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abstract A challenge for modern robots is to act in unknown and possibly unstructured environments.
For example, rescue robots clearing cave-ins or household helpers finding the salt in a really cluttered
kitchen. This means that the robot must be able to distinguish objects and recognize their shape maybe
without ever having seen the objects before. Therefore many current segmentation methods cannot be
applied. In this thesis we propose a new part based algorithm that is used to segment scenes using
visual features in 3D space without any prior knowledge about the scene. We then use machine learning
algorithms to learn the effectiveness of the different features and to create a probabilistic classifier that
differentiates between good and bad segmentations. This classifier is then integrated into an interac-
tive approach to probabilistic segmentation in order to improve its results and decrease the number of
interactions needed in order to reach a satisfying segmentation.
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1 Motivation
It would be great, if robots could help humans in their everyday lives. However, most robots as they
exist today are working in huge factory halls and mostly perform relatively simple and repetitive tasks.
There are many reasons for this, e.g. that equipping a robot with exactly the tools and knowledge for
one specific task is far easier and much cheaper than creating a robot that can interact with various
different environments. But the main reason for this is, that it is usually easier and more feasible to
program a robot with a fixed movement trajectory than giving it the ability to act accordingly to its
surroundings.

In order to tackle this problem, one prerequisite must be met: The robot needs a way to perceive and
adapt to its surroundings in an autonomous way. This includes not only being able to recognize known
objects, or to find the own position in a known environment. The robot also needs to be able to perceive
unknown objects and generate a model of their appearance, position and rotation in space using the data
it receives from its input sensors. By being able to autonomously generate a model of the environment
and everything within, a robot can gain a lot of new possibilities.

Instead of following a fixed trajectory in order to interact with objects, a robot could now adapt its
movements to position, rotation and shape of the object by using its sensor data. It could even perceive
and model previously unseen objects or environments and adapt whatever task it currently is performing
to its surroundings. For example, a possible advanced application would be to perform an exploration
task of a potentially dangerous area, clearing obstacles encountered while gathering information about
the terrain and its layout.

A method that can be used for learning information about the environment is called image segmenta-
tion. This method uses visual input that can be recorded online by equipping a robot with video or photo
cameras. One can then apply machine learning techniques in order to enable the robot to decide inde-
pendently from any exterior controller which parts of the image belong to the same object and which do
not belong together. This information can then also be used to determine the shape of the seen objects
and what kinds of interactions are possible. Additionally, the robot can explore its surroundings by inter-
action and evaluate the movements of image parts in its field of view in order to gain information about
the segmentation of the scene.

In this thesis we will introduce a new method of scene segmentation that combines the ideas of various
approaches and evaluate how well these perform compared to each other. It takes data about the move-
ment of the image parts between the images taken before and after an interaction as well as information
about the visual features like color, brightness and others into account which are derived from 3D image
data. The focus of this thesis will be on the learning and the evaluation of the visual features, which will
serve as a prior in the computation of the probabilities via movement data.

In Chapter 2 we will analyze related work in the field of segmentation and object recognition and com-
pare them to our approach. We will also introduce the previously mentioned method of interactive image
segmentation in more detail. Chapter 3 will cover how our algorithm learns to separate good and bad
segmentations using visual features and how this is used to improve the performance of the interactive
method. Finally in Chapter 4 we will describe the hardware used to implement our method and discuss
the results it provided. We will conclude with a brief summary and possibilities for future work.
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2 Related Work
In this chapter we will describe and discuss related research that has been done in the field of im-
age segmentation and scene recognition. Afterwards we will introduce a method of movement based
segmentation, that will be the starting point of this thesis.

2.1 Related work in Scene Recognition

Since robots in unknown environments are unlikely to know the objects they are going to encounter,
traditional methods for object recognition [14] will not be sufficient. This is because they need object
models previously created offline either by training or by crafting them by hand [11]. For example,
by using CAD software or 3D scanning. The cited methods work by creating a 3D view of the scene
by combining several 2D images from various directions. The created 3D scene is then compared to a
database of 3D models in order to find a correspondence between a part of the perceived scene and one
of the database entries. The scene can then be reconstructed accurately using the memorized models.
While this can lead to a very detailed model of the scene, because it is improved by information from the
database, the problem with these methods is that the database is limited and can only contain a fixed
and finite set of objects to recognize. Instead, we need to be able to model new objects the first time we
encounter them and recognize them at later points in time from data observed online.

