
Noname manuscript No.

(will be inserted by the editor)

Generalized Exploration in Policy Search

Herke van Hoof · Daniel Tanneberg · Jan
Peters

the date of receipt and acceptance should be inserted later

Abstract To learn control policies in unknown environments, learning agents need

to explore by trying actions deemed suboptimal. In prior work, such exploration is

performed by either perturbing the actions at each time-step independently, or by per-

turbing policy parameters over an entire episode. Since both of these strategies have

certain advantages, a more balanced trade-o� could be bene�cial. We introduce a uni-

fying view on step-based and episode-based exploration that allows for such balanced

trade-o�s. This trade-o� strategy can be used with various reinforcement learning algo-

rithms. In this paper, we study this generalized exploration strategy in a policy gradient

method and in relative entropy policy search. We evaluate the exploration strategy on

four dynamical systems and compare the results to the established step-based and

episode-based exploration strategies. Our results show, that a more balanced trade-o�

can yield faster learning and better �nal policies, and illustrate some of the e�ects that

cause these performance di�erences.

Keywords Reinforcement Learning · Policy Search · Exploration

1 Introduction

Obtaining optimal behavior from experience in unknown environments is formalized in

the reinforcement learning (RL) framework [43]. To learn in this manner, addressing the

exploration/exploitation trade-o�, that is, choosing between actions known to be good

and actions that could prove to be better, is critical for improving skill performance

in the long run. In fact, many reinforcement learning techniques require a non-zero

H. van Hoof
School of Computer Science, McGill University, Montreal, Canada
Intelligent Autonomous Systems Group, TU Darmstadt, Germany,
Tel.: +1-514-398-7071 ext. 00115, E-mail: herke.vanhoof@mail.mcgill.ca

D. Tanneberg
Intelligent Autonomous Systems Group, TU Darmstadt, Germany.

J. Peters
Intelligent Autonomous Systems Group, TU Darmstadt, Germany,
Max Planck Institute for Intelligent Systems. Tübingen, Germany



2 Herke van Hoof et al.

probability of trying each action in every state to be able to prove that the algorithm

converges to the optimal policy [43].

Most tasks require agents to make a sequence of decisions over multiple time steps.

Typical algorithms perform exploration by modifying the action taken at some or all of

the time steps. Popular exploration heuristics include ε-greedy action selection (choos-

ing a random action in a fraction ε of time steps), use of a stochastic controller that

injects random noise at every time step, and by using a soft-max (or Boltzmann) distri-

bution that selects actions that are deemed better more often, but not exclusively [19,

8,20]. Another strategy is the use of parametrized controllers with a distribution over

actions or parameters, and sampling from this distribution at every time step [9].

However, the paradigm of modifying actions at individual time-steps has multiple

shortcomings. High-frequency exploration can show ine�cient `thrashing' behavior [40,

31,1] and in the worst case exhibit a random walk behavior that fails to explore much

of the state space [21]. At the same time, for longer horizons, the variance of pol-

icy roll-outs explodes as the results depend on an increasing number of independent

decisions [28]. Furthermore, when learning controllers within a certain function class,

perturbing single time-steps can result in trajectories that are not reproducible by any

noise-free controller in that function class [8].

Skill learning in robotics and other physical systems is a prominent application do-

main for reinforcement learning. In this domain, reinforcement learning o�ers a strategy

for acquiring skills when, for example, parts of the robot or parts of the environment

cannot be modeled precisely in advance [19,20]. High-frequency exploration can cause

additional problems when applied to robot systems. Namely, high-frequency explo-

ration causes high jerks, that can damage robots [26,8,21,49]. Furthermore, real robots

exhibit non-Markov e�ects such as dead-band, hysteresis, stiction, and delays due to

processing and communication delays and inertia [20]. These e�ects make it hard to

precisely measure the e�ects of the perturbations. Such problems could be addressed

by including a history of actions in the state-space, but this would make the dimension-

ality of the reinforcement learning problem larger and thereby increase the complexity

of the problem exponentially [20].

In this paper, we focus on addressing these problems in policy search methods

employing parametrized controllers. Such methods, that are popular in e.g. robotics

applications, tend to yield stable updates that result in safe robot behavior [20,8].

Parametrized policies are also easily applicable in environments with continuous state-

action spaces. In these methods, perturbing individual actions can be realized by per-

turbing the policy parameters in each time step independently. We will refer to this

strategy as time-step-based exploration.

The problems of high-frequency exploration in policy search methods can be ad-

dressed by exploiting that data for learning tasks through reinforcement learning is

usually gathered in multiple roll-outs or episodes. One roll-out is a sequence of state-

action pairs, that is ended when a terminal state is reached or a certain number of

actions have been performed. One can thus perturb the controller parameters at the

beginning of a policy roll-out, and leave it �xed until the episode has ended [36,38,21,

45,42].

The advantage of this episode-based exploration approach is that random-walk be-

havior and high jerks are avoided due to the coherence of the exploration behavior.

The disadvantage, however, is that in each episode, only one set of parameters can be

evaluated. Therefore, such techniques usually require more roll-outs to be performed,

which can be time-consuming on a robotic system.



Generalized Exploration in Policy Search 3

We think of the time-step-based and episode-based exploration strategies as two ex-

tremes, with space for many di�erent intermediate trade-o�s. In this paper, we provide

a unifying view on time-step-based and episode-based exploration and propose inter-

mediate trade-o�s that slowly vary the controller parameters during an episode, rather

than independent sampling or keeping the parameters constant. Formally, we will sam-

ple parameters at each time step in a manner that depends on the previous parameters,

thereby de�ning a Markov chain in parameter space. Our experiments compare such

intermediate trade-o�s to existing step-based and episode-based methods.

In the rest of this section, we will describe related work, and after that describe

our uni�ed view on time-step-based and episode-based exploration and our problem

statement. Then, in the subsequent sections, we describe our approach for generalized

exploration formally and provide the details of the set-up and results of our experi-

ments. We conclude with a discussion of the results and future work.

1.1 Related Work

Numerous prior studies have addressed the topic of temporal coherence in reinforcement

learning, although most have not considered �nding trade-o�s between fully tempo-

rally correlated and fully independent exploration. In this section, we will �rst discuss

temporal coherence through the use of options and macro-actions. Then, the possibil-

ity of temporal coherence through the use of parametrized controllers such as central

pattern generators and movement primitives is discussed. Considering that di�erent

forms of sampling parameters are central to the di�erence between step-based and

episode-based methods, we will conclude by discussing other approaches for sampling

exploratory actions or policies.

1.1.1 Temporal Coherence through Options

Hierarchical reinforcement learning has been proposed to scale reinforcement learning

to larger domains, especially where common subtasks are important [18,39]. These early

studies allowed choosing higher-level actions at every time step, and are thus time-step

based strategies. Later approaches tended to have a higher-level policy which select a

lower-level policy that takes control for a number of time steps, for example, until the

lower-level policy reaches a speci�c state, or when a certain number of time steps has

passed [34,32,10,44]. Choosing such a lower-level policy to be executed for multiple

time steps makes the subsequent exploration decisions highly correlated. In addition

to choosing which lower-level policy to execute, coherent explorative behavior can also

be obtained by stochastic instantiation of the parameters of lower-level policies [47].

