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Abstract
Policy gradient algorithms have taken on an important role in reinforcement learning since, compared to value function
methods, they can cope better with continuous state and action spaces. However they also have their drawbacks for
in general they tend to suffer from a vast amount of parameters as well as high variance in their gradient estimates.
Furthermore, they are prone to getting stuck in local optima while ascending the estimated gradient.
This situation can be improved by applying a divide-and-conquer strategy as it already has been used in the value function
field since its early days. Hereby, a complex problem can not only be split up in smaller subtasks in order to accelerate
overall learning by introducing a hierarchical structure. The resulting smaller problems can be solved using several
different kinds of learning algorithms.
In this thesis, we are going to compare performances of a conventional policy gradient algorithm with one employing
the hierarchical approach by applying them to an example problem. The latter is going to utilize a value function based
algorithm as well as policy gradient reinforcement learning. Those are composed to yield a so called hybrid policy
gradient algorithm.

Zusammenfassung
Algorithmen zur numerischen Optimierung parametrisierter Strategiefunktionen haben im Bereich des bestärkenden
Lernens einen hohen Stellenwert eingenommen, da sie, im Gegensatz zu Methoden, die zunächst den erwarteten Ge-
samtgewinn annähern müssen, besser mit kontinuierlichen Zustands- und Aktionsräumen umgehen können. Jedoch
müssen auch hier Abstriche gemacht werden, da diese Verfahren im Allgemeinen mit großen Mengen an Parametern und
hoher Stichprobenvarianz zu kämpfen haben und daher oft nur langsam konvergieren. Außerdem ist es möglich, dass
sich die Optimierung in einem lokalen Maximum verfängt.
Abhilfe kann hier ein Ansatz nach dem Grundsatz „Teile und herrsche“ schaffen, wie er in den übrigen Verfahren schon
seit geraumer Zeit eingesetzt wird. Auf diese Weise lässt sich ein großes zu lösendes Problem nämlich nicht nur in kleinere
Teilprobleme zerlegen und somit durch den Aufbau einer hierarchischen Struktur effizienter erlernen, sondern es können
auch verschiedene Arten von Lernalgorithmen für jeweilige Aufgaben benutzt werden.
Einen solchen hybriden hierarchischen Algorithmus möchten wir in dieser Arbeit näher betrachten und auf ein Beispiel-
problem anwenden. Weiterhin werden wir die Performanz dieser Lösung mit der eines klassischen Optimierungsalgorith-
mus vergleichen.
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1 Introduction
When dealing with reinforcement learning problems comprising continuous state or action spaces, the usage of value
function methods, in general, does not lead to a sufficient solution. For that reason policy gradient reinforcement learning
is often used as an alternative in those domains. Instead of deducing the optimal policy from the value function, it
is rather modeled in terms of parameters which are adjusted using gradient ascent in order to optimize the reward
accomplished by following the resulting policy.
However, that kind of algorithms suffers from low performance in high-dimensional spaces incorporating huge sets of
parameters to be learned. There have already been several approaches to applying a divide-and-conquer principle to
those problems in order to accelerate their convergence.
Those hierarchical methods have been around since the dawn of reinforcement learning itself and have already been
used in several value function contexts. However, they are still a topic of recent research.
A simple example of using that strategy involves applying domain knowledge about some problem in order to formulate
smaller subtasks which are easier to solve using policy gradient. Then, a high-level planner can learn how to solve the
original task by building a sequence of those low-level problems and using their performed actions as a solution to the
high-level problem. If the number of subtasks is finite, it is then appropriate to use a value function method instead of
policy search for this planner. In that case the overall algorithm is called a hierarchical hybrid algorithm.

1.1 A short example

As an introductory example we want to consider a home cleaning robot powered by a rechargeable battery which shall
use a policy gradient algorithm in order to learn how to clean multiple rooms and arrive at its docking station whenever
necessary without running out of power. In this setting the learning algorithm is confronted with a vast amount of
parameters in a high dimensional continuous state space and would therefore take very long to reach its optimal policy.
The robot’s task could be divided into two subproblems: cleaning just one room at a time and just driving back to the
charging station. It could then learn solving those separately. Having done so the robot should learn how to sequence
those actions so that it is able to use them for solving the whole problem.
This approach comes with several advantages. Firstly, often a specific sub-policy can be re-used for solving multiple
similar problems, for example using the gained knowledge from one room for also cleaning other rooms. Secondly,
on some levels of the resulting hierarchy some parameters of the state can be ignored completely and therefore the
complexity can be reduced even more than just by splitting up the task space. For example the amount of dust in each
room is indeed crucial for the cleaning subtask, however it is of no significance to the charging subtask.

1.2 Related work

The work with the greatest impact on this thesis is the work of Ghavamzadeh et al. [1]. It introduced hierarchical
approaches to the world of policy gradient algorithms and proposed a framework for hierarchical reinforcement learning
with arbitrarily chosen learning algorithms.
Many years before that, in the late 80s, hierarchical reinforcement learning has already been mentioned by Watkins when
he introduced Q-Learning [2]. Also, he mentioned a ship steering problem similar to the one used by Ghavamzadeh as
an abstract use case for hierarchical learning.
As already mentioned hierarchical methods have already successfully been applied to value function learning [3, 4].
A more recent approach to hierarchical policy gradient can be found in the work of Kroemer et al. [5] where it is used
in order to learn robotic manipulation tasks as a sequence of separately learned movement primitives which are used
in order to transition between the phases the robot’s action depend on. That way the robot can learn some primitives
by itself while still imitating some other primitives from a demonstrator. Also they can be reused for different kinds of
manipulations.
Another use of an hierarchical approach is shown in the work of Daniel et al. [6] where it is used to augment Relative
Entropy Search so that it becomes able to better adapt to different options an agent can follow in order to solve its task.
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1.3 Outline

