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ABSTRACT

We introduce a machine learning based channel state classi-

fier for cognitive radio, designed for nano-scale implemen-

tation. The system uses analog computation, and consists of

cyclostationary feature extraction and a radial basis function

network for classification. The description of the system is

partially abstract, but our design choices are motivated by

domain knowledge and we believe the system will be feasi-

ble for future nanotechnology implementation. We describe

an error model for the system, and simulate experimental

performance and fault tolerance of the system in recogniz-

ing WLAN signals, under different levels of input noise and

computational errors. The system performs well under the

expected non-ideal manufacturing and operating conditions.

1. INTRODUCTION

In this paper we discuss a new highly promising and chal-

lenging domain for hardware implementation of machine

learning: nanotechnology-based computing devices.

Nanocomputing is expected to eventually yield high

computational speed with low power requirements and small

device size. However, nanotechnology is still in develop-

ment: actual physical implementation is mostly at the level

of elementary components, and complicated device archi-

tectures are largely theoretical. The challenge is that com-

ponents are stochastic and manufacturing is prone to errors.

Proposed computation devices must work successfully with

noise and error-prone computation; machine learning based

computation has the potential to satisfy these requirements.

We give a machine learning-based hardware solution for

a specific, special-purpose nanocomputing device. Physical

research into computing elements is still ongoing, so our so-

lution is at a partially abstract level, but it is detailed enough

to evaluate its potential and guide physical research.
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We propose a machine learning-based nanocomputing

solution to a widely researched problem: cognitive radio,

i.e., identifying and choosing at each moment the best avail-

able frequencies for wireless communication. This appli-

cation is ideal for nanotechnology implementation because

intensive computation is needed; without nanocomputing it

might be infeasible to implement cognitive radio in a sin-

gle device, and complicated distributed processing schemes

would be needed. Moreover, machine learning is suitable

for cognitive radio: identifying free frequencies is essen-

tially a pattern recognition problem. To our knowledge our

paper is the first on a nanocomputing based cognitive radio.

We give an abstract level implementation of our solution

and analyze its performance with respect to input noise and

computation errors. Compared to previous analyses of fault

tolerance in machine learning, our novelties are our focus

on nanocomputing errors, our feature extraction and clas-

sification architecture, and our cognitive radio application.

We first briefly describe three central topics of our pa-

per: nanotechnology, cognitive radio, and fault tolerance in

selected machine learning algorithms. From Section 2 on-

wards we describe our system and experiments.

1.1. Nanotechnology

Nanotechnology tools allow manipulation of matter at the

scale of 1 to 100 nm, yielding new materials and technolo-

gies [1]. Nanocomputing is a major attraction of nanotech-

nology since small scale electronic components have many

advantages: large numbers of components can be packed

on a small device, components can operate faster due to

smaller inter-component distances, and less power is needed

at smaller scales. Current state of the art is largely at the

level of manufacturing and analyzing individual components

like nanowires; simple structures like a small group of con-

nected transistors or a crossing mesh of nanowires [2] have

been realized, but larger architectures are at the level of the-

oretical proposals or at best abstract simulations, like [3].

To combat errors in nanocomputing due to causes like

stochasticity in physical component placement or thermal

noise affecting electric potentials in nanowires, we suggest



that the first complicated nanodevices should not be gen-

eral purpose computers, rather, they should implement spe-

cific algorithms for real-life applications: specific devices

are easier to make because critical parts of the computa-

tion can be better identified and taken into account in the

device design. We study a specific-purpose nanodevice for

cognitive radio. Our solution is based on machine learning

algorithms which themselves can be error and fault tolerant.

1.2. Cognitive radio

Increasing wireless communications require new solutions

to allow a maximal number of users on the same radio chan-

nel and avoid “congestion”. Congestion could be reduced if

each communicating device could analyze at each moment

its radio environment and find a suitable free channel. Such

intelligent communication is called cognitive radio [4, 5].

Cognitive radio devices are not permitted by current legis-

lation (except certain simplistic kinds), but it is hoped they

will be permitted in the future under restrictions and re-

quirements for the device operation.