Moreover, this hierarchical framework allows learning to scale up to larger domains

e�ciently [44,18,32,10]. In such a hierarchical framework, the temporal coherence of

exploration behavior contributes to this success by requiring fewer correct subsequent

decisions for reaching a desired, but faraway, part of the state space [44].

Much of this work has considered discrete Markov decision processes (MDPs), and

does not naturally extend to robotic settings. Other work has focused on continuous

state-action spaces. For example, Morimoto and Doya [27] study an upper level policy

that sets sub-goals that provide a reward for lower-level policies. This method was used

to learn a stand-up behavior for a three-link robot. A similar set-up was used in [12],

where the agent could choose between setting a sub-goal and executing a primitive



4 Herke van Hoof et al.

action. Local policies are often easier to learn than global policies. This insight was

used in [23] in an option discovery framework, where a chain of sub-policies is build

such that each sub-policy terminates in an area where its successor can be initiated.

Another option discovery method is described in [5], where probabilistic inference is

used to �nd reward-maximizing options for, among others, a pendulum swing-up task.

1.1.2 Episode Based Exploration and Pattern Generators

The option framework is a powerful approach for temporally correlated exploration in

hierarchical domains. However, option-based methods usually require the options to be

pre-de�ned, require additional information such as the goal location, demonstrations,

or knowledge of the transition dynamics, or are intrinsically linked to speci�c RL

approaches. Another approach to obtaining coherent exploration employs parametrized

controllers, where the parameters are �xed for an entire episode. Such an approach is

commonly used with pattern generators such as motion primitives.

Such episode-based exploration has been advocated in a robotics context in previous

work. For example, [36,38] describe a policy gradient method that explores by sampling

parameters in the beginning of each episode. This method is shown to outperform

similar policy gradient methods which use independent Gaussian noise at each time

step for exploration. One of the proposed reasons for this e�ect is that, in policy

gradient methods, the variance of gradient estimates increases linearly with the length

of the history considered [28]. Similarly, the PoWER method that uses episode-based

exploration [21] outperforms a baseline that uses independent additive noise at each

time step. Furthermore, path-integral based methods have been shown to bene�t from

parameter-based exploration [45,42], with episode-based exploration conjectured to

produce more reliable updates [42].

Episode-based exploration has been shown to have very good results where policies

have a structure that �ts the task. For example, in [22], a task-speci�c parametrized

policy was learned for quadrupedal locomotion using a policy gradient method. Dy-

namic movement primitives have proven to be a popular policy parametrization for a

wide variety of robot skills [37]. For example, reaching, ball-in-a-cup, under actuated

swing-up and many other tasks have been learned in this manner [21,37,20]. In case

di�erent initial situations require di�erent controllers, a policy can be found that maps

initial state features to controller parameters [3,4].

However, episode-based exploration also has disadvantages. Notably, in every roll-

out only a single set of parameters can be evaluated. Compared to independent per-step

exploration, many more roll-outs might need to be performed. Performing such roll-

outs can be time-consuming and wear out the mechanisms of the robot. One solution

would be to keep exploration �xed for a number of time steps, but then choose di�erent

exploration parameters. Such an approach was proposed in [28]. A similar e�ect can be

reached by sequencing the execution of parametrized skills, as demonstrated in [41,4].

However, suddenly switching exploration parameters might again cause undesired high

wear and tear in robot systems [26]. Instead, slowly varying the exploration parameters

is a promising strategy. Such a strategy is touched upon in [8], but has remained largely

unexplored so far.



Generalized Exploration in Policy Search 5

1.1.3 Sampling for Reinforcement Learning

In this paper, we propose building a Markov chain in parameter space to obtain coher-

ent exploration behavior. Earlier work has used Markov chain Monte Carlo (MCMC)

methods for reinforcement learning, but usually in a substantially di�erent context. For

example, several papers focus on sampling models or value functions. In case models are

sampled, actions are typically generated by computing the optimal action with respect

to the sampled model [1,40,29,6,11]. By preserving the sampled model for multiple

time steps or an entire roll-out, coherent exploration is obtained [40,1]. Such methods

cannot be applied if the model class is unknown. Instead, samples can be generated

from a distribution over value functions [52,7,31] or Q functions [30]. Again, preserv-

ing the sample over an episode avoids dithering by making exploration coherent for

multiple time-steps [31]. Furthermore, [31] proposes a variant where the value function

is not kept constant, but is allowed to vary slowly over time.

Instead, in this paper, we propose sampling policies from a learned distribution.

Earlier work has used MCMC principles to build a chain of policies. This category of

work includes [17] and [24], who use the estimated value of policies as re-weighting of the

parameter distribution, [51], where structured policies are learned so that experience

in one state can shape the prior for other states, and [48], where a parallel between

such MCMC methods and genetic algorithms is explored. In those works, every policy

is evaluated in an episode-based manner, whereas we want an algorithm that is able

to explore during the course of an episode.

Such a method that explores during the course of an episode was considered in [13],

where a change to a single element of a tabular deterministic policy is proposed at every

time-step. However, this algorithm does not consider stochastic or continuous policies

that are needed in continuous-state, continuous-action MDPs.

The work that is most closely related to our approach, is the use of auto-correlated

Gaussian noise during exploration. This type of exploration was considered for learning

robot tasks in [49,27]. In a similar manner, Ornstein-Uhlenbeck processes can be used

to generate policy pertubations [25,16]. However, in contrast to the method we propose,

these approaches perturb the actions themselves instead of the underlying parameters,

and can therefore generate actions sequences that cannot be followed by the noise-free

parametric policy.

1.2 Notation in Reinforcement Learning and Policy Search

Reinforcement-learning problems can be formalized as Markov decision processes. A

Markov decision process is de�ned by a set of states S, a set of actionsA, the probability
p(st+1|st,a) that executing action a in state st will result in state st+1 at the next

time step, and a reward function r(s,a). The time index t here denotes the time step

within an episode. In our work, we will investigate the e�cacy of our methods in

various dynamical systems with continuous state and action spaces, st ∈ S ⊂ RDs and
at ∈ A ⊂ RDa , where Ds and Da are the dimensionality of the state and action space,

respectively. Also, the transition distribution p(st+1|st,a) is given by the physics of

the system, and will thus generally be a delta distribution.

Our work focuses on policy search methods to �nd optimal controllers for such

systems. In policy search methods, the policy is explicitly represented. Often, this

policy is parametrized by a parameter vector θ. The policy can be deterministic or



6 Herke van Hoof et al.

stochastic given these parameters. Deterministic policies will be denoted as a function

a = π(s;θ), whereas stochastic policies will be denoted as a conditional distribution

π(a|s;θ).