Another problem is, that for many methods of autonomously modeling novel objects, the object in ques-
tion needs to be encountered in isolation, preferably in front of a neutral background as in the work
of e.g. Collet et al. [6]. Their algorithm can only focus on one object at a time and accurately recog-
nize it and determine its 6 degrees of freedom position in space by comparing it to a model learned
offline. However, this method is not a good approach when dealing with unknown environments. The
main problem here is that at the beginning of the segmentation process there exists no knowledge about
where objects are and how far they expand - or put differently: where one object ends and the next
one starts. A robot might have to find an object from a cluttered table or interact with an object in a
natural environment like a forest. The object we want to observe might even be partially occluded from
all possible viewing directions. Therefore, we have to be able to find and segment objects in arbitrarily
cluttered scenes and, if necessary, even when only small parts of an object can be seen we want to at
least be able to identify it as an independent object.

Since objects may be very close to each other and have similar appearances, e.g. two similar boxes
next to each other, vision alone might not suffice in many cases for finding the correct segmentation.
As an alternative, an interactive approach can be used [9, 12, 16]. The robot interacts with the scene
by pushing, or in an ideal case grasping, part of the scene. By comparing the scene before and after
the interaction, feature tracking algorithms like SIFT (Scale Invariant Feature Transform [13]) can be
used to determine which parts of the scene moved and which did not. This information is then used
to find the most probable segmentation of the scene. However, interactive methods usually need more
time and more input to come to a result because often several steps of interaction have to be made
and before any interactions with the environment, there is no data to use at all. In order to use the
explorative abilities of an interactive approach without increasing the time needed to come to a result,
visual data can be combined with interactive movement tracking. This is done in the work of e.g. Katz et
al. [12]. In their work they combine several hand tuned indicators about a scene’s segmentation. Each
indicator assigns each pair of parts a weight between 0 and 1, which are then multiplied. The result is
a graph which is then split into highly connected subgraphs representing rigid bodies in the scene. One
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drawback of their method is that they only segment a single object composed of several rigid bodies.
This means that one can only focus on one object of interest at a time and cannot segment an entire
scene of multiple independent objects. Another issue is that the indicators often assign hard zeros to
pairs of parts by handcrafted criteria, rendering the other indicators irrelevant. Instead we will be using
a probabilistic combination of movement and visual data, both learned from machine learning methods
combined into a joint probability. This visual input supplies information about the segmentation of the
observed environment even before the first interaction was performed.

Most of the methods handling segmentation by visual features only work with 2D image data [4,7,8,15].
The images are then either getting segmented pixel wise or are grouped into superpixels. While the
results for recognizing objects and segmenting scenes can be quite satisfying when using visual features,
interactive approaches have difficulty here, because interaction with the scene is not easily done without
depth perception. In order to get a better grasp of the scene’s spatial depth and placement, we will be
using 3D data instead as in e.g. [3,12].

Most methods of object recognition and scene segmentation process their input and deliver one final
result e.g. [12, 15] which is usually the one with the highest probability of being correct, or the best
one according to some scoring system. In these methods, possible segmentations are sampled and then
compared, with the best solution being returned. This process of elimination has one problem: Since the
human world is full of irregularities and a robot’s sensory system is always subject to noise, it will not
suffice to employ a method that only delivers one best guess. Especially not when we use an explorative
interactive approach, that will probably discover new information over time so that we have to revoke
the most probable candidate so far. The second problem is, that when combining different segmentation
methods, we have no way of comparing them, if we have no knowledge about how certain the individual
methods are about their results. To address this, we will have to estimate a probability distribution over
all possible segmentations. This will give us the possibility to introduce new information encountered
after some more interactions, or information from another source like the visual features into our cur-
rent results in a principled way. It also allows us to choose the interaction with the highest expected
information gain each iteration.

One common problem - not only for segmentation, but machine learning in general - is that "the ob-
jective function being optimized is typically driven by the designer’s intuition or computational conve-
nience." [15]. This means, that often both in the calculation and the combination of features there are a
lot of hyperparameters that have to be tuned by hand [12] in order to get optimal or near optimal results.
By using real data from a manually segmented database of images, density estimation can give us infor-
mation about how features would be distributed in good and bad segmentations. Ren et al. [15] actually
measure the significance and meaning of their features from real data by calculating the likelihood of
a feature being calculated from a good segmentation using these derived probability distributions. This
makes the evaluation and learning of visual features less susceptible to errors that come from wrongly
tuned parameters in the algorithm and increases its ability to generalize to new data. We will use this
approach in the calculation of most of our features and compare the results with an implementation
driven by our intuition.