Operating a cognitive radio is at simplest a classification

problem: feature extraction is applied to a time series of in-

coming radio signal, and each channel is classified “occu-

pied” if a signal is present and “free” otherwise. More com-

plicated setups include classifying what kinds of signals are

present, planning on which radio parameters to use, nego-

tiating a communication protocol between several devices,

and optimizing channel search and negotiation efficiency.

We focus on the basic binary classification problem.

Doing analysis and classification for a wide range of

channels needs intensive computation: cognitive radio im-

plemented with conventional electronics could easily drain

too much power for a single handheld device. One solution

could be dividing computation among many devices. We

study another approach: performing the classification with

nanocomputing, which could operate with less power than

conventional electronics and could allow integration of cog-

nitive radio into a single handheld device. Nanocomputing

has been mentioned before as a potential solution [5] but

no actual suggestions for devices have been presented.

1.3. Fault tolerance

Implementation of neural networks with conventional hard-

ware and the fault tolerance of such implementations have

been widely studied. Fault types studied previously include

so-called stuck-at faults where neuron output or weights are

fixed at a certain level (see e.g. [6]), multi-node stuck-at

faults [7], and noise on a neural network’s parameters [8, 9].

Basic approaches for mitigating the effects of faults in-

clude adding redundant hidden nodes to a network’s cru-

cial parts [9] or restricting parameter diversity [10]. More-

over, artificial neural networks including radial basis func-

tion networks can learn to be fault tolerant if trained prop-

erly [7]. In [6] injecting stuck-at faults into a neural network

during training improved tolerance against both trained

faults and faults the network was not trained for. Similarly,

in [8] injecting synaptic noise into a neural network during

training improved generalization and fault tolerance.

Our proposed nanoscale system needs tolerance against

noise and broken/displaced elements. Our system includes

a neural network; analyzing its fault tolerance requires ex-

tension for a new kind of nanoscale fault. We describe our

system in Section 2 and our fault model in Section 3.

2. PROPOSED SYSTEM

We describe, at a partially abstract level, a machine learning

system suitable for nanotechnology implementation, which

performs channel detection for cognitive radio: it classifies

each channel as “free” or “occupied”. We first describe the

system as it would optimally operate; in Section 3 we then

describe a model for faults occurring during manufacturing

and operation, and how to train the system to tolerate the

faults. Parameter values, fault probabilities etc. are based

on our best knowledge, to be confirmed in further work.

For each radio channel, the system consists of two main

parts. The incoming radio signal is given to a cyclosta-

tionary feature extraction system; it produces a so-called

α-profile, whose values are used as features for classifying

the status of the radio channel by a classical radial basis

function network (RBFn). Figure 1 shows an overview.
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Fig. 1. Schematic of our cognitive radio system. For each

radio channel, cyclostationary feature extraction is applied

to the radio signal, yielding an α-profile (feature vector);

this is given to a radial basis function network that classifies

the current state of the channel (free or occupied).

We use analog computation throughout the system: dig-

ital computation would require nanotechnology solutions

for digital number representation, addition, multiplication

etc. which would lead to a high architectural complexity.

Our general architecture applies to any cyclostationary

signals, whereas an architecture specific to a signal type

may need redesign for each type. We choose the parameters

to detect signals in Wireless Local Area Network (WLAN;

IEEE 802.11a) channels, but the device is also able to detect

other signals than 802.11a signals present in the channels.



2.1. Cyclostationary feature extraction

We use cyclostationary signal analysis to perform feature

extraction; cyclostationarity of radio signals is widely used

in cognitive radio research [11]. Briefly, a signal is wide-

sense cyclostationary if its time-varying autocorrelation

Rx(t, τ) is periodic with respect to time t, for all lags τ .

WLAN 802.11a signals have cyclostationary components.

Signals with cyclostationary properties can be charac-

terized by spectral coherences, summarized in an

α-profile [12]. We extract the α-profile using the averaged

cyclic periodogram method [13]. We briefly describe the

method and discuss its potential nano-scale implementation.