1.3 Unifying View on Step- and Episode-based Exploration

In this paper, we will look at parameter-exploring policy search methods. Existing

methods in this category have almost exclusively performed exploration by either per-

forming exploration at the episode level or performing exploration at the step-based

level. A unifying view on such methods is, that we have a (potentially temporally

coherent) policy of the form

at = π(st;θt) (1)

θt ∼

{
p0(·) if t = 0

g(·|θt−1) otherwise,
(2)

where θt is the vector of parameters at time t, at is the corresponding action taken in

state st, π is a policy conditioned on the parameters. Furthermore, p0 is the distribution

over parameters that is drawn from at the beginning of each episode, and g(·|θt) the
conditional distribution over parameters at every time step thereafter. The familiar

step-based exploration algorithms correspond to the speci�c case where g(θt|θt−1) =
p0(θt), such that θt ⊥ θt−1. Episode-based exploration is another extreme case, where

g(θt|θt−1) = δ(θt−θt−1), where δ is the Dirac delta, such that θt = θt−1. Note, that

in both cases

∀t :
ˆ
p(Θt = θ|Θ0 = θ′)p0(Θ0 = θ′)dθ′ = p0(Θ0 = θ), (3)

where Θ is used to explicitly indicate random variables1. That is, the marginal dis-

tribution is equal to the desired sampling distribution p0 regardless of the time step.

Besides these extreme choices of g(·|θt−1), many other exploration schemes are con-

ceivable. Speci�cally, in this paper we address choosing g(θt|θt−1) such that the θt is

neither independent of nor equal to θt−1 and Eq. (3) is satis�ed. Our reason for enforc-

ing Eq. (3) is that in time-invariant system, the resulting time-invariant distributions

over policy parameters are suitable.

2 Generalizing Exploration

Equation (2) de�nes a Markov chain on the policy parameters. To satisfy Eq. (3), p0
should be a stationary distribution of this chain. A su�cient condition for this property

to hold, is that detailed balance is satis�ed [15]. Detailed balance holds, if

p0(Θ0 = θ)

p0(Θ0 = θ′)
=

g(Θt+1 = θ|Θt = θ′)

g(Θt+1 = θ′|Θt = θ)
. (4)

1 Following common practice, where the random variable is clear from the context, we will
not explicitly mention it, writing p0(θ0) for p0(Θ0 = θ0), for example.



Generalized Exploration in Policy Search 7

Given a Gaussian policy2 p0 = N (µ,Λ−1), this constraint can easily be satis�ed3.

For example, a reasonable proposal distribution could be obtained by taking a weighted

average of the parameters θt at the current time step and a sample from a Gaussian

centered on µ. Since averaging lowers the variance, this Gaussian will need to have a

larger variance than Λ−1. As such, we consider a proposal distribution of the form

θt+1 = βθ̃ + (1− β)θt, θ̃ ∼ N(µ, f(β)2Λ−1), (5)

where β is the weighting of the average and f(β) governs the additional scaling of

the covariance. This scaling needs to be set such that the detailed balance criterion

in Eq. (4) is satis�ed. The detailed balance criterion can most easily be veri�ed by

comparing the logarithms of the left- and right hand side of Eq. (4). For the left hand

side, we obtain the simple expression

log

(
p0(θ)

p0(θ
′)

)
= −θ

TΛθ

2
+ θTΛµ+

θ′TΛθ′

2
− θ′TΛµ. (6)

For the right hand side of Eq. (4), we can insert g(θ′|θ) = N((1 − β)θ + βµ, Λ̃
−1

) ,
with Λ̃ = f(β)−2β−2Λ, and vice versa for g(θ|θ′). The resulting log-ratio is given as

log

(
g(θ|θ′)
g(θ′|θ)

)
=− θ

T Λ̃θ

2
− (1− β)βθ′T Λ̃µ− (1− β)2θ′T Λ̃θ′

2
+ βθT Λ̃µ

+
θ′T Λ̃θ′

2
+ (1− β)βθT Λ̃µ+

(1− β)2θT Λ̃θ

2
− βθ′T Λ̃µ

=
(
2β − β2

)(
−1

2θ
T Λ̃θ + θT Λ̃µ+ 1

2θ
′T Λ̃θ′ − θ′T Λ̃µ

)
=

2β − β2

f(β)2β2
log

(
p0(θ)

p0(θ
′)

)
,

where we inserted Eq. (6) in the last line. Now, we can identify, that for

f(β)2 = (2β − β2)/β2 = 2/β − 1,

detailed balance is satis�ed. Thus, Λ̃
−1

= (2β − β2)Λ−1.

In principle, such generalized exploration can be used with di�erent kinds of policy

search methods. However, integrating coherent exploration might require minor changes

in the algorithm implementation. In the following two sections, we will consider two

types of methods: policy gradient methods and relative entropy policy search.

2.1 Generalized Exploration for Policy Gradients

In policy gradient methods, as the name implies, the policy parameters are updated

by a step in the direction of the estimated gradient of the expected return over T time

2 Such Gaussian policies are a typical choice for policy search methods [8], and have been
used in diverse approaches such as parameter-exploring policy gradients [36], CMA-ES [14],
PoWER [21], PI2 [45], and REPS [33].
3 In more general systems, the Metropolis-Hastings acceptance ratio [15] could be used to

satisfy Eq. (4).



8 Herke van Hoof et al.

steps Jµ = E
[∑T−1

t=0 r(st,at)
]
with respect to the meta-parameters µ that govern the

distribution over the policy parameters θ ∼ p0 = N (µ,Λ−1). Formally,

µk+1 = µk + α∇µJµ,

where α is a user-speci�ed learning rate [50]. The gradient ∇µJµ can be determined

from the gradient of the log-policy [50,2]

∇µJµ = E

[
T−1∑
t=0

∇µ log πµ (a0, . . . ,at| s0, . . . , st) (rt − bt)

]
,

considering that the action can depend on the previous actions when using the gen-

eralized exploration algorithm. In this equation, b is a baseline that can be chosen to

reduce the variance. Here, we will use the form of policy proposed in Eqs. (1)-(2). In

this case, the conditional probability of a sequence of actions is given by

πµ (a0, . . . ,at| s0, . . . , st) = Eθ0...θt

 t∏
j=0

π (aj |sj ;θj)

 , (7)

p (θ0, . . . ,θt) = p0(θ0;µ,Λ
−1)

t∏
j=1

g
(
θj |θj−1;µ,Λ

−1
)
.

If β = 1, p(θt|θt−1;µ,Σ) = p0(θt;µ,Σ) and Eq. (7) can be written as

πµ (a0, . . . ,at| s0, . . . , st) =
t∏

j=0

π̃
(
aj |sj ;µ,Λ−1

)
,

with π̃
(
aj |sj ;µ,Λ−1

)
=

ˆ
p0

(
θ0;µ,Λ

−1
)
π (aj |sj ;θ) dθ.

When β = 1, this identity makes the gradient of the log-policy equal to the gradient

of π̃ computed using G(PO)MDP [2]. In our paper, we will focus on learning the

mean µ of a distribution over parameters of a linear Gaussian policy: a = sT θ with

θ ∼ N (µ,Λ−1). In that case, the required gradient is given by

∇µ log πµ (a0, . . . ,at| s0, . . . , st) = [s0 . . . st]
TΣ−1

(
[a0 . . .at]

T − [s0 . . . st]
Tµ
)
,

where the elements of the covariance matrix Σ over correlated sequences of actions are

given by

Σjk = sj
TΛ−1sk(1− β)|j−k|.

