

MO-eREPS 0.4179± 0.0124 42± 6 ∞
MO-NES 0.4199± 0.0117 45± 4 ∞
PMGA 0.4263± 0.0069 16± 1 ∞
PFA 0.4132± 0.0083 28± 5 51± 11

RA 0.3300± 0.0034 59± 3 16± 3

WS-eREPS 0.3713± 0.0062 37± 2 17± 4

SMS-EMOA 0.3994± 0.0151 150± 35 14± 2

Table 4: Numerical comparison for 3-objective water reservoir. The SDP reference frontier
has a hypervolume of 0.7192. As we increase the complexity of the problem, PMGA is
outperformed by both MO-NES and MO-eREPS in terms of hypervolume. Furthermore,
its sample complexity (although still the best along with MO-NES) increases substantially
compared to the 2-objective case.

Algorithm Hypervolume #Episodes (103) #Solutions

MO-eREPS 0.6763± 0.0066 72± 32 ∞
MO-NES 0.6779± 0.0021 62± 12 ∞
PMGA 0.6701± 0.0036 62± 8 ∞
PFA 0.6521± 0.0029 343± 13 595± 32

RA 0.6510± 0.0047 626± 36 137± 25

WS-eREPS 0.6139± 0.0003 187± 9 86± 10

SMS-EMOA 0.6534± 0.0007 507± 57 355± 14

The qualities shown by MO-eREPS and MO-NES, sample efficiency above all, suggest that
they might be particularly suited for many-objectives problems. We empirically investigate
this aspect in the next domain.

4.2 Linear-Quadratic Gaussian Regulator

The next evaluation focuses on the performance of the algorithms in the presence of several
objectives, i.e., in many-objectives problems. To this aim, we solve a Linear-Quadratic Gaus-
sian regulator (LQG) problem with five objectives, a particularly interesting case of study
as the objective functions Ji(θ) can be expressed in closed form. The single-objective LQG
problem is defined by the following dynamics [33]

s′ = As+Ba,

R(s, a) = −sTQs− aTRa,

where s and a are ds-dimensional column vectors, A,B,Q,R ∈ Rds×ds , Q is a symmetric
semidefinite matrix and R is a symmetric positive definite matrix. Dynamics are not coupled,
i.e., A and B are identity matrices. The low-level policy is Gaussian π(s, a) = N (Ks, I),
where K ∈ Rds×ds is diagonal and I is the identity matrix. The policy parameters are
θ = {Kii}i=1...5.

14



Table 5: Numerical results for the LQG (margins denote standard deviation over ten trials).
Only MO-NES and MO-eREPS were able to scale well to a higher number of objectives,
returning frontiers with the highest hypervolume without consuming the fixed samples budget.

Algorithm Hypervolume #Episodes (103) #Solutions

MO-eREPS 0.3511± 0.0043 620± 75 ∞
MO-NES 0.3585± 0.0057 540± 90 ∞
PMGA 0.3391± 0.0044 1, 000 ∞
PFA 0.1687± 0.0033 1, 000 3, 581± 298

RA 0.2778± 0.0029 1, 000 1, 069± 73

WS-eREPS 0.2517± 0.0063 1, 000 3, 089± 156

SMS-EMOA 0.3023± 0.0050 1, 000 1, 713± 149

The LQG can be easily extended to account for multiple conflicting objectives [30]. The
i-th objective represents the problem of minimizing both the distance from the origin w.r.t.
the i-th axis and the cost of the action over the other axes, i.e.,

Ri(s, a) = −s2i −
∑
j 6=i

a2j .

Since the maximization of the i-th objective requires to have null action on the other axes,
objectives are conflicting. As this reward formulation violates the positiveness of matrix Ri,
we change it by adding a sufficiently small ξ-perturbation

Ri(s, a) = −(1− ξ)

s2i +
∑
i 6=j

a2j

− ξ
∑
j 6=i

s2j + a2i

 .