Values Cα
x of the α-profile are defined as maximal ab-

solute spectral coherences for each cyclic frequency α:

Cα
x = max

f
|Cα

x (f)| , |Cα
x (f)| =

|Sα
x (f)|

√

S0
x(f + α

2 )S
0
x(f − α

2 )
(1)

where Cα
x (f) are spectral coherences, i.e. normalized ver-

sions of the spectral correlations Sα
x (f). The spectral cor-

relations are correlations over time between two frequency

components centered at f and separated by α. We estimate

them by summation over T time lags as follows:

Sα
x (f) =

T−1
∑

k=0

X(k)
(

f +
α

2

)

X(k)
(

f − α

2

)

∗

(2)

where X(k)(f) are delayed versions of the instantaneous

Fourier components of the signal, with delay given by k.

In our simulations we estimate them by Fourier transform

of Hanning windowed signals, where the windowing corre-

sponds to the delays (see [13]), but in real nanoscale imple-

mentation we would instead use special sensors as discussed

below. Figure 2 shows examples of α-profiles.
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Fig. 2. Example α-profiles of a WLAN 802.11a signal. Fs

is the width of the channel (20MHz). Left: Signal-to-noise

ratio (SNR) 0dB, right: SNR -10dB. Strong signals yield

spikes at the cyclic frequencies.

We propose the following partially abstract implementa-

tion. The radio signal x(t) (physically a voltage) is received

at a nano-scale sensor bank having two kinds of frequency

sensors. The bank contains sensors in the frequency range

5-6GHz, divided into 20MHz intervals corresponding to the

interval of IEEE 802.11a channels; over each 20MHz chan-

nel there are sensors forF = 480 different frequencies. (We

chose F manually to minimize system complexity while re-

taining performance.) One type of frequency sensor detects

magnitude (square root of power) of the signal at each fre-

quency, the other type of sensor detects the phase of the

signal. For each frequency, T = 123 sensors are used: their

responses are delayed by different lags, which will allow ap-

proximate computation of spectral coherences around each

frequency. Figure 3 illustrates the setup.
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Fig. 3. Frequency-sensitive sensor banks. The PZ−k(f)
sensors measure (square root of) signal power at frequency

f , with a time delay of length k in their response. The

θZ−k(f) sensors measure the corresponding signal phase.

Absolute spectral correlations are next computed by the

subsystem in Figure 4 (left), for each frequency and for

A = F/2 = 240 alpha values. Note: actual complex

Fourier coefficients are not needed for computation; the out-

puts of the magnitude and phase sensors suffice. The com-

putation uses only real (not complex) numbers which is cru-

cial for real analog implementation. The result corresponds

to absolute value of (2): the proof is simple and is omitted

to save space. Lastly spectral coherences are computed by

using the normalization in the right subequation of (1); final

α-profile values are computed by taking the maximum as in

the left subequation of (1). Figure 4 (right) shows the setup.

2.2. Classification

For each radio channel, we use a radial basis function (RBF)

network to classify the channel state at each moment (free or

occupied). RBF networks have been used in communication

systems, for tasks such as equalization; see, e.g., [14].

Our RBF network (RBFn) consists of an input layer,

a hidden layer and an output layer. We use the α-profile

values Cx = [Cα1

x , . . . , CαA

x ] as the inputs, which yields

A = 240 input units. We use a single output y, which is

computed as y =
∑n

i=1 wiφi(‖Cx−ci‖)+wn+1, where n
is the number of hidden units, wi are weights, wn+1 is the

bias term, ci are centroids, and φi is here a Gaussian non-

linearity φi(||Cx − ci||) = exp(−||Cx − ci||2/2σ2
i ) with

spread σi. Roughly speaking, the number of hidden units

n should match how many kinds of α-profiles we expect to

encounter; we use n = 30 which worked well in the exper-

iments. Finally, the channel is classified free if y < 0 and
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Fig. 4. Left: Computation of absolute spectral correla-

tions |Sα
x (f)|. The asterisk denotes multiplication, ‘cos’

denotes the cosine cos(θ1 − θ2) of the phase difference, Σ
denotes summation, and ‘norm’ denotes Euclidean vector

norm. Computation of SI(f, α) is omitted for brevity: it is

the same as SR(f, α) except cosines are replaced by sines.