However, when the coherency β = 0 and t is larger than Ds (the dimensionality of s),

Σ is not invertible. Instead, the gradient of Eq. (7) can be computed as

∇µ log πµ (a0, . . . ,at| s0, . . . , st) = Λ−1(θ0 − µ),

making the algorithm equivalent to PEPG [38] on the distribution over policy pa-

rameters N (θ;µ,Λ−1) . Setting 0 < β < 1 yields intermediate strategies that trade

o� the advantages of G(PO)MDP and PEPG, i.e., of step-based and episode-based

exploration.



Generalized Exploration in Policy Search 9

2.2 Generalized Exploration for Relative Entropy Policy Search

In relative entropy policy search (REPS), the goal is to take larger steps than policy

gradient methods while staying close to the previous sampling policy in information-

theoretic terms [33,46]. This objective is reached by solving the optimization problem

max
π,µπ

¨
S×A

π(a|s)µπ(s)r(s,a)dads, (8)

s. t.

¨
S×A

π(a|s)µπ(s)dads = 1, (9)

∀s′
¨
S×A

π(a|s)µπ(s)p(s′|sa)dads = µπ(s
′), (10)

KL(π(a|s)µπ(s)||q(s,a)) ≤ ε, (11)

where µπ(s) is the steady-state distribution under π(a|s), as enforced by Eq. (10), and

π(a|s)µπ(s) is the reward-maximizing distribution as speci�ed by Eqs. (8-9). Equa-

tion (11) speci�es the additional information-theoretic constraints, where q is a ref-

erence distribution (e.g., the previous sampling distribution), and KL denotes the

Kullback-Leibler divergence [33].

Earlier work [33] detailed how to derive the solution to the optimization problem

in Eqs. (8-11). Here, we will just give a brief overview of the solution strategy. The

optimization problem is �rst approximated by replacing the steady-state constraint4

in Eq. (9) by
¨
S×S×A

π(a|s)µπ(s)p(s′|s,a)φ(s′)dadsds′ =
ˆ
S
µπ(s

′)φ(s′)ds′, (12)

using features φ of the state. Furthermore, the expected values in Eqs. (8-11) are ap-

proximated by sample averages. Since we will look at deterministic dynamical systems5,

the expected features under the transition distribution p(s′|s,a) are simply given by the

subsequent state in the roll-out [33]. Subsequently, Lagrangian optimization is used to

�nd the solution to the approximated optimization problem, which is takes the form of a

re-weighting w(s,a) of the reference distribution q, with π(a|s)µπ(s) = w(s, a)q(s,a),
as derived in detail in [33].

The re-weighting coe�cients w(s,a) can only be calculated at sampled state-action

pairs (s,a). To �nd a generalizing policy that is de�ned at all states, the sample-based

policy can be generalized by optimizing a maximum likelihood objective

argmax
µ,D

Eπ,µπ log p (a1:N |s1:N ;µ,D, σ ) (13)

where s1:N and a1:N are the sequences of states and actions encountered during one

episode. The hyper-parameters, consisting of µ and the entries of diagonal covariance

matrix D, govern a distribution p(θ|µ,D) over policy parameters θ for policies of the

form a = f(s)T θ, where f(s) are features of the state6. Earlier work has focused on

4 This approximation is equivalent to approximating the function-valued Lagrangian multi-
plier for the continuum of constraints in Eq. (10) by a function linear in the features φ [46].
5 For stochastic systems, a learned trasition model could be used [46].
6 Here, we work with the diagonal policy covariance D rather than policy precision Λ used in

the policy gradient section. The notational di�erence serves to stress an important di�erence:
we will optimize over the entries of D rather than �xing the covariance matrix to a set value.



10 Herke van Hoof et al.

the case where actions during an episode are chosen independently of each other [33,

46]. However, with coherent exploration, policy parameters are similar in subsequent

time-steps and, thus, this assumption is violated. Here, instead we de�ne the likelihood

terms as

p (a1:N |s1:N ;µ,D, σ ) =

ˆ
ΘN

p(a1:N |s1:N ,θ1:N , σ)p(θ1:N |µ,D)dθ1:N , (14)

with

p (a1:N |s1:N ,θ1:N , σ ) = N
(
f (s1:N ) T θ1:N , σ

2I
)
, (15)

where θ1:N denotes a sequence of parameters and σ is a regularization term that can

be understood as assumed noise on the observation. Under the proposal distribution

of Eq. (5), the distribution over these parameters is given by

p(θ1:N |µ,D) = p(θ1|µ,D)
N∏
j=1

g
(
θj
∣∣θj−1,µ,D

)
= N (θ1:N | µ̃,D⊗E). (16)

In this equation, µ̃ = [µT , . . . ,µT ]T , [E]jk = (1−β)|j−k|, and⊗ denotes the Kronecker

product. Inserting (15) and (16) into (14) yields the equation

p (a1:N |s1:N ,θ1:N , σ ) = N
(
a1:N ; f(s1:N )Tµ,Σ + σ2I

)
, (17)

where the elements of the covariance matrix Σ over correlated sequences of actions are

given by

Σjk = f(sj)
TD f(sk)(1− β)|j−k|.

We could approximate the expectation in Eq. (13 ) using samples (a, s) ∼ π(a|s)µπ(s),
however, we have samples (a, s) ∼ q from the sampling distribution and re-weighting

factors wj = p(aj , sj)/q(aj , sj). We can thus use importance weighting, meaning that

we maximize the weighted log-likelihood

M∑
i=1

N∑
j=1

w
(i)
j logN

(
a
(i)
j ; f

(
s
(i)
1:N

)
Tµ,Σjj + σ2

)
,

where we sum over M rollouts with each N time steps. Weighting the samples is,

up to a proportionality constant, equivalent to scaling the covariance matrix. Since

Σjk = ρjk
√

ΣjjΣkk, where ρjk is the correlation coe�cient, re-scaling Σjj by 1/wj
means that Σjk has to be scaled by 1/

√
wj accordingly, such that we de�ne

Σ̃
(i)
jk = f(sj)

TD f(sk)(1− β)|j−k|
(
w

(i)
j w

(i)
k

)− 1
2
.

We can now solve argmaxµ
∏
i Li in closed form, yielding

µ∗ =

(
M∑
i=1

f
(
s
(i)
1:N

)
Σ̃

(i)
f
(
s
(i)
1:N

)
T

)−1 M∑
i=1

f
(
s
(i)
1:N

)
Σ̃

(i)
a
(i)
1:N . (18)

However, there is no closed-form solution for the elements of D, so we solve

D∗ = argmax
D

M∏
i=1

p
(
a
(i)
1:N

∣∣∣s(i)1:N ;µ∗,D
)
,



Generalized Exploration in Policy Search 11

by using a numerical optimizer. The variance σ2 of the action likelihood term in Eq. (15)

is set to 1 in our experiments. This variance is small relative to the maximum action,

and acts as a regularizer in Eq. (18). The KL divergence bound ε was set to 0.5 in our

experiments.