In our experiments we set γ = 0.9, ξ = 0.1 and the initial state to s0 = [10, 10, 10, 10, 10]
T

.
The high number of objectives substantially increases the complexity of the problem com-

pared to the water reservoir control task. Therefore, we give each algorithm a learning
budget of one million samples and end the learning when the budget is consumed or when
the hypervolume trend becomes constant. Given the stochasticity of the policy π, during
learning solutions are evaluated over 150 episodes of 50 steps. For the evaluation, the closed
form J(θ) is used. For episodic algorithms, a Gaussian sampling distribution is used, i.e.,
% (θ|ω) = N (µ,ΛTΛ) (|ω| = 20, Λ is an upper-triangular matrix). At each iteration MO-
eREPS and MO-NES collect 200 samples and reuse the previous 800.

As shown in Table 5, MO-NES and MO-eREPS attain the best results, outperforming
state-of-the-art competitors. In particular, they converged without consuming the whole
samples budget, proving once more to be sample efficient. PMGA achieves the third-highest
hypervolume, while the remaining algorithms perform substantially worse. The reason is
that PFA, RA and WS-eREPS implement inefficient approaches, requiring to solve several
independent policy searches. For the same reason, even if PFA and WS-eREPS return more
solutions than SMS-EMOA, their hypervolume is lower as they consume the samples budget
before completing the optimization procedures.

4.3 Simulated Robot Tetherball

The last case study is a robot tetherball hitting game [29], an episodic RL domain shown in
Figure 7. This problem differs from the previous ones as the number of policy parameters
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Figure 7: In the tetherball robot game one player has to hit a ball hanging from a pole without
giving the opponent the chance to unwind it.

θ is substantially higher. In the original work, the robot has only one objective — hitting
the ball to score — and the ball trajectory was determined by different opponent strokes.
Here, we simplify the task by fixing the opponent stroke and we consider two conflicting
goals. The first requires the robot to produce safe smooth movements by minimizing the
jerk of the trajectory (i.e., avoiding jumps in the joints acceleration). The second considers
the strength of the agent stroke and rewards the robot for producing fast (but potentially
harmful) movements by maximizing the speed of the ball after a hit. Formally

R1(τ ) = rscore + rdistance + rjerk,

R2(τ ) = rscore + rdistance + rspeed,

rscore =

{
0 if the agent hits the ball back to the opponent

−10 otherwise
,

rdistance = λ1 (exp(−fdistance(τ ))− 1) ,

rspeed = λ2 (exp(−fspeed(τ ))− 1) ,

rjerk = λ3 (exp(−fjerk(τ ))− 1) ,

where fdistance is the minimum distance between the ball and the paddle during the episode,
fjerk the total jerk along the trajectory and fspeed the velocity of the ball after being hit.
The scale factors λi are to transform costs into rewards and to scale the objectives magnitude.

Actions a are the accelerations applied to the joints at each time step. The low-level
policy π(s, a) are Dynamic Motor Primitives (DMPs) by Ijspeert et al. [20], one for each
joint. DMPs offer a compact representation of the acceleration profile by a second order
dynamical system, i.e., a = f(ν(s),θ), where f is a non-linear forcing function and ν(s) are
basis functions. A single vector θ encodes an entire trajectory and by learning the parameters
θ the robot performs strokes with different shape and speed. For our experiments, we used
five radial basis functions, resulting in a total of 30 parameters θ. As the experiments are
performed in simulation, the environment is deterministic and each sample θ[i] is evaluated
over one single trajectory.

The high-level sampling distribution for MO-eREPS is a Gaussian mixture model with
eight components, i.e., % (θ|ω) =

∑8
j=1 pjN (µj ,Σj), with ω = {pj ,µj ,Σj}j=1...8 and |ω| =

7, 448. MO-NES uses the same Gaussian of the previous experiments (|ω| = 495), as the
computation of the FIM for the mixture model requires a high number of samples. For the
initialization of both distributions, eight different trajectories have been sampled in simula-
tion: for MO-eREPS, each one has been used to initialize a component of the mixture model,
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Figure 8: Different approximations of the Pareto frontier for the tetherball hitting game.
MO-eREPS outperforms all other algorithms, returning a uniform and spread frontier with
the highest hypervolume. As in the water reservoir domain, RA and WS-eREPS solutions
are dominated by competitors frontiers.