The simplest approach to a segmentation would be, to decide which pixel - or in our case image point -
belongs to which object [7]. Using the mean shift algorithm, the pixels are then clustered into similarly
colored groups. These clusters are then combined into larger objects, creating a segmentation of the
scene. This is however not easily done with 3D data, since you do not have image points filling the entire
image space, but are usually limited to very sparse data at object boundaries. While there are other
grouping methods that could be used even in 3D space, this can then still be interpreted as a part based
approach. Another benefit of grouping image points together is that it grants access to the usage of new
features, e.g., the evaluation of histograms over the individual color values or the comparison between
face normals, which cannot be computed for single pixels. Therefore, we will search for easily trackable
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key points in the image and create parts around them so that every image point is assigned to at least
one part [16].

2.2 Probabilistic Interactive Segmentation for Robots in Cluttered Environments

Under the criteria of being interactive and probabilistic, [16] developed a segmentation algorithm that
is implemented using a robot and works based on the evaluation of movement data. The robot has a
3D camera and an end effector in the form of a rod attached to it. It is in a fixed position relative to a
table. The robot interacts with objects on the table by pushing them with its extended reach. Then it can
observe the scene by taking images from three fixed positions and combining them into point cloud data
(see Fig: 2.1).

By tracking local key points the differences before and after an interaction are examined. These key
points are detected and described using Scale Invariant Feature Transform (SIFT) [13]. It is determined,
which image parts have moved together, independently or not at all. The system can then compute a
probability for each possible segmentation that represents how probable that specific combination of
parts is, given the observed movement data.

Since the number of possible segmentations grows exponentially with the number of parts, we will not
be able to compute the probability for every possibility in a reasonable amount of time. Instead the
expectation over the probability distribution is approximated by utilizing Gibbs Sampling [5]. As we
know, not all possible segmentations are equally likely. Both very separated and (nearly) completely
connected segmentations are very unlikely in real world examples. A prior can be computed for every
segmentation, independently of any observed data. This prior is defined as the probability of this specific
segmentation being sampled by the Chinese Restaurant Process [1]. This is included in the calculation
of a segmentation’s probability and can be understood as a bias towards more natural segmentations.

Figure 2.1: Point cloud data recorded by the robot. For every scene, three shots from different directions
are taken and combined into one point cloud.
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3 Interactive Probabilistic Segmentation by
Learning Visual Features

In this chapter, we will introduce a method for segmenting a three dimensional image into objects based
on visual features and explain how it is combined with the interactive movement based approach. We
will first introduce our data model, then we will explain about the starting point of our research. We will
then talk in detail about our learning algorithm, how features are extracted from image data and how
we generate our training examples.

3.1 Preprocessing and Data Model

The robot’s view on the scene is provided by a 3D camera. For every observation, 3D point cloud data is
taken from three different angles and then combined into one single point cloud. Segmenting the scene
on a point basis is impractical for two reasons. On the one hand the number of points in a scene is in
the magnitude of 105 which would increase the computational effort to unreasonable levels and on the
other hand it is not possible to compute more complex features like color histograms or face normals for
single points.

Instead, we use a part based approach. These parts (also called centers subsequently) are represented as
spheres around points initialized on a grid over the 3D view of the scene in a fixed radius of 6 centimeters.
This means, that these regions can overlap and therefore points can temporarily belong to more than
one center. We search for local key points in our view of the scene. These must fulfill two properties: The
first one is, that the key points must be easy to reidentify in later frames after interaction. The other one
is that they must cover all image points that may belong to an object. So if later on new objects or parts
of objects are discovered, e.g. because they were previously occluded, they will be covered by creating
new centers at the position of an image point that does not belong to any center yet. Key point detection
and description is done using the Scale Invariant Feature Transform (SIFT) algorithm [13].

While this method introduces some inaccuracies because the boundaries of centers might intersect the
boundaries of more than one object, it is still a good enough approximation for our purposes especially
because we have the possibility of moving objects apart since we are using an interactive approach.