3 Experiments and Results

In this section, we employ the generalized exploration algorithms outlined above to

solve di�erent reinforcement learning problems with continuous states and actions. In

our experiments, we want to show that generalized exploration can be used to obtain

better policies than either the step-based or the episode-based exploration approaches

found in prior work. We will also look more speci�cally into some of the factors men-

tioned in Section 1 that can explain some of the di�erences in performance. First,

we evaluate generalized exploration in a policy gradient algorithm on a linear control

task. Then, we will evaluate generalized exploration in relative entropy policy search

on three tasks: an inverted pendulum balancing task with control delays; an underpow-

ered pendulum swing-up task; and an in-hand manipulation task in a realistic robotic

simulator.

3.1 Policy Gradients in a Linear Control Task

In the �rst experiment, we consider a dynamical system where the state s = [x, ẋ]T

is determined by the position and velocity of a point mass of m = 1kg. The initial

state of the mass is distributed as a Gaussian distribution with x ∼ N (−7.5, 52) and
ẋ ∼ N (0, 0.52). The position and velocity of the mass are limited to −20 ≤ x ≤ 20,
−10 ≤ ẋ ≤ 10 by clipping the values if they leave this range. The goal of the controller

to bring the mass to the phase-space origin is de�ned by the reward function

r(s) = − 3

200
sT s + exp

(
−sT s

8

)
.

As action, a force can be applied to this mass. Furthermore, friction applies a force

of −0.5ẋN. The actions are chosen according to the linear policy a = θT s, with θ ∼
N (µ, 1), where µ is initialized as 0 and subsequently optimized by the policy gradient

algorithm outlined in Section 2.1. Every episode consists of 50 time-steps of 0.1 s. As

baseline for the policy gradients, we use the average reward of that iteration.

The rationale for this task is, that it is one of the simplest task where consistent

exploration is important, since the second term in the reward function will only yield

non-negligible values as the point mass gets close to the origin. Our proposed algo-

rithm is a generalization of the G(PO)MDP and PEPG algorithms, we obtain those

algorithms if we choose β = 1 (GPOMDP) or β = 0 (PEPG). We will compare those

previous algorithms to other settings for the exploration coherence term β. Besides

analyzing the performance of the algorithms in terms of average reward, we will look

at how big a range of positions is explored by the initial policy for the various settings.

For every condition, 20 trials were performed. In each trial, 15 iterations were per-

formed that consist of a data-gathering step and a policy update step. Seven episodes

were performed in each iteration, as seven is the minimum number of roll-outs re-

quired to �t the baseline parameters in a numerically stable manner. As di�erent



12 Herke van Hoof et al.

values of the coherence parameter β require a di�erent step size for optimal perfor-

mance within the 15 available iterations, we ran each condition for each step size

α ∈ {0.1, 0.03, 0.01, 0.003, 0.001}, and used the step-size that yielded maximal �nal

average reward.

We compared the proposed method to three baselines. First, we look at a coherent

and an in-coherent strategy that perform non-coherent exploration directly on the

primitive actions. These strategies use the same coherency trade-o� β, but applied

to an additive Gaussian noise term. The third baseline is a piecewise constant policy

that repeats the same parameters for n time steps. The policy gradient for these three

methods was derived using the same approach as in Section 2.1. The best number of

repeats n and the step-size were found using a grid search.

3.2 Results and Discussion of the Linear Control Experiment

The results of the linear control experiment are shown in Figures 1 and 2. The average

rewards obtained for di�erent coherency settings of the proposed algorithm are shown

in Figure 1a, where the best step size α for each value of the trade-o� parameter β is

used. In this �gure, we can see that for intermediate values of the temporal coherence

parameter β, the learning tends to be faster. Furthermore, lower values of β tended

to yield slightly better performance by the end of the experiment. Suboptimal per-

formance for PEPG (β = 0) can be caused by the fact that PEPG can only try a

number of parameters equal to the number of roll-outs per iteration, which can lead

to high-variance updates. Suboptimal performance for G(PO)MDP (β = 1) can be

caused by the `washing out' due to the high frequency of policy perturbations.

A comparison to the baselines discussed in Section 3.1 is shown in Figure 1b. Non-

coherent and coherent exploration on primitive action do not �nd policies that are as

good as any parameter-based exploration strategy. Coherent exploration directly on

primitive actions tended to yield extremely high-variance updates independent of the

0 20 40 60 80 100

number of roll-outs

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

a
v
e
ra

g
e
 r

e
w

a
rd

 = 1.00,  = 0.010 (GPOMDP)

 = 0.50,  = 0.030

 = 0.25,  = 0.030

 = 0.15,  = 0.100

 = 0.05,  = 0.100

 = 0.00,  = 0.100 (PEPG)

(a) Average reward in the linear control task
with policy gradient methods. Error bars
show the standard error over 20 trials.

0 20 40 60 80 100

number of roll-outs

-2.5

-2

-1.5

-1

-0.5

0

a
v
e
ra

g
e
 r

e
w

a
rd

proposed,  = 0.15,  = 0.1

piecewise, n=5,  = 0.03

primitive,  = 1,  = 0.01

primitive,  = 0.15,  = 0.01

(b) Comparison of the proposed method to
three baselines. Error bars show the stan-
dard error over 20 trials.

Fig. 1: Learning progress for our proposed method and three baselines. Note that the

scale on the y-axis di�ers between the plots.



Generalized Exploration in Policy Search 13

step size that was used (the variant which reached the highest performance is shown).

We think parameter-based exploration performs better as it can adapt to the region

of the state-space, i.e., in the linear control experiment, exploration near the origin

would automatically become more muted. Furthermore, coherent exploration on the

individual actions can easily overshoot the target position. The piecewise constant

policy that repeats the same parameters for n time-steps �nds roughly similar �nal

strategies as the proposed method, but takes longer to learn this strategy as the step-

size parameter needs to be lower to account for higher-variance gradient estimates.

Another disadvantage of the piecewise strategy is that the behavior on a real system

would be more jerky and cause more wear and tear.

To investigate this possible cause, in Figure 2, we show example trajectories as well

as the evolution of the standard deviation of the position x. In Figure 2a, example

trajectories under the initial policies are shown. Here, the di�erence between coherent

exploration and high-frequency perturbations are clearly visible. Figure 2b shows that,

from the initial standard deviation, low values of β yield a higher increase in variance

over time, indicating those variants explore more of the state-space. This di�erence is

likely to be caused by those methods exploring di�erent `strategies' that visit di�erent

parts of the state-space, rather than the high-frequency perturbations for high β that

tend to induce random walk behavior. The growth of the standard deviation slows

down in later time steps as the position limits of the system are reached.