In this thesis we are first going to have a look at some foundations of reinforcement learning which we are going to need
in order to inspect the hierarchical policy search. Among those are Markov decision processes as well as two example
learning algorithms which we are going to use in order to compose the hierarchical hybrid algorithm.
Chapter 3 builds upon those foundations by introducing the concepts used by Ghavamzadeh et al. in order to formulate
the hierarchical policy gradient. So we are going discuss task graphs, subtasks and hybrid policy gradient algorithms,
among others.
In chapter 4 we are going to tackle the ship steering problem first introduced by Miller et al. [7] as a specific example
problem. It will also be used in order to compare a flat policy gradient algorithm to a hierarchical one in chapter 5.
Finally we are going to reflect on the gathered insight and discuss how the approach in this paper could be improved
using the latest advances in hierarchical policy gradient in chapter 6.
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2 Foundations
In order to decompose a learning problem into a set of subtasks we formalize it as a special Markov decision process
called task graph. We are first going to examine general MDPs and, subsequently, look at the hierarchical case. Since
we are going to evaluate a hierarchical hybrid policy gradient algorithm we will also need at least one classical policy
gradient algorithm for solving the subproblems as well as a value function based algorithm which learns when to execute
which subtask. Those algorithms are going to be REINFORCE and classical Q-Learning.

2.1 Markov decision processes

A Markov decision process (MDP) is a mathematical model used to describe state transition systems inhabited by an
agent. That agent interacts with its environment by performing different actions which can lead the state of the system
to change. The agent can also receive a reward or punishment for each of its actions. Its objective is to optimize the
reward it collects over time. Here, we are going to use a definition of MDPs which is similar to the one from the work of
Sutton et al. [8].
An MDP consists of a set of states S and each of those states s ∈ S comes with a set of available actions As and a transition
distribution Ps : As × S→ [0, 1] with

∑

s′∈S Ps
�

s′
�

�a
�

= 1 for each a ∈ As. Given a state st at some discrete point in time t
the agent can perform an action at ∈ Ast

in order to reach the next state st+1 with probability Ps
�

st+1

�

�at
�

. Furthermore
we define a distribution µ : S→ [0, 1] with

∑

s∈S µ (s) = 1 where µ (s) is the probability of s being the initial state s0.
In order to be able to tell how good an agent is performing we define a score Rs,a,s′ ∈ R for each state s ∈ S, each action
a ∈ As and each resulting state s′ ∈ S with Ps

�

s′
�

�a
�

> 0. Using those scores the reward function r : S × A→ R can now
be defined as

r (s,a) = EPs

�

Rs,a′,s′
�

�a′ = a
�

, (2.1)

which describes the expected reward observed when performing action a ∈ Ast
in state s ∈ S.

An MDP can be viewed as a bipartite graph with the states and actions being nodes and the transitions being the edges
connecting them. An example is depicted in figure 2.1.

s1 s2

s3

a1

a2

a1

a2

a1

1
-10

0.7

0.3

1
+10

1

0.5

0.5
-1

Figure 2.1.: An example MDP with three states and two actions. The labels on the edges from actions to states show
the probabilities of the action resulting in the respective state. The red and green labels show the according
scores R.

One important aspect of all MDPs is that they fulfill the Markov property which states that the probability of being in
some state st+1 in the system may only depend on its preceding state st and the action at between them, not on any
other state or action prior to those. Let St and At be random variables which denote the state and action at a point in
time t. Then the Markov property can be formalized as

p
�

St+1 = st+1

�

�St = st , At = at , . . . , S0 = s0, A0 = a0
�

= p
�

St+1 = st+1

�

�St = st , At = at
�

. (2.2)

A distribution π (·|s) : As → [0,1] with
∑

a∈As
π (a|s) = 1 which returns the probability that a given action is executed in

a given state s ∈ S is called a policy.
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The solution to an MDP is a policy π? = argmaxπ Jπ which optimizes the expected long term reward

Jπ = Eµ,π,P





∞
∑

t=0

γt r
�

st ,at
�



 . (2.3)

Here s0 is sampled according to µ (·), at according to the policy π
�

·
�

�st
�

and st+1 according to the transition distribution
Pst

�

·
�

�at
�

for each t ∈ N. The formulation used here assumes that the underlying learning problem has an infinite horizon,
i.e. there is no terminal state and it can run infinitely without having to be restarted. This assumption suffices for now,
however finite horizon problems are also going to be discussed in section 2.3.
The value γ is a so called discount factor between 0 and 1 which gives more weight to the immediate rather than to the
long-term reward. Hence, the infinite sum also is guaranteed to converge if r is bounded.
The optimal policy for the example MDP in figure 2.1 is

π (a|s) =















1 if s= s1 and a= a2,

1 if s= s2 and a= a1,

1 if s= s3 and a= a1,

0 otherwise.

(2.4)

A way to compute this solution will be presented in section 2.2.