3.2 Interactive Segmentation based on Movement Tracking

In the work of van Hoof et al. [16] a probability distribution over possible segmentations is learned
based on interactions and observations of movement. It is an iterative process of alternatingly estimat-
ing the probability distribution over segmentations p(S|Dmove) given the movement data observed so
far, and choosing the action at+1 with the highest expected information gain based on the distribution
incorporating uncertainty.

The intention is to calculate p(S|Dmove). The vector S = [s1, ..., sN] represents a segmentation with si
being the assignment of the i-th part to an object. This means that the segmentation [1,1, 2] is equivalent
to the segmentation [2,2, 1]. The observed movement data is represented like this: Dmove = {(at ,~ot)|t ∈
0, 1, ..., T}. at is the action chosen in iteration t and ~ot is a vector with ~ot[ j] = 1 for every part j that
moved and 0 for every part that did not.

5



Since the number of possible segmentations grows exponentially with the number of centers, calculating
p(S|Dmove) for every single possible segmentation S is not feasible outside of academic examples. In-
stead, an expectation over p(S|Dmove) is approximated using Gibbs sampling [5], a Markov chain Monte
Carlo method [10]. That means, that we iteratively sample the assignment of the i-th part si from
p(si|s\i, Dmove) based on the assignment of all other parts s\i for every i. This procedure gives us inde-
pendent samples from p(S|Dmove) for sufficiently large numbers of iterations. For the sampling, we need
p(si|s\i, Dmove) ∝ p(Dmove|si, s\i)p(si, s\i). The prior p(si, s\i) must be able to be computed without any
knowledge of the scene and without knowing the number of objects. An appropriate prior distribution
over assigning n parts to a previously unknown number of objects is the Chinese Restaurant Process [1].
As the focus of this thesis is on visual feature learning, we refer the reader to [16] for further details on
the computation of p(Dmove|si, s\i) and the choice of the next action at+1.

3.3 Visual Feature Learning

Using only movement data can suffice to reach a sufficient segmentation, but incorporating prior knowl-
edge about the segmentation can increase the speed of the process so less actions are needed in order to
reach a satisfying result. In order to do this, we want to introduce the evaluation of visual features into
the computation of the prior. Previously the probability distribution was computed as

p(S|Dmove)∝ p(Dmove|S)p(S).

By incorporating the visual features into the calculation we now have:

p(S|Dmove, Dvis)∝ p(Dmove|S, Dvis)p(S|Dvis).

Under the assumption that Dmove and Dvis are conditionally independent given S we can say that
p(Dmove|S, Dvis) = p(Dmove|S) resulting in

p(S|Dmove, Dvis)∝ p(Dmove|S)p(S|Dvis).

Accordingly, we want to compute the prior p(S|Dvis) over segmentations S given the observed visual
data Dvis. We do this by training a logistic regression classifier [2] over good and bad segmentations.
Logistic regression is a two class classification method. It applies the sigmoid function, that transforms
any real number into a probability between 0 and 1, on a linear function of the features. This is a similar
approach to the work of Ren et al. [15]. The difference between our approaches is, that Ren et al. train
a logistic regression classifier over good and bad segments s and use these to create a score for each
segmentation f (S) =

∑

i
p(si = good). We on the other hand want to get a probability distribution over

segmentations. This means, that we create a feature vector φ(S) for every segmentation S and then
calculate

p(S = good|Dvis) = σ
�

~wTφ(S) +w0
�

where σ is the sigmoid function σ(a) = 1
1−exp(−a)

. The sigmoid function converges to 1 for a → +∞
and to 0 for a → −∞ (see Fig: 3.1). The value of σ

�

~wTφ(S) +w0
�

represents the probability of the
segmentation S being a good segmentation. In order to get a probability distribution we can normalize
over all segmentations S to get a normalization factor δ. The prior is then defined as a combination of
the normalized classifier and the Chinese Restaurant Process

p(S|Dvis) = δp(S = good|Dvis)pcrp(S).
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Figure 3.1: Exemplary plot of the sigmoid function. It converges towards 0 and 1 when going towards
negative and positive infinity. It is used for the creation of two class classifiers using logistic
regression (see [2] for more information).