Table 6: Numerical results for the tetherball hitting game (margins denote standard deviation
over ten trials). MO-eREPS hypervolume is by far the highest and its sample complexity is
remarkably low, especially compared to RA, PFA and WS-eREPS.

Algorithm Hypervolume #Episodes (103) #Solutions

MO-eREPS 0.7983± 0.0146 1.6± 0.3 ∞
MO-NES 0.5879± 0.0125 1.3± 0.4 ∞
RA 0.6001± 0.097 9.8± 3 25± 5

PFA 0.6302± 0.0697 18± 2.2 22± 9

WS-eREPS 0.6869± 0.0192 10± 4 26± 3

SMS-EMOA 0.6205± 0.0799 2.7± 0.8 17± 6

while for MO-NES their mean and covariance has been used to initialize the single Gaussian.
For updating the distribution, at each iteration both algorithms collect 20 new samples and
reuse the last 180. As DMPs perform exploration in the policy parameters space rather than
in the action space, PFA, RA, WS-eREPS and SMS-EMOA learned policies are high-level
distributions as well. Since these algorithms perform several optimization procedures and
naturally learn many distributions, they exploit the same single Gaussian as MO-NES, as a
mixture model would be redundant. On the contrary, being purely step-based, PMGA is not
applicable to this domain.

Table 6 and Figure 8 show numerical and graphical results. MO-eREPS attains the best
results, with the highest hypervolume and the second-lowest sample complexity. However,
MO-NES does not perform as well as previous experiments, although it still attains the lowest
sample complexity. The reason of such behavior lies in the different sampling distribution
used. Exploiting a mixture model, MO-eREPS is able to approximate more accurately the
true manifold in the policy parameters space. At the same time, having less parameters to
learn, MO-NES converges earlier than MO-eREPS. We stress once more the effectiveness
of the hypervolume indicator function Ihv in driving the manifold to generate only Pareto-
optimal solutions. As shown in Figure 9, the high-level distribution initially produces only
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Figure 9: Sample solutions drawn by the high-level distribution learned by MO-eREPS.
Before learning, the manifold generates random policies, including extremely poor ones. After
learning, it generates only solutions in the proximity of the Pareto frontier, denoting once
again the effectiveness of the hypervolume-based indicator function.

medium and low quality policies, with solutions far from the Pareto frontier. After learning
with MO-eREPS and Ihv, it indeed generates only high quality policies, with solutions in the
proximity of the Pareto frontier. It is worth noting that only ∼ 15% of these solutions are
non-dominated, due to the stochasticity of the sampling distribution. However, all dominated
solutions are very close to the approximate frontier. If we slightly relax Pareto-optimality
condition and consider a neighborhood of the approximate frontier (e.g., with a 5% tolerance
on the objectives), then more than ∼60% solutions are non-dominated.

Concerning the other algorithms, we underline the very high sample complexity of PFA,
RA and WS-eREPS and the high hypervolume variance of PFA and SMS-EMOA. The former
is due to the algorithms inefficient approach, as multiple optimization procedures are per-
formed without reusing past samples. The latter is caused by SMS-EMOA intrinsic stochas-
tic nature (e.g., mutation and crossover) and PFA high sensibility to the learning parameters
(e.g., learning rates).

5 Conclusion

In this paper, we presented two novel manifold-based MORL algorithms that combine episodic
approaches and importance sampling to solve MOMDPs. Unlike the majority of state-of-the-
art approaches, our algorithms perform a manifold-based policy search and directly learn a
manifold in the policy parameter space to generate infinitely many Pareto-optimal solutions in
a single run. We also proposed and evaluated an off-policy extension by including importance
sampling in the learning process, in order to further reduce the sample complexity, and two
Pareto optimality indicator functions to assess the quality of an approximate frontier.