2.2 Q-Learning

Q-Learning is a model-free reinforcement learning algorithm first introduced by Watkins [2] and one possible way of
solving an MDP with a finite number of states and actions. It uses the so called action-values Q (s,a) for each state-action-
pair s ∈ S and a ∈ As for the deduction of an optimal policy.
In order to be able to correctly define those values, we first have to introduce the concept of value functions. They are
one of the most fundamental concepts of reinforcement learning and are used in several different approaches of policy
search., Many of those can be found in Sutton’s an Barto’s introductory book [9]. In this thesis, we are going to stick to
their notations.
For a given policy π, a value function Vπ : S → R depends on an initial state s and describes the expected reward when
following the policy starting from this state. A formal definition is given by

Vπ (s) = Eπ,P





∞
∑

t=0

γt r
�

st ,at
�

�

�

�

�

�

s0 = s



 , (2.5)

with at and st+1 each sampled as in equation 2.3 for each t ∈ N. Since the first term of the sum inside the expectation
does not depend on the transition probability we can reformulate the equation in a recursive form

Vπ (s) = Eπ
�

r (s,a) + γEP
�

Vπ
�

s′
��

�

�s
�

. (2.6)

A formal proof of that equality can be found in Appendix A.
Using the value function we can now define the action-value function Qπ (s, ·) : As → R for each state s ∈ S as

Qπ (s,a) = r (s,a) + γEP
�

Vπ
�

s′
�

�

�s,a
�

. (2.7)

It yields the expected long term reward achieved by taking an action a in a state s and afterwards following the policy π.
Now we consider a deterministic optimal policy π?, i.e. a policy which always certainly chooses the action a in a state s
so that the long term reward becomes maximized. Such a policy yields the following optimal value function

V ? (s) =max
a

�

r (s,a) + γEP
�

V ?
�

s′
�

�

�s,a
�

�

. (2.8)

This equation is also known as the Bellman equation and could already be used in order to compute V ? given that the
behavior of the environment P is known. The optimal policy π? could then be inferred using V ? so that it certainly
chooses the action for which the action-value is maximal.
Using that function we can further define the optimal state action function

Q? (s,a) = r (s,a) + γEPs

�

V ?
�

s′
�

�

�s,a
�

. (2.9)
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Using equations 2.8 and 2.9 the optimal value function can directly be computed from the optimal action-value function:

V ? (s) =max
a

�

Q? (s,a)
�

. (2.10)

Now we assume to already have obtained estimates V̂ and Q̂ for the optimal value and state-action functions and observe
a sample state transition

�

s,a, s′, r
�

along with the gained reward from an experiment. Then the approximation

Q̂ (s,a)≈ r + γV̂
�

s′
�

, (2.11)

should hold. The error experienced with this approximation is called the temporal difference error δ and can be used to
improve the estimate of the state action function:

δ = r + γV̂
�

s′
�

− Q̂ (s,a) = r + γmax
a

�

Q̂
�

s′,a
�

�

− Q̂ (s,a) . (2.12)

If δ is greater than zero the current estimate Q̂ is too small, otherwise if it is less than zero, Q̂ is too big. So Q̂ can be
improved by adding the temporal difference error with each experienced sample. For that a learning rate alphat is used
for each t ∈ N in order to control the step size of the improvement and not to execute too huge leaps.
With a stream of samples

�

st ,at , st+1, rt
�

for t ∈ N that leads to a sequence

Q t+1
�

st ,at
�

=

(

Q t
�

st ,at
�

+αt
�

rt + γmaxa
�

Q t
�

st+1,a
��

−Q t
�

st ,at
��

if s= st and a= at ,

Q t+1 (s,a) otherwise,
(2.13)

for each s ∈ S and a ∈ As. Watkins has proven [10] that for t →∞ this sequence converges to Q? (s,a) for each s ∈ S and
a ∈ As.
In contrast to the value iteration from equation 2.8 Q-Learning needs to keep track of a non-deterministic policy pi
in order to produce the needed samples and enforce exploration of the state and action space. This policy should be
formulated in a way that yields greater probabilities for actions with higher action-values.
An example for that is the softmax policy

π (a|s) =
exp (Q (s,a)/τ)

∑

a′∈A exp (Q (s,a′)/τ)
, (2.14)

for each s ∈ S and a ∈ As. The term τ is called the temperature and is used for dampening the difference in probabilities
for each action.

2.3 The REINFORCE learning algorithm

From now on we are going to focus exclusively on episodic learning problems, i.e. problems which include a set of terminal
states and eventually have to be restarted instead of being able to run infinitely.
In contrast to Q-Learning which has to rely on finite as well as discrete sets of actions and states, the next kind of learning
algorithms being discussed is also able to cope with continuous spaces natively.
Policy gradient methods do not use the value function in order to deduce the optimal policy. Instead the policy is modeled
using a set of parameters θ which is fine-tuned by means of optimization.
An extensive introduction to policy gradients can be found in the work of Deisenroth et al. [11]. The short overview
given in this paper reproduces their explanations and slightly adapts them to the conventions used here.

Consider an episode of an agent interacting with its environment. It is represented by a trajectory

τ =
�

s0,a0, s1,a1, . . . , sT−1,aT−1, sT
�

, (2.15)

consisting of a finite sequence of T states and the actions connecting those.
Traditionally continuous states and actions are often denoted with different characters than discrete ones. However
we are going to stick to the already established notation in order to avoid ambiguities as soon as we are working with
coordinates in chapter 4.
Using the trajectory notation from equation 2.15 the reward for one episode can then be defined as

R (τ) = r
�

sT
�

+
T−1
∑

t=0

r
�

st ,at
�

. (2.16)
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Again r (s,a) is used to denote the expected reward for executing an action a in a state s. Additionally r
�

sT
�

is defined
as the reward observed for reaching the terminal state sT . A discount factor is not necessary since the finite sum is
guaranteed to converge regardless of it.
Using the same probabilities µ and P as above as well as the parameterized policy πθ the probability pθ (τ) of observing
a trajectory τ can be defined as

pθ (τ) = µ
�

s0
�

T−1
∏

t=0

πθ
�

at

�

�st
�

Pst

�

st+1

�

�at
�

. (2.17)

Just as in the infinite horizon case the objective is to find a policy which maximizes the expected reward

Jθ = E [R (τ)] =
∫

R (τ) pθ (τ)dτ. (2.18)