Right: Computation of α-profile values Cα
x . For each α

value, the ‘normalize’ node computes absolute spectral co-

herence values |Cα
x (f)| by normalizing the absolute spectral

correlations, and the ‘max’ node computes the maximum

over different frequencies which is the final α-profile value.

occupied otherwise. Figure 5 shows the setup.
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2.3. Properties of the proposed system

Our system implements both feature extraction and clas-

sification in nanoscale; the advantage is that only the fi-

nal classification output needs to be communicated to non-

nanoscale parts of the handheld device. If, for example,

only feature extraction was done in nanoscale, much more

communication to non-nanoscale parts would be required.

Besides simple summation, our proposed system needs

six computation nodes: multiplication, computing cos(θ1−
θ2) from inputs θ1 and θ2, computing norm

√

x2
1 + x2

2 of

two inputs, computing normalization x1/
√
x2 · x3 of three

positive inputs, computing the maximum of inputs, and com-

puting the Gaussian radial basis function. All the nodes are

simple functions; we expect it will be possible to physically

realize them reasonably accurately in nanocomputation.

RBF networks can be trained to input data, but imple-

menting training in the nanocomputing device would make

implementation much more complex. As a first step we pro-

pose that RBF network parameters should be optimized by

simulations and the optimized parameters should be used as

fixed values in the actual implementation. In Section 3.1 we

describe how to take faults into account in the optimization.

3. MODELING COMPUTATION ERRORS

To simulate our system’s performance under realistic com-

putation errors, we model three fault types: thermal noise

in feature extraction, thermal noise in the RBF networks,

and structural faults in the RBF networks (structural faults

in feature extraction will be studied in future work). We de-

scribe a physically reasonable expected level for the fault

types; this level is relatively uncertain due to missing physi-

cal experiments. In Section 4 we simulate the system at this

expected level and with alternate levels for each fault type.

Thermal noise is proportional to temperature. The sys-

tem should operate at room temperature (for sensors we al-

low lower temperature). This could yield noise of the order

of 0.3mV; its effect on computation depends locally on rel-

ative scales of thermal noise voltage and signal voltage.

We expect the input at the sensor banks to be up to a few

tens of millivolts (mV). Without bringing power to the sys-

tem for signal amplification, every operation on the signal

decreases the voltage scale of the output. We assume sum

operations are done with little loss, and each multiplication

and other complicated operation reduces the voltage scale

by roughly 25%. This yields voltages up to about 10mV at

the inputs of the RBFn; the output of hidden units is up to

about 5mV, and the final output is up to about 3mV. In our

system, signal voltages correspond to numbers with abso-

lute values roughly between 0 and 1. We can thus simulate

thermal noise by adding to the numbers Gaussian noise with

standard deviation (STD) equal to VN/VS ; VN and VS are

voltage scales of the thermal noise and the signal. Gaussian

noise approximates analog thermal noise well; see [9].

In feature extraction we use a simplified thermal noise

model. We treat magnitude and phase sensors together by

adding complex Gaussian noise to Fourier components: we

assume highly cooled sensors yielding noise STD 0.001,

but brief experiments with room temperature sensors (STD

0.01) gave similar performance. We also add noise (STD

0.03) to α-profile values Cα
x . In the RBFn we add noise to

centroids with STD 0.03, to spreads with STD 0.04 (as log-

normal multiplicative noise, to keep spreads positive); and

to hidden unit outputs and wire weights with STD 0.06.

Structural faults depend on physical implementations

and manufacturing methods. We model broken wires, i.e.

stuck-at-zero faults, and also displaced wires going to wrong



hidden units, which to our knowledge is novel. A wire (ar-

row in Figure 5) is broken with probability 0.01; or it goes

to the wrong neighboring unit with probability 0.001.

3.1. Optimizing fault-tolerant parameters for the device

To train the RBFn, we use N time series as training data.