Evaluated on several domains, our algorithms outperformed state-of-the-art competitors
both in terms of quality of the learned Pareto frontier and sample efficiency. In particular, they
proved to perform well in the presence of many objectives and high-dimensional parameter
spaces. Furthermore, since they do not require any pre-parameterization of the manifold
and can exploit any Pareto optimality indicator function, our algorithms provide a versatile
approach for solving MOMDPs.

In some domains MO-eREPS attained the best results, while in other experiments we have
seen that MO-NES performs better. We experienced that MO-NES effectiveness comes from
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the ability of computing the Fisher information matrix in closed-form (at least for Gaussians).
However, the closed-form is known only for few distribution families and therefore MO-NES
might not be suitable for many problems.

These properties (above all the sample efficiency) open the way to the use of the proposed
algorithms on real-world applications. It would be interesting to evaluate the performance of
our algorithms on high-dimensional robotic domains. However, such problems often require
to learn the optimal policy for different contexts. We therefore believe that the integration of
contextual learning with multi-objective optimization is a relevant topic in MORL both from
a theoretical and a practical perspective.

Appendix

Here, we provide the details about the algorithms implementation used in Section 4. We
devote a section to each domain to describe the settings omitted from the main article. How-
ever, in order to improve the readability and the comparison of the settings of the domains,
we have summarized MO-eREPS and MO-NES common parameters in Table 7. We recall
that ε is the bound to the KL divergence used by MO-eREPS, Neval is the number of sam-
ples drawn from % for the evaluation and ε is the unique parameter of the adaptive step-size
algorithm used by MO-NES and described in [31]

α =

√
ε

∇ωJ (ω)
T
F−1ω ∇ωJ (ω)

, (4)

where Fω is the Fisher information matrix.

5.1 Water Reservoir Control

As the water reservoir domain has been fully described in the experimental section, we need
only to define some parameters exploited by the algorithms. WS-eREPS scalarizes the ob-
jectives by 50 and 500 linearly spaced weights for the 2-objective and the 3-objective case,
respectively, and its KL divergence bound is ε = 1. RA follows 50 and 500 linearly spaced
directions and, along with PFA, exploits the natural gradient [21] and the learning rate de-
scribed in Equation (4) with ε = 4. SMS-EMOA has a maximum population size of 100 and
500, for the 2- and 3-objective cases respectively. Its crossover is uniform and the mutation,
which has a chance of 80% to occur, adds a white noise to random chromosomes. At each iter-
ation, the top 10% individuals are kept in the next generation to guarantee that the solution
quality will not decrease.

PMGA uses the learning rate described in Equation (4) as well, with ε = 2. The algorithm
parameterizes the manifold in the policy parameters space by a polynomial fρ(x), where x
is the free sampling variable. A first degree polynomial and a second degree polynomial are
used for the 2- and 3-objective, respectively. Both parameterizations are forced to pass near
the extreme points of the Pareto frontier, computed through single-objective policy search, as
described in the original paper [34]. In both cases, the manifold parameters to be learned by

PMGA are six. During learning, one and five parameters θ[i] are collected from the manifold,
for the 2- and 3-objective case, respectively. Since PMGA requires the indicator function I
to be differentiable, we employed the indicator presented in [34], consisting of a ratio between

the distances of a point J(θ[i]) to utopia and anti-utopia points, i.e.,

I
(
J(θ[i])

)
= β1

J(θ[i])− Jau

J(θ[i])− Ju

− β2.
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Table 7: Algorithms setup details for MO-eREPS and MO-NES.

Domain 2-obj. Water Reservoir 3-obj. Water Reservoir LQG Tetherball

Ju −[0.5, 0.9] −[0.5, 0.9, 0.001] −283 [−20, 20]

Jau −[2.5, 11] −[65, 12, 0.7] −436 [−50, 0]

ε 1 (without IS) ; 2 (with IS) 2 2 1

ε 0.2 0.2 0.1 0.2

Neval 500 1,000 10,000 200

We chose β1 = 1 and β2 = 1. Finally, as approximate frontiers returned by PMGA are
continuous, they are discretized by sampling 500 and 1,000 points from the manifold for the
2- and 3-objective case, respectively.