However in the policy gradient setting this is done by adjusting θ so that Jθ becomes maximal. Therefore its gradient
∇θ Jθ is computed and used in order to perform a gradient ascent by adding it to the current parameter

θ t+1 = θ t +αt∇θ t
Jθ t

. (2.19)

αt is again used as the learning rate.
There are several ways of computing that gradient. One well known set of methods are the so called likelyhood-ratio or
REINFORCE algorithms which have been introduced by Williams [12]. Those use an equation called the likelyhood-ratio-
trick which can be easily reconstructed using the chain rule of derivation

∇x log
�

f (x)
�

=
∇x f (x)

f (x)
⇔∇x f (x) =∇x log

�

f (x)
�

f (x) . (2.20)

Thus, ∇θ Jθ can be expressed as

∇θ Jθ =∇θ

∫

R (τ) pθ (τ)dτ (2.21)

=

∫

R (τ)∇θ pθ (τ)dτ

=

∫

R (τ)∇θ log
�

pθ (τ)
�

pθ (τ)dτ

=Epθ

�

R (τ)∇θ log
�

pθ (τ)
��

.

Since the logarithm transforms the product from equation 2.17 into a sum it can be further simplified to

∇θ log
�

pθ (τ)
�

=∇θ

 

log
�

µ
�

s0
��

+
T−1
∑

t=0

�

log
�

πθ
�

at

�

�st
�

�

+ log
�

Pst

�

st+1

�

�at
�

��

!

(2.22)

=
T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

.

Combining the last two equations the gradient ∇θ Jθ can eventually be expressed as following expected value

∇θ Jθ = Epθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

R (τ)



 . (2.23)

Since computing that expected value would be unfeasible because of the integral a better approach would be to draw
sample trajectories from the distribution pθ and then use a Monte Carlo method in order to estimate it.
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That procedure however would lead to a huge variance due to possibly noisy samples. In order to keep it at least as little
as possible it is usual to subtract a term b from the rewards which is used to minimize the variance without introducing
a bias to the estimation. That term is called a baseline. This is possible since

Epθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

(R (τ)− b)



 (2.24)

=Epθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

R (τ)−

 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

b





=Epθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

R (τ)



−Epθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!

b





=∇θ Jθ − bEpθ





 

T−1
∑

t=0

∇θ log
�

πθ
�

at

�

�st
�

�

!



=∇θ Jθ − b

∫

∇θ log
�

pθ (τ)
�

pθ (τ)dτ

=∇θ Jθ − b

∫

∇θ pθ (τ)dτ

=∇θ Jθ − b∇θ

∫

pθ (τ)dτ

=∇θ Jθ − b∇θ1

=∇θ Jθ .

The value for b is chosen so that it minimizes the variance of the estimate. In order to compute it, the derivative of the
gradient’s variance is set to 0 and the resulting equation is solved for b. This yields a baseline

bh =
Epθ

�
�

∑T−1
t=0 ∇θ h

log
�

πθ h

�

at

�

�st
�

�

�2
R (τ)

�

Epθ

�
�

∑T−1
t=0 ∇θ h

log
�

πθ h

�

at

�

�st
�

�

�2� , (2.25)

for the gradient of the expected reward with respect to the hth component of θ .
The Monte Carlo estimates of the expected values in the equations 2.23 and 2.25 can be computed by taking the average
over the sum of sampled values. That leads to the following estimates ∇θ h

JRF
θ and bRF

h for the gradient and the baseline:

∇θ h
JRF
θ =

1

N

N
∑

i=1

T−1
∑

t=0

∇θ h
logπθ

�

a[i]t

�

�

�s[i]t , t
�

�

R[i] − bRF
h

�

, (2.26)

bRF
h =

∑N
i=1

�

∑T−1
t=0 ∇θ h

logπθ
�

a[i]t

�

�

�s[i]t , t
�
�2

R[i]

∑N
i=1

�

∑T−1
t=0 ∇θ h

logπθ
�

a[i]t

�

�

�s[i]t , t
�
�2 . (2.27)
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3 Hierarchical Task Decomposition
In this chapter, the task decomposition used in order to introduce a hierarchical structure to a learning problem shall be
discussed. We are going to reflect on the propositions made by Ghavamzadeh et al. [1] as well as Dietterich et al. [3]
and slightly adapt them so that they work for the problems addressed in this thesis. However we are not going to need all
of Ghavamzadeh’s assumptions since the learning algorithms used in this thesis are already established and, thus, there
is no need for the step based policy gradient algorithm described alongside the hierarchical learning in their paper.

3.1 Task Graphs

A task graph is a special form of an MDP which offers a hierarchical decomposition to the problem which is modeled by
it. It consists of a finite set of subtask MDPs

¦

M0, . . . , M n
©

which are interconnected and form a hierarchy with the root
MDP M0 at the highest level. The lowest level MDPs make up the primitive subtasks which directly perform a primitive
action without moving deeper in the hierarchy.
Each MDP M i has its own policy πi , a set of states S i and each state s a set of actions Ai

s as well as a transition probability
P i

s . Furthermore there is a set of initial states I i as well as the terminal states T i and a reward function r i .
Whenever a non-primitive task in the hierarchy performs an action it executes the respective subtask in a manner similar
to subroutines in a computer program, i.e. when the subtask terminates the execution returns to the original task and
reports the new state.
The combination of all policies π=

¦

π0, . . . ,πn
©

forms the hierarchical policy and is optimal iff it solves the root MDP.
As in Ghavamzadeh’s work we require all of the subproblems als well as the root problem to be episodic, so that eventually
every subtask call terminates and returns to its respective caller.
The decomposition of a regular MDP for a given problem requires domain knowledge in order to identify its underlying
structure and using it for the formulation of the task graph.
A heavily simplified example task graph for the cleaning robot problem described in 1.1 is depicted in figure 3.1. The
drive subtask is an example for a reusable task since it is shared by both the charge and the clean tasks.

root

cleancharge

drive(d)

motor controldock suck

Figure 3.1.: An example taskgraph. Non-primitive actions are depicted by circular nodes, primitive ones by rectangular
nodes.