For each time series, we extract the input features: α-values

Cα1

x , . . . , CαA

x for the frequency band of the RBFn. For

each series the desired output is y = 1 if the series really

contained a signal and y = −1 otherwise. We can then train

the RBFn by standard methods: we initialize centers by a

k-means type clustering and weights and spreads to fixed

values; we then train the centers, spreads and weights by

on-line gradient descent with the usual squared error cost

function. We reparameterize spreads by σi = exp(σ′

i) to

keep them positive. To make the RBFn fault tolerant, we

inject structural and noise faults during training. For each

training sample, we inject faults into the feature extraction

and the RBFn computation as described in Section 3, ac-

cording to the desired fault level. The gradient of RBFn pa-

rameters is computed using the faulty values of the features,

RBFn parameters, wiring structure, and hidden unit outputs.

The RBFn then slowly learns to tolerate computation errors.

4. EXPERIMENTS

We ran three experiments; in each, one fault type (feature

extraction noise, RBFn noise, or RBFn structural faults) is

studied at several fault levels: 0.2, 0.5, 1, 1.5, and 3, while

holding the other fault types at the default level 1. The

“fault level” is used to multiply standard deviations of ther-

mal noise and to multiply probabilities of structural faults;

level 1 means the expected faults described in Section 3. For

RBFn structural faults we also tried fault levels 10 and 20.

Since the computation in all radio channels is similar,

for simplicity we ran the experiments for a single channel.

We used the simulator of [15] to generate IEEE 802.11a

as our input signal, using 16-Quadrature Amplitude Mod-

ulation and a convolutional code rate of 1/2, with 24Mbps

throughput. Each signal was sampled for 1ms. For each

1ms signal sample, a packet length between 100 and 1472
bytes and a signal-to-noise ratio (SNR) between −10dB and

10dB were chosen. In total, we generated 49200 samples

containing a signal and 49200 containing only noise.

We used four-fold cross-validation: in each fold, 3/4 of

the data set was used for training and 1/4 for testing the

system. We report average results over the 4 folds. For

each fault level combination the RBFn was trained for 200
iterations over the training set, with learning rate 0.001, and

then tested with the test set. We used the training method

in Section 3.1; the same fault levels were used for injecting

faults in both training and testing.

We show results separately for samples containing sig-

nals (occupied channel) and samples containing only noise

(free channel). For signal samples, Figure 6 shows average

classification success rates over RBFn faults, as a function

of SNR: subfigure (a) shows results for feature extraction

fault levels, (b) for RBFn noise levels and (c) for RBFn

structural fault levels. For noise samples, classification suc-

cess rate does not depend much on SNR: for brevity, Table 1

shows average results over all SNRs for each fault type.

Fault level (fault scale multiplier)

Type 0.2 0.5 1 1.5 3 10 20

(a) 98.7 98.4 98.2 97.2 94.8 - -

(b) 98.3 98.4 98.2 96.6 83.6 - -

(c) 98.2 98.1 98.2 98.0 97.4 94.2 80

Table 1. Average test-set classification success rate (in per-

centages) of noise samples, for levels of (a) feature extrac-

tion faults, (b) RBFn noise, and (c) RBFn structural faults.

The system classifies signal and noise samples well at

the expected fault level. Training and test performances

were similar suggesting our data set was large enough to

draw conclusions about the system. Small increases or large

decreases to the expected fault level have no major perfor-

mance impact. Thermal noise in the RBF network seems to

have largest effect on signal classification; this may be be-

cause signal voltage is lowest when it reaches the RBF net-

work. Moderate structural fault levels have little effect sug-

gesting the 30 hidden units contain enough redundancy.

5. CONCLUSIONS AND DISCUSSION

We presented an abstract level implementation of cognitive

radio, based on a nanocomputing implementation of a ma-

chine learning algorithm for feature extraction and classi-

fication. The system recognized wireless LAN signals well

under several levels of input noise and computational errors.

To our knowledge our paper is the first on a nanocomputing

based cognitive radio. Future work includes physical exper-

iments to verify our choices and extending the architecture

to other machine learning applications.
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(a) Effect of feature extraction fault levels
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(b) Effect of RBF network noise fault levels
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(c) Effect of RBF network structural fault levels

Fig. 6. Effect of faults on test-set classification perfor-

mance. Signal classification success rate is shown as a func-

tion of the signal-to-noise ratio (SNR). Each line denotes

the system having a particular fault level for a specific fault

type. The multipliers in the legends show the fault level for

the specific fault type—see the text for details. Other kinds

of faults are kept at default levels.