3.3 REPS for Inverted Pendulum Balancing with Control Delays

In this experiment, we consider the task of balancing a pendulum around its unstable

equilibrium by applying torques at its fulcrum. The pendulum we consider has a mass

m = 10kg and a length l = 0.5m. Furthermore, friction applies a force of 0.36ẋNm. The

pendulum's state is de�ned by its position and velocity s = [x, ẋ]T , where the angle

of the pendulum is limited −1 < x < 1. The chosen action −40 < a < 40 is a torque

position

-20 -10 0 10 20

v
e
lo

c
it
y

-10

-5

0

5

10

β = 1.00 (GPOMDP)

β = 0.15

β = 0.00 (PEPG)

initial state

(a) Example trajectories under di�erent set-
tings of the coherency parameter. Coherent
trajectories explore more globally.

0 10 20 30 40

time step

5

6

7

8

9

10

11

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f 
p
o
s
it
io

n

 = 1.00

 = 0.50

 = 0.25

 = 0.15

 = 0.05

 = 0.00

(b) Standard deviation of positions reached.
Error bars show the standard error over 20
trials.

Fig. 2: Example trajectories and distribution statistics under the initial policy using

G(PO)MDP (β = 1) and PEPG (β = 0) as well as other settings for β.



14 Herke van Hoof et al.

to be applied at the fulcrum for a time-step of 0.05s second. However, in one of our

experimental conditions, we simulate control delays of 0.025s, such that the actually

applied action is 0.5at + 0.5at−1. This condition breaks the Markov assumption, and

we expect that smaller values of the trade-o� parameter β will be more robust to this

violation. The action is chosen according to a linear policy a = θT s. The parameters

are chosen from a normal distribution θ ∼ N (µ,D), which is initialized using µ = 0,

and D a diagonal matrix with D11 = 1202 and D22 = 92. Subsequently, µ and D are

updated according to the generalized REPS algorithm introduced in Section 2.2. We

use the quadratic reward function r(x, ẋ, a) = 10x2 + 0.1ẋ2 + 0.001a2.
Roll-outs start at a position x ∼ N (0, 0.22) with a velocity ẋ ∼ N (0, 0.52). At

every step, there is a �xed probability of 10% of terminating the episode [46]. As such,

each episode contains 10 time steps on average. Initially, 60 roll-outs are performed. At

every iteration, the 20 oldest roll-outs are replaced by new samples. Then, the policy is

updated using these samples. The sampling distribution q is, thus, a mixture of state-

action distributions under the previous three policies. For the features φi in Eq. (12),

we use 100 random features that approximate the non-parametric basis in [46]. These

random features Φ are generated according to the procedure in [35], using manually

speci�ed bandwidth parameters, resulting in

φi(s) = 50−1/2 cos ([cos(x), sin(x), ẋ]ωi + bi) , (19)

where b is a uniform random number b ∈ [0, 2π] and ωi ∼ N (0,B−1), where B is a

diagonal matrix with the squared kernel bandwidth for each dimension. Thus, every

features φi is de�ned by a randomly draw vector ωi and a random scalar bi. In our

experiments, the bandwidths are 0.35, 0.35, and 6.5, respectively.

In our experiment, we will compare di�erent settings of the coherence parameter

β under a condition without delays and a condition with the half time-step delay as

explained earlier in this section. In this condition, we want to test the assumption that

a lower value of β makes the algorithm more robust against non-Markov e�ects. For

β = 1, we obtain the algorithm described in [33,46]. We will compare this previous

step-based REPS algorithm to other settings of the coherence trade-o� term β.

3.4 Results of the Pendulum Balancing Experiment

The results of the inverted pendulum balancing task are shown in Figure 3. The results

on the standard balancing task, without control delays, are shown in 3a. This �gure

shows that, generally, values of the consistency trade-o� parameter β of at least 0.3

result in better performance than setting β = 0.1. Setting β = 0 results in the algorithm
being unable to improve the policy. Being able to try only one set of parameters per

roll-out could be one cause, but the procedure described in Section 2.2 might also

struggle to �nd a distribution that matches all weighted samples while keeping the

parameter values constant for the entire trajectory. Between the di�erent settings with

β ≥ 0.3 small di�erences exist, possibly because the standard version of REPS with

time-independent exploration (β = 1) su�ers from `washing out' of exploration signals

like in the policy gradient experiment in Section 3.1.

In a second experimental condition, we simulate control delays, resulting in the

applied action in a certain time step being a combination of the actions selected in

the previous and current time steps. This violation of the Markov assumption makes

the task harder. As expected, Figure 3b shows that the average reward drops for all



Generalized Exploration in Policy Search 15

number of roll-outs

0 50 100 150 200 250 300

a
v
e
ra

g
e
 r

e
w

a
rd

0

0.2

0.4

0.6

0.8

1

(a) Inverted pendulum balancing without
delays.

number of roll-outs

0 50 100 150 200 250 300

a
v
e
ra

g
e
 r

e
w

a
rd

0

0.2

0.4

0.6

0.8

1

β = 1

β = 0.5

β = 0.3

β = 0.1

β = 0

(b) Inverted pendulum balancing with a de-
lay of half a time-step.

Fig. 3: Inverted pendulum balancing tasks with control delays using relative entropy

policy search. Error bars show twice the standard error over 10 trials, and are shown

at selected iterations to avoid clutter.

conditions. For β = 1, the decrease in performance is much bigger than for β = 0.5
or β = 0.3. However, unexpectedly β = 0.5 seems to yield better performance than

smaller values for the trade-o� parameter. We suspect this e�ect to be caused by a too

sparse exploration of the state-action space for each set of policy parameters, together

with a possible di�culty in maximizing the resulting weighted likelihood as discussed

in the previous paragraph.

3.5 REPS for Underpowered Swing-up

In the underpowered swing-up task, we use the same dynamical system as in the

previous experiment with the following modi�cations: the pendulum starts hanging

down close to the stable equilibrium at x = π, with x0 ∼ N (π, 0.22) with ẋ0 = 0.
The episode was re-set with a probability of 2% in this case, so that the average

episode length is �fty time steps. The pendulum position is in this case not limited,

but projected on [−0.5π, 1.5π]. Actions are limited between −30 and 30N. A direct

swing-up is consequently not possible, and the agent has to learn to make a counter-

swing to gather momentum �rst.

Since a linear policy is insu�cient, instead, we use a policy linear in exponential

radial basis features with a bandwidth of 0.35 in the position domain and 6.5 in the

velocity domain, centered on a 9×7 grid in the state space, yielding 63 policy features.

Optimizing 63 entries of the policy variance matrix D would slow the learning process

down drastically, so in this case we used a spherical Gaussian with D = λI, so that only

a single parameter λ needs to be optimized. We found that setting the regularization

parameter σ = 0.05λ in this case made the optimization of λ easier and resulted

in better policies. In this experiment, we used 25 new roll-outs per iteration, using

them together with the 50 most recent previous rollouts, to account for the higher

dimensionality of the parameter vector. The rest of the set-up is identical to that in

Section 3.3. Notably, the same random features are used for the steady-state constraint.



16 Herke van Hoof et al.

0 50 100 150 200 250

number of roll-outs

-100

-90

-80

-70

-60

-50

-40

-30

-20

a
v
e

ra
g

e
 r

e
w

a
rd

 = 1

 = 0.5

 = 0.3

 = 0.1

 = 0

(a) Average reward for the underpowered
swing-up task.