3.2 Parametrized Subtasks

In addition to the parameters which are learned by a non-primitive subtask its policy can also incorporate further param-
eters which can be set by its caller rather than by the subtask itself. This approach is only used implicitly in [1] but it is
specifically made use of in Dietterich’s work [3] and provides even better chances for a subtask to be re-used in different
occasions. In the above example the drive subtask could for example come equipped with a choosable destination d as it
implied by its notation.
Also the caller of a parametrized subtask can add the parameters used to call it to its set of actions and learn which one
to apply to a subtask execution in a certain state.
How this approach is going to be used is exemplified in section 4.5.
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4 Experiments

4.1 The ship steering problem

In order to evaluate the performance of an HPG algorithm in comparison to the flat approach we are going to consider
the ship steering problem introduced by Miller et al. [7].
The given scenario consists of a ship which is located at coordinates x t and yt in a continuous two-dimensional space
and moving at a constant speed V = 3 m

s
in some direction θt at some point in time t. The ship is able to adjust its turning

rate θ̇t and therefore change the direction in which it is moving. However due to the water’s inertia this turning rate does
not change immediately but rather converges to its desired value ut in some time frame T . The ship’s state is updated
every time the sampling interval ∆= 0.2s is passed and it can therefore be described using the following formulas:

x t+1 = x t +∆V sin
�

θt
�

, (4.1)

yt+1 = yt +∆V sin
�

θt
�

, (4.2)

θt+1 = θt +∆θ̇t , (4.3)

θ̇t+1 = θ̇t +∆
1

T

�

ut − θ̇t

�

. (4.4)

Now our goal is to maneuver the ship through a given target line or near a specific point on the surface. We are first
going to find a solution to the second problem and then use the first one in order to compare our results to those of
Ghavamzadeh et al. in [1].
The original problem is formulated for a coordinate system with its x- and y-axes reaching from 0 to 1000. Thus we are
going to try to solve it for this space using the flat REINFORCE algorithm as well as an HPG algorithm which utilizes
REINFORCE for solving a set of simplified subtasks and Q-Learning for learning how to construct a sequence of those
which eventually solves the top-level task.
As subtasks we consider movements of constant length in eight different directions, four of them diagonal and the other
four horizontal/vertical. Also we are going to simplify the learning of those by combining the horizontal/vertical as well
as the diagonal movements each as one subtask and rotating the space in order to apply them in four different directions.
For those subtasks we map the problem onto a coordinate system bounded from 0 to 150 in both dimensions.

4.2 Policy formulation

Given a current state st =
�

x t , yt ,θt , θ̇t

�T
we use a stochastic policy πw,σ

�

at

�

�st
�

for the flat and the low-level tasks
in order to sample the desired turning rate at which should be applied in this state. This distribution is modeled as a
Gaussian distribution with its mode being linearly dependent on some N -dimensional feature vector φ

�

st
�

using weights
w =

�

w1, . . . , wN
�T . So altogether the parameters which are going to be learned by the policy gradient are β = {w,σ}

with σ2 being the variance of the stochastic policy

πw,σ
�

at

�

�st
�

=N
�

at

�

�wTφ
�

st
�

,σ2
�

=
1

p

2πσ2
exp

 

−
�

at −wTφ
�

st
��2

2σ2

!

. (4.5)

After being drawn from the policy the turning rate is narrowed down to the space between -15 and 15 in order to avoid
too large control signals using a variant of the sigmoid function

a′t =
30

1+ e−at
− 15. (4.6)

For the high-level planner we use an ε-greedy policy which is defined using the action-values Q (s, a) for each state s ∈ S
and subtask a ∈ As

π (a|s) =







1− ε if a = argmax
a′

Q
�

s, a′
�

ε

|A| otherwise.
(4.7)

10



4.3 Feature extraction

For the features we use a CMAC function approximator [13, 14]. In order to do so the state space is discretized using a
grid of the same dimension so that this results in a countable number of tiles. Of course the state space itself has to be
bounded. Now we can define the feature vector φ

�

st
�

=
�

φ1
�

st
�

, . . . ,φN
�

st
��T with an activation function φ j

�

st
�

being defined for each tile j ∈ {1, · · · , N} as

φ j
�

st
�

=

(

1 if st lies in tile j
0 otherwise.

(4.8)

In addition the number of parameters can be increased by using multiple tilings of the same size and translating each by
a different offset. Since there are now actions which can be expressed as the sum of tile weights the feature vector gets
more expressive. With each added offset tiling the number of actions which can be expressed grows polynomially.

Figure 4.1.: An example tiling in a two-dimensional space using two different offsets. The black dot depicts a state and
the thick tiles are the ones being activated by it.

4.4 The reward function

As reward function a punishment according to the squared Euclidian distance of the ship to its respective destination t in
the two-dimensional coordinate system is used at the top as well as at the bottom level. Since the outcome of performing
an action in a given state is deterministic the expected reward per step

r (s, a) = Rsas′ =






�

x ′, y ′
�T − t







2
, (4.9)

can directly be defined as the score Rsas′ achieved for reaching a state s′ =
�

x ′, y ′,θ ′, θ̇ ′
�T

by performing the according
action a in an original state s.
The overall reward

R (τ) =
T−1
∑

t=0

r
�

st , at
�

, (4.10)

for one episode τ defined as in equation 2.15 of the task is the sum of the rewards for each step with T being the number
of steps performed in order to reach a terminal state.
However we have to consider that the state space is bounded and an episode has to terminate when the ship moves out
of those bounds. Without further adjustment the learning algorithm would now prefer actions which move the ship out
of bounds as fast as possible in order to avoid further punishment.
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0 150m
0

150m target

start

x

y

Figure 4.2.: A local optimum under the reward model without a fixed finite horizon. The blue line depicts the ship’s
trajectory.