3.3.1 Creating the Feature Vectors

In order to evaluate the visual data observed, we need to choose a representation of the visual features
for a given segmentation S. Every segmentation S is represented as an assignment of centers ci to
objects or segments s j. We can compute a feature vector φ(s j) for each segment in a segmentation
independently, based on the 3D image data and the segmentation’s assignments of image points to the
individual objects. Then we create a feature vector for each segmentation that will be composed of the
sum of the features of the individual segments si:

φ(S) =
∑

i
φ(si)

In the following we will introduce the features we used, explain their intuition and how we compute
them.

Position

The position of the centers of a segment gives general information about the connectedness of the seg-
ment. The value of the position feature of a segment s is computed by calculating the mean of the
distances between all centers:

1

N2

N
∑

i=1

N
∑

j=1
‖ci − c j‖2

where ci is the position vector of the i-th part and N is the number of centers in the segment.
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Weighted Position

The weighted position gives additional information about where most of the points belonging to a part
are. First we calculate the weighted position of each part which is the average position of a part’s image
points:

ĉi =
1

M

M
∑

j=1
p j

where p j is the position of a point j that belongs to part i. Then we can compute the mean of distances
analogously to the position feature:

1

N2

N
∑

i=1

N
∑

j=1
‖ĉi − ĉ j‖2.

Color

We assume, that centers with similar colors are more likely to belong to the same object. In order to
avoid hand tuning this feature, we take a statistical approach to rate color similarities as seen in the work
of Ren et al. [15]. The color data for each part is stored as a three dimensional histogram with 5 bins
each for the red, green and blue dimension.

Similarity between two histograms is defined as the sum of the squared error between corresponding
bins:

dist(A, B) =
5
∑

i, j,k=1
(Ai jk − Bi jk)2.

In order to acquire knowledge about how this distance is distributed, we created two lists of pairs of
centers Lsame and Ldiff from correct handcrafted segmentations of real data. Lsame contains all pairs of
parts, whose elements are in the same segment and Ldiff contains all those who belong to the same scene
but to different segments. We then use density estimation to find psame and pdiff, the distributions over
the distances between these pairs. For this we assume them to be Gaussian distributed and use maximum
likelihood estimators to find the parameters.

Now we can compute the color feature for a segment s using the formula

color(s) =
N
∑

i=1
log

psame(dist(ci, s))
pdiff(dist(ci, s))

,

where dist( ci, s) is the distance between the color histogram of the entire segment s and its part ci.

Brightness, Hue and Saturation

Brightness, hue and saturation are, compared to the color feature, three different views on the same
information. Each of them is treated as a separate feature that is computed in an identical way to the
computation of the color feature. The only difference is, that each of the features is stored in a one
dimensional histograms with 10 bins.
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Number of segments

Additionally, we consider the number of segments in a segmentation. In order to create a feature that is
exactly the number of segments for each segmentation, the value of this feature is 1 for every segment’s
feature vector. This helps avoiding over- and underseparation.

3.3.2 Training the classifier

Now that we can obtain a feature vector φ(S) for every possible segmentation S, given the observed
visual data Dvis, we can use this to train a classifier p(S|Dvis). For this we use logistic regression, which
leads to the formula

p(S|Dvis) = σ
�

~wTφ(S) +w0
�

.

In order to acquire ~w, we use the Iterative Reweighted Least Squares algorithm (IRLS) [2]. We now want
to find the parameter vector ~w that optimally describes the training data. We do this by maximizing the
likelihood of our parameters given the training data p(~t|~w). We do this by minimizing the cross-entropy
error function

E(~w) =− log p(~t|~w) =−
N
∑

n=1
(tn log yn+ (1− tn) log(1− tn))

where tn is the target label for the training example Sn and yn = σ(~wTφ(Sn)) is the probability
p(Sn = good|Dvis) based on the current ~w. The update rule for ~w by the Newton-Raphson iterative
optimization [17] scheme takes the form:

~wt+1 = ~wt −H−1∇E(~wt).

The derivative ∇E(~w) and the Hessian H=∇∇E(~w) of the error function are given by

∇E(~w) =
∑

n= 1N (yn− tn)φ(Sn) = ΦT (~y −~t)

H=∇∇E(~w) =
∑

n= 1N yn(1− yn)φ(Sn)φ(Sn)T = ΦT RΦ

where Φ is the matrix of feature vectors and R is a diagonal matrix with Rnn = yn(1− yn). This finally
gives us the update rule

~wt+1 = ~wt − (ΦT RΦ)−1ΦT (~y −~t).