0 50 100 150 200 250

number of roll-outs

5

10

15

20

25

30

35

40

45

50

R
M

S
 (

a
t+

1
 -

 a
t)

 = 1

 = 0.5

 = 0.3

 = 0.1

 = 0

(b) Root-mean square of di�erences between
subsequent actions indicates applied jerks.

Fig. 4: Pendulum swing-up task using relative entropy policy search. Error bars show

twice the standard error over 10 trials, and are slightly o�set to avoid clutter.

Besides evaluating the average rewards obtained using di�erent values of the explo-

ration coherence trade-o� term β, we evaluate the typical di�erence between subsequent

actions as measured by the root-mean-squared di�erence between subsequent actions.

Actions correspond to applied torques in this system, and the total torque (from ap-

plied actions and gravity) is directly proportional to the rotational acceleration. Thus,

a big di�erence in subsequent actions can cause high jerks, which causes wear and tear

on robotic systems. As such, in most real systems we would prefer the typical di�erence

between subsequent actions to be low.

3.6 Results of the Underpowered Swing-up Experiment

The results on the pendulum swing-up task are shown in Figure 4. With β = 0,
performance is rather poor, which could be due to the fact that in this strategy rather

few parameter vectors are tried in each iteration. Figure 4a shows, that setting the

trade-o� parameter to an intermediate value yields higher learning speeds than setting

β = 1 as in the original REPS algorithm. Again, the washing out of high-frequency

exploration could be a cause of this e�ect.

Figure 4b shows another bene�t of setting the exploration coherence parameter to

an intermediate value. The typical di�erence between chosen actions is more than 50%

higher initially for the original REPS algorithm (β = 1), compared to setting β = 0.3.
This behavior will cause higher jerks, and thus more wear and tear, on robot systems

where these controllers are applied. The typically higher di�erence between actions

persist even as the algorithm gets close to an optimal solution after 175 roll-outs. After

that, the typical di�erence tends to go up for all methods, as the hyper-parameter

optimization �nds more extreme values as the policy gets close to convergence.

3.7 REPS in an in-hand manipulation task

In this experiment, we aim to learn policies for switching between multiple grips with a

simulated robotic hand based on proprioceptive and tactile feedback. Grips are changed



Generalized Exploration in Policy Search 17

Fig. 5: Illustration of the in-hand manipulation task. Two of the goal positions are

shown; the task for the robot is to transfer stably between such goal positions without

dropping the held block. Colored lines show activation of the sensor array as well as

the contact normals.

by adding or removing �ngers in contact with the object. Consequently, the force

that needs to be applied by the other �ngers changes, requiring co-ordination between

�ngers. We use three di�erent grips: one three-�nger grip where the thumb is opposed

to two other �ngers, and two grips where one of the opposing �ngers is lifted. For

each of these three grips, we learn a sub-policy for reaching this grip while maintaining

a stable grasp of the object. All three sub-policies are learned together within one

higher-level policy. This task is illustrated in Figure 5.

The V-REP simulator is used to simulate the dynamics of the Allegro robot hand.

We additionally simulate a tactile sensor array with 18 sensory elements on each �n-

gertip, where the pressure value at each sensor is approximated using a radial basis

function centered at the contact location multiplied by the contact force, yielding val-

ues between 0 and 7. The internal PD controller of the hand runs at 100Hz, the desired
joint position is set by the learned policy at 20Hz. We control the proximal joints of

the index and middle �nger, while the position of the thumb is kept �xed. Thus, the

state vector s consists of the proximal joint angles of the index and middle �nger. The

resulting state representation is then transformed into the feature vector φ(s) using

500 random Fourier features described in Section 3.3. We take the Kronecker product

of those 500 features with a one-hot encoding of the current goal grip, resulting in

1500 features that were used for both the value function and the policy. Since only the

features for the active goal are non-zero, the resulting policy represents a combination

of several sub-policies. Other settings are the same as described in Section 3.5.

Each goal grip is de�ned by demonstrated joint- and sensor space con�gurations.

Using these demonstrations as target positions, we de�ne the reward using the squared

distance in sensor and joint space with an additional penalty for wrong �nger contact

con�gurations. The precise reward function is given by

r(s,a) = −(z(s,a)− zd)
2 − wj(j(s,a)− jd)

2 − wc,

where z(s,a) is the sensor signal for all three �ngers resulting from applying action a

in state s, and zd is the desired sensor signal. Coe�cient wj is the weight for the joint

distance and is set to 3000, j(s,a) and jd are the current and desired joint angle con�g-

uration for all three �ngers, and wc is a penalty term for wrong contact con�gurations



18 Herke van Hoof et al.

with the object and is set to 150 for each �nger that is in contact while it should not

be, or vice versa.

We performed 5 trials for each setting where each trial consists of 20 iterations.

Initially, 90 roll-outs are performed. In each subsequent iteration, 30 new roll-outs are

sampled and used together with the 60 most recent previous roll-outs. At the start of

each roll-out, a start grip and target grip are selected such that each target grip is used

equally often. Each rollout consists of 30 time steps (1.5 s of simulated time).

3.8 Results of the in-hand manipulation experiment

0 200 400 600

number of rollouts

-2000

-1500

-1000

-500

0

av
er

ag
e 

re
w

ar
d

β = 1.00
β = 0.75
β = 0.50

Fig. 6: Average reward in the in-hand ma-

nipulation experiment with REPS, using

a 1500-dimensional parameter vector. The

shaded area indicates twice the standard

error over 5 trials.

The result of the in-hand manipulation

experiment are shown in Figure 6. In

all cases, the controller improved upon

the initial controller, becoming better

at the task of switching between two-

and three-�ngered grip while keeping

the object stable. However, choosing an

intermediate value of β = 0.75 lead

to markedly better improvement com-

pared to step-based REPS (β = 1), or
lower values of the trade-o� parameter

β. Learning such a policy with a pure

episode-based method (β = 0) failed to

learn the task at all. We suspect that

an impracticable number of roll-outs

would be necessary to learn the 1500

dimensional parameter vector with this

method.

With β = 0.75, the resulting learned policies were able to safely switch between

the two- and the three-�nger grips in both directions while keeping the object stable in

the robot's hand. Although the target end-points of the movement were demonstrated,

the robot autonomously learned a stable strategy to reach them using tactile and

proprioceptive feedback.

4 Discussion and Future Work

In this paper, we introduced a generalization of step-based and episode-based explo-

ration of controller parameters. This generalization allows di�erent trade-o�s to be

made between the advantages and disadvantages of temporal coherence in exploration.

Whereas independent perturbation of actions at every time step allows more parameter

values to be tested within a single episode, fully coherent (episode-based) exploration

has the advantages of, among others, avoiding `washing out' of explorative perturba-

tions, being robust to non-Markovian aspects of the environment, and inducing lower

jerk, and thus less strain, on experimental platforms.

Our experiments con�rm these advantages of coherent exploration, and show that

intermediate strategies between step-based and episode-based exploration provide a

trade-o� between these advantages. In terms of average reward, as expected, for many



Generalized Exploration in Policy Search 19

systems intermediate trade-o�s between completely independent, step-based explo-

ration and complete correlated, episode exploration, provides the best learning per-

formance.