This problem can be solved by considering a finite horizon formulation for this task. We assume a maximum amount of
steps Tmax and abort an episode as soon as it has reached it. When an episode has already terminated after T < Tmax
steps we also add the last squared distance multiplied with the missed number of steps to the accumulative reward which
eventually has the form

R (τ) =−
min(T,Tmax)
∑

t=1







�

x t , yt
�T − t







2
, (4.11)

with
�

x t , yt
�T =

�

xT , yT
�T for all t ≥ T .

4.5 Subtasks used

Analogous to Ghavamzadeh’s approach we also use two subtasks both taking place in a smaller coordinate system which
reaches from 0 to 150 on both axes.
In the first subtask the ship’s initial position is located at (40, 40) and its target lies at (140,140). We call that one the
diagonal subtask. In the second one the ship has to navigate from (40,75) to (100, 75). This task is called the horizontal
subtask. Figure 4.3 shows a sample drawn from each policy learned in order to solve those subtasks.

0 150m
0

150m target

start

x

y

Diagonal subtask

0 150m
0

150m

target
start

x

y

Horizontal subtask

Figure 4.3.: Example trajectories for the diagonal (left) and horizontal (right) subtasks.
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Just like in [1] we are also going to reuse each subtask four times, each time rotated by 90 degrees. That angle is passed
to the subtask as a parameter upon execution by the top level planner. That makes a total of eight subtasks for it to
choose from.
However since the original objective of simply passing through a gate shall also be exchanged by reaching a small area
around a specific point in the big coordinate system those eight subtasks are not sufficient as the distances covered by
each subtask are just too big for hitting a small target. A result of that problem is shown in figure 4.4. So for this
experiment we add one further parameter besides the rotation angle to the subtasks which is going to be the distance
to the subtarget which the substate should be initialized with. Since the ship will still be mapped to a state on the
line between the original initial substate and the target and is therefore likely to pass tiles for which it already gained
knowledge, this procedure is not going to cause that much overhead at least for the low level learner.

0 500m 1000m
0

500m

1000m

target

start

x

y

ship’s path
via points

Figure 4.4.: With a fixed length traversed with each subtask execution it is almost impossible to exactly reach a small
region. Therefore the ship sails in circles around it.

4.6 Transforming the states

Whenever a subtask is called by the top level planner the state of the ship has to be mapped to the according substate
in order to properly being able to compute the actions to be performed. Let s′sub be the x- and y-coordinates of the
original starting state for the called subtask and t′sub be the respective subtarget in the subtask’s own coordinate system.
Furthermore let ssub and tsub be their respective coordinates with respect to the top level coordinate system.
Upon calling a subtask its low level coordinate system is rotated by an angle α using a rotation matrix R (α) and then
translated by a vector o so that the current state of the ship s gets mapped to its low level representation s′ like

s= R (α) s′ + o. (4.12)

In order to obtain the states low level representation we have to find o.
Let l be the distance s′ is away from t′sub in the direction of s′sub. Then it holds that

s′ = t′ + l
s′sub − t′sub


s′sub − t′sub





. (4.13)

Combining equations 4.12 and 4.13 yields

o= s− R (α)

 

t′ + l
s′sub − t′sub


s′sub − t′sub





!

. (4.14)

In addition to transforming the ship’s x- and y-coordinate its course also has to be adapted to its orientation in the low
level space. The turning rate stays the same.
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5 Results
We have conducted three major experiments. First the ship learned solving the original problem of passing a gate of a
certain width using only a flat REINFORCE algorithm. Then this experiment has been repeated using the hierarchical
approach described in the previous chapter. And finally the ship’s objective has been made a bit more complex by
requiring it to exactly hit a small region around a target point.
Each of those experiments generated 20000 episodes and produced at least a graph showing the number of successful
episodes in 1000 samples. Those can be compared to those by Ghavamzadeh et al. in [1] since they used the same kind
of performance measure.

5.1 Passing through the gate

For this problem the ship is placed at a uniformly random point in a 1000-by-1000 coordinate system. Also its course and
turning rate are picked randomly. The ship’s objective is to pass a horizontal gate with its center positioned at (600,600)
and a width of 100m.

5.1.1 Flat

For the flat learner we use a plain REINFORCE gradient ascent with a learning rate αt = 10 · (0.9)t and a normalized
gradient estimate. The tiling used divides the four-dimensional coordinate system in a 10× 10× 10× 5 board with no
further offsets in order to keep the algorithm performant. An episode terminates as soon as a step crosses the target
line, the ship leaves the bounds of the coordinate system or it reaches 6000 steps. The gradient is estimated using 1000
samples at a time.
The learner’s performance is depicted in figure 5.1. The ship steering problem does not seem unsolvable using a flat
approach, however it does not even achieve a success rate of 50 percent after 20000 episodes.