This algorithm poses some difficulties. On the first hand we have to be careful when initializing ~w0
because initializing it too high will result in a vector ~y with values extremely close to 1 or 0, which will
make the algorithm numerically unstable. We chose to initialize our parameters as random values drawn
from a normal distribution multiplied with 10−3.

On the other hand, the training data might be linearly separable in feature space. This will cause the
parameter vector to diverge towards ±∞, which means that we are overfitting to our data. Any new
data point we encounter that lies between the currently known good and bad examples will then still be
predicted to be either good or bad with near 100% certainty instead of being represented as a value close
to 0.5. In other words, we cannot generalize well on new data. To counter this problem, we introduce
regularization into the IRLS algorithm. The intuition behind this is to put a Gaussian prior p(~w) on the
parameter vector. Integrating this prior into the cross-entropy error function gives us the new posterior
error function:

E(~w) =− log(p(~t|~w)N (~w|0,α−1 I)) =−
N
∑

n=1
(tn log yn+ (1− tn) log(1− tn))−

α

2
~wT ~w.
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Deriving for ∇E(~w) and ∇∇E(~w) we obtain the new update rule

~wt+1 = ~wt − (ΦT RΦ+λI)−1(ΦT (~y −~t) +λ~wt)

where λ is a constant factor based on the covariance of the Gaussian prior. The regularization parameter
λ has to be optimized by experimenting. If it is set too high, the original values of the features will
become irrelevant in comparison and if it is set too low, it will not have any effect at all and will not
prevent overfitting (see Fig: 3.2, 3.3).

3.3.3 Generating Training Data

In order to be able to train our classifier, we need both positive and negative training examples. Meaning
examples of correct segmentations which will receive a target label t of 1 and examples of incorrect
segmentations labeled with a 0.

Positive examples have to be created by hand. Using the robot and the mounted 3D camera we take
images of a scene to be segmented. This visual data is then divided into parts by creating local key
points as described before. We then have to assign the parts to objects by hand, creating a segmentation
Sn. From this segmentation and the point cloud data, we can then create one positive training example
Φn.

Negative training examples are created in an analogous way. For every positive training example, us-
ing the same visual data, we create several negative ones simply by grouping the parts in a different
way.

The first intuitive approach was to randomly reassign parts to objects. We do this by creating one
randomly selected permutation of the correct handcrafted segmentation vector. E.g. a segmentation
vector [2,2, 1,2] might become [2,2, 2,1], [1, 2,2, 2] or [2, 1,2,2]. For every positive example we
create 5 negative examples using this method.

In addition we want to be able to compare segmentations that are more natural and also more likely to
be considered during the sampling of segmentations when used together with the interactive approach.
Therefore, we create additional bad examples by sampling from the Chinese Restaurant Process, that is
used to define the prior on segmentations. Using the visual data and one good segmentation, we create
10 bad segmentations by replacing the assignment vector by one drawn from the CRP.

One additional segmentation to be considered is the completely segmented one. This means a segmen-
tation where every part belongs to a separate object, e.g. [1,2, 3,4, 5]. Considering this segmentation as
a bad example is of importance, because it is the one the interactive approach initially assumes before
evaluating any visual or movement data and before calculating any prior.
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(a) without regularization
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(b) w = 0.01
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(c) w = 0.1
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(d) w = 1
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(e) w = 10
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(f) w = 100

Figure 3.2: Classification results for the training examples when trained without regularization and with
a regularization parameter λ of 0.01, 0.1, 1, 10 and 100 respectively. As can be seen here,
λ needs to be tuned. If it is set too low, overfitting occurs, which means that we do not
generalize well to new training examples. On the other side, if it is set too high it renders the
original features irrelevant since the implied prior becomes too strong.
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Figure 3.3: Average misclassification rate of the training examples for different regularization parame-
ters. We used a dataset of 340 samples that was split into 340 segments of one element each
for leave-one-out cross validation.
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4 Analysis
In this chapter, we will draw the conclusion to this thesis. We will first present the results we obtained,
both for independently employing the visual feature learning and for using it together with the interactive
approach. Finally we will draw a conclusion about what we accomplished and talk about possible future
work.

4.1 Hardware used

The robot used for the evaluation of these methods is a Mitsubishi PA-10 robot. It is described as a
"portable general purpose intelligent arm" in the manual1. It is a robotic arm with 7 degrees of freedom,
that is installed to fixed position on the floor. In our setup used for interacting with the environment
and taking visual data it is additionally equipped with an end effector in form of a rod and a Microsoft
Kinect™3D-camera (See Fig: 4.1).