5.2 Linear-Quadratic Gaussian Regulator

As done in the previous section, we only need to provide the algorithms setup. Both WS-
eREPS and RA perform 5,000 optimization procedures. WS-eREPS KL divergence bound is
ε = 1, while RA and PFA learning rate parameter is ε = 5. SMS-EMOA setting is the same
as in the water reservoir domain and its maximum population size is 2,000.

As the LQG is defined only for control actions in the range [1, 0] and controls outside this
range lead to divergence of the system, PMGA parameterizes the manifold by

θ = fρ(x) =
−1

exp(poly(x,ρ, 2))
, x ∈ simplex([0, 1]5),

where poly(x,ρ, 2) is the complete degree of variables x, coefficients ρ and degree two, for

a total of 75 parameters ρ to learn. During learning, 50 samples θ[i] are collected from the
manifold and the same scalarization function I as in the water reservoir control task is used.
As for MO-eREPS and MO-NES, their frontiers are discretized by sampling 10,000 points
from the manifold.

5.3 Simulated Robot Tetherball

The tetherball domain has been extensively described in the experimental section. Additional
parameters regarding MO-eREPS and MO-NES are reported in Table 7. WS-eREPS and RA
perform 25 optimization procedures. WS-eREPS KL divergence bound is ε = 2, as well as
RA and PFA learning rate parameter ε = 2. SMS-EMOA crossover, mutation and elitism are
the same as above, while its maximum population size is 200.
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2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, pages 539–546. ACM,
2009.

[40] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In S. Solla, T. Leen, and K. Müller,
editors, Advances in Neural Information Processing Systems 12, pages 1057–1063. MIT
Press, 2000.

[41] G. Tesauro, R. Das, H. Chan, J. Kephart, D. Levine, F. Rawson, and C. Lefurgy. Man-
aging power consumption and performance of computing systems using reinforcement
learning. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1497–1504. Curran Associates, Inc., 2008.

[42] P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev. Constructing stochastic mixture
policies for episodic multiobjective reinforcement learning tasks. In A. Nicholson and
X. Li, editors, AI 2009: Advances in Artificial Intelligence, volume 5866 of Lecture
Notes in Computer Science, pages 340–349. Springer Berlin Heidelberg, 2009.

[43] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Empirical evaluation
methods for multiobjective reinforcement learning algorithms. Machine Learning, 84(1-
2):51–80, 2011.

23



[44] K. Van Moffaert, M. M. Drugan, and A. Nowe. Scalarized multi-objective reinforcement
learning: Novel design techniques. In Adaptive Dynamic Programming And Reinforce-
ment Learning (ADPRL), 2013 IEEE Symposium on, pages 191–199, April 2013.

[45] W. Wang and M. Sebag. Hypervolume indicator and dominance reward based multi-
objective monte-carlo tree search. Machine Learning, 92(2-3):403–429, 2013.

[46] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural
evolution strategies. Journal of Machine Learning Research, 15(1):949–980, 2014.

[47] T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama. Analysis and improvement of policy
gradient estimation. Neural Networks, 26(0):118 – 129, 2012.

[48] T. Zhao, H. Hachiya, V. Tangkaratt, J. Morimoto, and M. Sugiyama. Efficient sam-
ple reuse in policy gradients with parameter-based exploration. Neural computation,
25(6):1512–1547, 2013.

[49] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the
design of pareto-compliant indicators via weighted integration. In Evolutionary multi-
criterion optimization, pages 862–876. Springer, 2007.

[50] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Perfor-
mance assessment of multiobjective optimizers: an analysis and review. Evolutionary
Computation, IEEE Transactions on, 7(2):117–132, 2003.

24