5.1.2 Hierarchical

The hierarchical approach to the ship steering problem uses a 20× 20 tiling for the x- and y-coordinate and ignores the
ship’s course and turning rate at the top level. All four state parameters are propagated to the low level whenever a
subtask is called. Those use a tiling size of 5×5×10×5 with a total of three equidistant offsets. Both tilings a consistent
with the ones used for the same problem in [1].
The gradient estimates of the low level learners are computed from 500 samples each, normalized and applied with a
constant learning rate of αt = 1. The Q-Learning algorithm at the top level uses an ε-greedy policy with ε= 0.2.
A low level episode gets terminated when the ship leaves the bounds, hits a circular area of radius 10 around the low
level target or reaches 600 steps. At the top level an episode lasts a maximum of ten subtask calls or until one subtask
has successfully crossed the gate.
Figure 5.2 shows the performance of the hierarchical learner and compares it to the results from the previous section.
Although it starts without knowledge of how to solve the subtasks and therefore first has to improve those before even
being able to perform meaningful learning at the top level, it manages to reach a decent performance very quickly. This
graph also confirms that our algorithm is quite close to its inspiration since the corresponding figure from [1] looks
almost the same. Figures 5.3 and 5.4 depict the performance of the subtask learners in the same way as the previous
graphs as well as using the mean reward of each iteration. Those are also relatively similar to the ones of [1] despite
using a different algorithm.

5.2 Hitting the region

Except for some minor changes this modification of the original learning task uses the same setup. The main difference is
that each top as well as low level episode terminates as soon as it reaches a circular area with a radius of 10 around the
point (600, 600). That does not only mean that the top level goal is harder to achieve. In addition a low level episode
which reaches the top level target gets terminated right away without being able to adapt its reward to the situation.
That circumstance could lead to an increase of the gradient estimator’s variance.
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Figure 5.1.: The performance of the flat learner depicted as the number of successful episodes in 1000 samples (left) and
as the mean reward of 1000 samples (right). The error bars in the plot on the right represent two times the
standard deviation of each mean.
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Figure 5.2.: The performance of the hierarchical learner depicted as the number of successful episodes in 1000 samples
compared to the one of the flat learner.
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Figure 5.3.: The success rate of the diagonal (left) and horizontal (right) subtask per 1000 samples.
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Figure 5.4.: The mean reward of the diagonal (left) and horizontal (right) subtask per 500 samples drawn each policy
iteration. The bars show two times the standard deviation.
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Figure 5.5.: The performance of the hierarchical learner solving the more challenging task depicted as the number of
successful episodes in 1000 samples.
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Figure 5.6.: The success rate of the low level learners in the third experiment. Again the diagonal subtask is on the left
and the horizontal one on the right.

As already mentioned in section 4.5 we also have to compensate for the target being much smaller than the ship’s
movements by having the top level learner adapt the distance traversed by a subtask call. Therefore the distance between
the original initial substate and the subtarget is split into five discrete equidistant segments and the state is mapped to
one of those.
The performance achieved in this task can be seen in figure 5.5. A maximal success rate of 70 percent is relatively high
since it must be considered, that the smallest distance the ship can travel in one step is still at least 20m and the tiles all
have a width and height of 10m. Also the ship’s direction of movement is still constrained to eight directions on the top
level. Overcoming those problems by using a finer-grained tiling in an area around the top level goal or propagating the
exact target position to a subtask which is called in its proximity could however increase the performance significantly.
Again we tracked the performance of the subtask learners as it can be seen in figures 5.6 and 5.7. The latter shows a
slightly higher maximal reward for each subtask than figure 5.4. That is a result of the states often being mapped to a
point which is already closer to the respective subtarget.

In order to better understand how the top level policy works there is an additional plot in figure 5.8 which uses a
color coding of the tiles to show using the learned policy which action is most probable to be performed in which state.
The images shown there each depict the 20× 20 tiling which is laid on top of the state space. The two colors in the
picture on the right denote the subtask which is to be called when the state lies in the respective tile. Gray stands for the
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Figure 5.7.: The mean reward of the diagonal (left) and horizontal (right) subtask per 500 samples drawn each policy
iteration. The bars show two times the standard deviation.

Subtask rotation Initial distance from subgoal Subtask

Figure 5.8.: The color coded policies learned by Q-Learning in the third experiment.

diagonal and white for the horizontal subtask. On the left there is the rotation of the chosen subtask. Going from dark
to bright they depict rotations by 0, 90, 180 and 270 degrees clockwise respectively. The plot in the middle shows the
distance from the respective subtarget the substate is initialized with. Black is the original distance and the brighter it
gets the nearer it starts to its goal.

Finally a sample trajectory drawn using the learned policies can be seen in figure 5.9.

18



0 500m 1000m
0

500m

1000m

target

start

x

y

ship’s path
via points

Figure 5.9.: A trajectory sampled from the policy learned in the third experiment.
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6 Outlook
In this thesis, the foundations for the application of a hierarchical hybrid algorithm have been expounded. Then it was
used in order to solve a non-trivial learning problem and the results have been compared to those of a traditional flat
approach. Finally we modified the problem in order to reassess whether the hierarchical algorithm was able to adapt to
the changed requirements.

Judging by the examples examined in this thesis hierarchical methods can improve some reinforcement learning prob-
lems radically as it was the case with the original ship steering problem. However not all problems seem suitable for a
hierarchical decomposition. That became clear when we observed drawbacks as soon as we slightly modified the given
task. Also not all problems provide us with such an apparent and convenient way of decomposing its transition system. So
it becomes obvious that a hierarchical learning algorithm would greatly benefit from an automated way of achieving that.

As already hinted at in the introduction, hierarchical methods have, by now, found a lot more echo in the field of
policy gradient reinforcement learning. Some more modern approaches [5, 6], for example, use latent variable models
in order to automate the search for subtasks. A similar treatment could be applied to the ship steering problem in order
to find a greater amount of suitable ones.

Another simple way of improving both of the presented solutions would be to use learning algorithms which require
less samples to be observed in order to compute a meaningful update. After all the learners on higher levels of the
hierarchy can only take advantage of their subtasks after those are already able to solve their own problem at least in
some degree. That circumstance can be seen quite clearly when examining the performance of the last experiment which
starts improving after a delay of 4000 episodes.