Figure 4.1: The Mitsubishi portable general purpose intelligent arm, PA-10. A 7 degrees of freedom robot
arm. Shown while taking an image of a scene to be segmented. The picture on the right
shows a close-up view of the robot’s "hand" with the end effector and the 3D-camera used, a
Microsoft Kinect™

4.2 Results of the classifier alone

In order to evaluate the functionality of a machine learning algorithm, common practice is to learn on
your set of training data and to evaluate your learned parameters on a disjoint set of test data. However,
real life applications often have the problem that data is not readily available and expensive and time
consuming to produce. For such cases one can use cross validation [2](see also Fig: 4.2a). For evaluating
how well the IRLS algorithm performed on the data we had, we employed 10-fold cross-validation. We
split up the data D into 10 approximately equally large parts Di and for every i we used all D j 6=i as
training data and used Di as test data for evaluation. We ended up with an average misclassification rate
of 0.0107 (see Fig: 4.2b).

1 http://code.google.com/p/drics/downloads/detail?name=General%20Operating%20Manual%20%287-axis%29.pdf
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(a) When using S-fold cross-validation, the
available data is split into S parts. 1/S of
the available data is then excluded from
the learning process for each run. This
data is then used as test data. Depicted
here is the example of a 4-fold cross-
validation.

run # misclassification rate
1 0
2 0
3 0
4 0.0714
5 0
6 0
7 0
8 0.0357
9 0

10 0

(b) Using 10-fold cross-validation, we deemed
our algorithm strong enough to distin-
guish between good and bad segmenta-
tions based on vision alone.

Figure 4.2: Brief exemplary overview over cross-validation in general and the results on our training set.

4.2.1 Evaluation of Feature Computation

We want to evaluate how useful our implementation of the color based features is. Therefore, we
compare the results of the classifier, when learning with the visual feature vectors computed in the
probabilistic way to the classifier we receive when learning on features in a more traditional way. Instead
of evaluating the log-likelihood of our features for each segment, we simply take the sum over the
histogram distances. Then we optimized the regularization parameter λ for the new set of features.
As can be seen in Fig: 4.3, there is a visible improvement on the results when using the log-likelihood
features.
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(a) Results of the classifier when learning
with the non-probabilistic feature compu-
tation.
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(b) Results of the classifier when learning with
the probabilistic feature computation.

Figure 4.3: Comparison between the two ways of computing features.
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4.3 Results when used in the Interface

It is good to know that the IRLS algorithm for creating a classifier works well with the features we chose.
However, our initial intention was to improve the results of the interactive approach by van Hoof et
al. [16] by using visual features.

The first step was to verify that we will not get stuck in a local minimum during the evaluation of the
markov chain. In order to do this, we tested the combination of the visual and the interactive approach.
For several recorded examples of visual and movement data, we initialized the markov chain with the
completely separated segmentation, which is the standard behavior when using the algorithm on new
data. Then we used the same data but initialized the markov chain with the correct segmentation.
For reducing the variance in the results that occur due to this being a stochastic process, we ran every
test 10 times and averaged the results. Since comparing probability distributions over segmentations is
difficult we compared the average certainty of our expected best guess, which should show a significant
difference if we end up in a bad local minimum. In both cases, we received approximately the same
results. Depending on the data example, especially the number of interactions taken into account, we
received results between 0.4 and 0.7, but the difference for one data example was always lower than
0.001.

4.3.1 Comparison of the Interactive Approach with and without Visual Features

For the evaluation of the impact of the visual prior on the results of the interactive approach, we ran
tests on previously recorded data. Due to time constraints we were not able to test our new method
live on the real robot, but had to resort to evaluating the segmentation process using recorded data. We
evaluated our algorithm on 20 scenes. For every scene we had the visual data, the grouping into parts
around local key points and the movement data for the first few interactions. In half of the scenes, the
robot had taken random actions and in the other half the robot had taken actions expected to be most
informative based on the available movement data. Shown in Fig: 4.4 are the comparative results. The
measure of a segmentation’s quality we use is defined by a comparison to the correct segmentation [16].
With Q and P being the sets of centers that belong to the same object according to the human annotation
(Q) and our prediction (P), we define the quality as

B =
|P ∩Q|
p

|P||Q|
.

As one can see, the initial estimate after the first interaction shows a visible improvement compared to the
purely interactive method. It can also be seen that the advantage gained by the visual prior diminishes
slightly as the robot explores its environment via interaction. This is only natural since the robot will
eventually have interacted with every part of the scene, leaving no knowledge to be gained by additional
sources of information. The third conclusion we can draw from this comparison is, that informed actions
generally lead to a quicker information gain (note that the graphs’ y-axes are not equally scaled). This
leads to the hypothesis, that we can improve the performance of the segmentation even further when
taking the visual prior into account for choosing the most informative action.

After the 9th interaction, one additional object was added to the scene. This leads to a temporary
decrease in the segmentation’s quality. This quality drop is especially significant, since this change in the
environment is far more drastic, than the changes that naturally occur during interactive exploration.
However, the algorithm is able to adapt to the new information within a few interactions. The advantage
gained by evaluating the visual features after adding the object is visibly smaller than the initial one.
Though this is not because the algorithm performs poorly, but because we had no visual data recorded
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from after the scene change that could have been evaluated, so we had to rely on the visual information
without the new object.

Further evaluation on the λ parameter

Seeing the results of the cross-validation for evaluating the regularization parameter λ, the most logical
choice for lambda would be either 0.01 or 0.1. These are, based on our training data, the values for
which we might expect the best results for new data, since they had the lowest rate of misclassifications.
However, the parameter λ is set to 1 during our research. The reason is, that with our training examples
we still do not cover enough of the segmentation space. Evidence for this can be seen in Fig: 4.5 where
we evaluated the final combined segmentation process using parameters learned with a regularization
parameter of λ= 0.01. Apparently, we still do not generalize well on unseen data and get unpredictable
results for these, ultimately preventing any improvements. For this reason, we choose the higher value
of λ= 1, since being less confident might lead to a decreased information gain while overconfidence can
even produce wrong information.
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(a) Using random interactions
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(b) Using informed interactions

Figure 4.4: Comparison of the segmentation results. The blue line represents the average results and
the standard of the interactive segmentation without the movement data over the number
of iterations. The red line represents the results, when the visual prior was used. We used
data of 20 different setups, evaluating the movement data for up to 15 interactions. After
the 9th interaction we added one object to the scene in order to evaluate the performance in
changing environments.
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Figure 4.5: Results of the interactive segmentation comparing the purely interactive approach with the
results when using a poorly trained visual prior. The problem here is that the regularization
parameter λ = 0.01 was set too low and data not considered during training could not be
generalized well.

18



5 Conclusion
In this thesis, we presented our probabilistic approach for segmentation that is based both on visual
data and interaction. Our approach uses the visual data as prior knowledge in order to improve the
performance of the interactive segmentation introduced by van Hoof et al. [16].

First we introduce a way of evaluating visual features using logistic regression. It shows that a reliable
classifier over good and bad segmentations can be trained using only few visual features. We compare
two ways of calculating these visual features and show that the probabilistic approach, which derives
both meaning and significance of the features from actual data, is superior to the hand-tuned way of
implementing the features.

Finally we integrate the knowledge gained from the visual data into the interactive probabilistic seg-
mentation. We show that it reduces the number of interactions needed to reach the same amount of
information about the scene. The improvement is most significant at the beginning of the segmentation
process, when less movement data is available to be evaluated.

5.1 Outlook

There are still possibilities for possible future work. The most important step when continuing our
research would be to test the entire combined segmentation algorithm online on a real robot. Ideally
with previously unseen objects or new combinations of the objects used so far. When the results are
satisfactory, one can evaluate how much of a further improvement can be gained, when incorporating
the knowledge gained from the visual features into the choice of the next action.

These live tests could also include more challenging segmentation tasks. E.g., include objects that are
not segmentable by vision alone, like a box sawn into pieces that are put together as one again. Or
objects that move together despite being separate, like objects placed on top of each other or maybe a
box in a bowl.

In addition, one can further evaluate the significance of the visual features currently used. Either by
measuring the variance of the training data covered by the individual features, or comparing the results
of both the classification and the segmentation when disregarding specific features. Also interesting
would be the evaluation of more complex features than the ones we currently have. Especially operating
in 3D space using a part based approach gives us access to many interesting features. For example,
comparison of the face normals of surfaces in an object or surface continuity.
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