It can be concluded that hierarchical methods provide a meaningful improvement to reinforcement learning and should
be taken into consideration at least as soon as a task comes with an exploitable hierarchical structure.
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A Derivation of the recursive value function
In this section we are going to present the steps which lead from the definition of the value function in equation 2.5 to
its recursive form shown in equation 2.6.
We denote a trajectory which has been sampled using µ, π and P as an infinite sequence

τ =
�

s0,a0, s1,a1, s2,a2, s3,a3, . . .
�

. (A.1)

Also we denote trajectories which begin n states or actions ahead as τ[n]. A few examples can be seen in equations A.2
and A.3. According to that notation τ could also be written as τ[0].

τ[1] =
�

a0, s1,a1, s2,a2, s3,a3, . . .
�

(A.2)

τ[2] =
�

s1,a1, s2,a2, s3,a3, . . .
�

(A.3)

We call the set of all trajectories T and define a random Variable R : T → R as

R
�

τ[0]
�

=
∞
∑

t=0

γt r
�

st ,at
�

. (A.4)

Finally we define the probability of sampling a specific trajectory p
�

τ[0]
�

as well as the conditional probabilities

p
�

τ[1]
�

�s0 = s
�

and p
�

τ[2]
�

�s0 = s,a0 = a
�

of sampling the remaining trajectory given we already know the first state, or
the first state and the following action, respectively:

p
�

τ[0]
�

= µ
�

s0
�

∞
∏

t=0

π
�

at

�

�st
�

Pst

�

st+1

�

�at
�

, (A.5)

p
�

τ[1]
�

�s0 = s0

�

=
∞
∏

t=0

π
�

at

�

�st
�

Pst

�

st+1

�

�at
�

, (A.6)

p
�

τ[2]
�

�s0 = s0,a0 = a0

�

=
∞
∏

t=0

Pst

�

st+1

�

�at
�

π
�

at+1

�

�st+1
�

. (A.7)

Furthermore we are going to need the following equation

p
�

τ[3]
�

�s0 = s0,a0 = a0, s1 = s1

�

= p
�

τ[3]
�

�s1 = s1

�

, (A.8)

which holds since observing some further part of a trajectory is conditionally independent from its previous states and
actions given a known state in between those two parts.
Then we can formulate the value function as

Vπ (s) = Eπ,P





∞
∑

t=0

γt r
�

st ,at
�

�

�

�

�

�

s0 = s



= Eπ,P

�

R
�

τ[0]
�

�

�

�s0 = s
�

=

∫

T

p
�

τ[1]
�

�s0 = s
�

R
�

τ[0]
�

dτ[1]. (A.9)
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Finally following steps can be performed in order to complete the proof

Vπ (s) =

∫

T

p
�

τ[1]
�

�s0 = s
�

R
�

τ[0]
�

dτ[1]

=

∫

T

p
�

τ[1]
�

�s0 = s
�

 

∞
∑

t=0

γt r
�

st ,at
�

!

dτ[1]

=

∫

T

p
�

τ[1]
�

�s0 = s
�

 

γ0r
�

s0,a0
�

+
∞
∑

t=1

γt r
�

st ,at
�

!

dτ[1]

=

∫

T

p
�

τ[1]
�

�s0 = s
�

 

r
�

s,a0
�

+ γ
∞
∑

t=0

γt r
�

st+1,at+1
�

!

dτ[1]

=

∫

T

p
�

τ[1]
�

�s0 = s
��

r
�

s,a0
�

+ γR
�

τ[2]
��

dτ[1]

=

∫

T

p
�

τ[1]
�

�s0 = s
�

r
�

s,a0
�

+ γp
�

τ[1]
�

�s0 = s
�

R
�

τ[2]
�

dτ[1]

=

∫

as

�
∫

T

p
�

τ[1]
�

�s0 = s
�

r
�

s,a0
�

dτ[2]
�

+

�
∫

S

∫

T

γp
�

τ[1]
�

�s0 = s
�

R
�

τ[2]
�

dτ[3]ds1

�

da0

=

∫

as

�
∫

T

π
�

a0

�

�s
�

p
�

τ[2]
�
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�

r
�
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�

dτ[2]
�

+

�
∫

S

∫

T
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�
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�
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�

R
�

τ[2]
�

dτ[3]ds1

�
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=

∫
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π
�
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�

�s
�

r
�
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�
∫

T

p
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�

�s0 = s,a0 = a0
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dτ[2]
�
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�
∫

S

∫

T
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�

τ[1]
�
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�

R
�

τ[2]
�

dτ[3]ds1

�

da0

=

∫
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π
�

a0

�

�s
�

r
�
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�

+

�
∫

S

∫

T

γπ
�
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�

�s
�
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�

s1

�

�a0
�

p
�

τ[3]
�
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�

R
�

τ[2]
�

dτ[3]ds1

�
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=

∫
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π
�
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�

�s
�

r
�

s,a0
�
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�

a0

�

�s
�

�
∫

S
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�
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�

�a0
�

∫

T

p
�

τ[3]
�
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�

R
�
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�

dτ[3]ds1

�
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=

∫
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π
�
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�

�s
�

r
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�
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�
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�

�
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S
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�
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�
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=

∫

as

π
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�
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�
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�
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�

�

�s,a0
�
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∫
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π
�
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�

�s
�

�

r
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�
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�
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�

�
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�

�
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=Eπ
�

r (s,a) + γEP
�
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�
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��

�

�s
�

.

The action a seen in the last term is sampled using π and the resulting state s′ is drawn from Ps.
This equation can also be proven for discrete sets of states and actions completely analogously by exchanging the integrals
with sums.
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