Many of the bene�ts of consistent exploration are especially important on robotic

systems. Our experiment on a simulated robotic manipulation task shows, that use of

the trade-o� parameter can in fact help improve learning performance on such systems.

Since the advantage of using an intermediate strategy seemed most pronounced on this

more complex task, we expect similar bene�ts on tasks with even more degrees of

freedom.

Our approach introduces a new open hyper-parameter β that needs to be set manu-

ally. Based on our experience, we have identi�ed some problem properties that in�uence

the best value of β, which provide some guideline for setting it. When the number of

roll-outs that can be performed per iteration is low, β should be set to a relatively

high value. However, if abrupt changes are undesirable, if the system has delays, or if

a coherent sequence of actions is required to observe a reward, β should be set to a

relatively low value. Intermediate values of β allow trading o� between these properties.

A couple of questions are still open: In future work, we want to consider how

smoother non-Markov processes over parameters could be used for exploration, and

investigate methods to learn the coherency trade-o� parameter β from data.

Acknowledgement

This work has been supported in part by the TACMAN project, EC Grant agreement

no. 610967, within the FP7 framework programme. Part of this research has been

made possible by the provision of computing time on the Lichtenberg cluster of the

TU Darmstadt.

References

1. J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate. A Bayesian sampling approach
to exploration in reinforcement learning. In Proceedings of the Conference on Uncertainty
in Arti�cial Intelligence (UAI), pages 19�26. AUAI Press, 2009.

2. J. Baxter and P. L. Bartlett. In�nite-horizon policy-gradient estimation. Journal of
Arti�cial Intelligence Research, 15:319�350, 2001.

3. B. C. da Silva, G. Konidaris, and A. G. Barto. Learning parameterized skills. In Pro-
ceedings of the International Conference on Machine Learning (ICML), pages 1679�1686,
2012.

4. C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy
search. Journal of Machine Learning Research, 2016.

5. C. Daniel, H. van Hoof, J. Peters, and G. Neumann. Probabilistic inference for determining
options in reinforcement learning. Machine Learning, 104:337�357, 2016.

6. R. Dearden, N. Friedman, and D. Andre. Model based Bayesian exploration. In Proceedings
of the Conference on Uncertainty in Arti�cial Intelligence (UAI), pages 150�159, 1999.

7. R. Dearden, N. Friedman, and S. Russell. Bayesian Q-learning. In Proceedings of the
National Conference on Arti�cial Intelligence (AAAI), pages 761�768, 1998.

8. M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics.
Foundations and Trends in Robotics, pages 388�403, 2013.

9. M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic program-
ming. Neurocomputing, 72(7):1508�1524, 2009.

10. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Arti�cial Intelligence Research, 13:227�303, 2000.



20 Herke van Hoof et al.

11. F. Doshi-Velez, D. Wingate, N. Roy, and Tenenbaum J. B. Nonparametric Bayesian policy
priors for reinforcement learning. In Advances in Neural Information Processing Systems
(NIPS), pages 532�540, 2010.

12. M. Ghavamzadeh and S. Mahadevan. Hierarchical policy gradient algorithms. In Pro-
ceedings of the International Conference on Machine Learning (ICML), pages 226�233,
2003.

13. M. Guo, Y. Liu, and J. Malec. A new Q-learning algorithm based on the Metropolis
criterion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
34(5):2140�2143, 2004.

14. N. Hansen, S. D. Müller, and P. Koumoutsakos. Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolu-
tionary computation, 11(1):1�18, 2003.

15. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57(1):97�109, 1970.

16. M. Hausknecht and P. Stone. Deep reinforcement learning in parameterized action space.
In Proceedings of the International Conference on Learning Representations, 2016.

17. M. Ho�man, A. Doucet, N. D. Freitas, and A. Jasra. Bayesian policy learning with trans-
dimensional MCMC. In Advances in Neural Information Processing Systems (NIPS),
pages 665�672, 2007.

18. L. P. Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In
Proceedings of the International Conference on Machine Learning (ICML), pages 167�
173, 1993.

19. L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Arti�cial Intelligence Research, 4:237�285, 1996.

20. J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 11(32):1238�1274, 2013.

21. J. Kober and J. Peters. Policy search for motor primitives in robotics. In Advances in
Neural Information Processing Systems (NIPS), pages 849�856, 2009.

22. N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomo-
tion. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), volume 3, pages 2619�2624, 2004.

23. G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems (NIPS), pages
1015�1023, 2009.

24. P. Kormushev and D. G. Caldwell. Direct policy search reinforcement learning based on
particle �ltering. In Proceedings of the European Workshop on Reinforcement Learning
(EWRL), 2012.

25. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. In Proceedings of the Interna-
tional Conference on Learning Representations, 2016.

26. H. J. Meijdam, M. C. Plooij, and W. Caarls. Learning while preventing mechanical failure
due to random motions. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 182�187, 2013.

27. J. Morimoto and K. Doya. Acquisition of stand-up behavior by a real robot using hierar-
chical reinforcement learning. Robotics and Autonomous Systems, 36(1):37�51, 2001.

28. R. Munos. Policy gradient in continuous time. Journal of Machine Learning Research,
7:771�791, 2006.

29. P. A. Ortega and D. A. Braun. A minimum relative entropy principle for learning and
acting. Journal of Arti�cial Intelligence Research, 38:475�511, 2010.

30. I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped
dqn. In Advances in Neural Information Processing Systems, pages 4026�4034, 2016.

31. I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. In Proceedings of the International Conference on Machine Learning (ICML),
pages 2377�2386, 2016.

32. R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in
Neural Information Processing Systems (NIPS), pages 1043�1049, 1998.

33. J. Peters, K. Mülling, and Y. Altün. Relative entropy policy search. In Proceedings of the
National Conference on Arti�cial Intelligence (AAAI), Physically Grounded AI Track,
pages 1607�1612, 2010.

34. D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University of
Massachusetts Amherst, 2000.



Generalized Exploration in Policy Search 21

35. A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems (NIPS), pages 1177�1184, 2007.

36. T. Rückstieÿ, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber. Explor-
ing parameter space in reinforcement learning. Paladyn, Journal of Behavioral Robotics,
1(1):14�24, 2010.

37. S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primitives. In
International Symposium on Robotics Research., pages 561�572, 2005.

38. F. Sehnke, C. Osendorfer, T. Rückstieÿ, A. Graves, J. Peters, and J. Schmidhuber.
Parameter-exploring policy gradients. Neural Networks, 23(4):551�559, 2010.

39. S. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Ma-
chine Learning, 8(3):323�339, 1992.

40. M. Strens. A Bayesian framework for reinforcement learning. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pages 943�950, 2000.

41. F. Stulp and S. Schaal. Hierarchical reinforcement learning with movement primitives.
In Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids),
pages 231�238, 2011.

42. F. Stulp and O. Sigaud. Path integral policy improvement with covariance matrix adap-
tation. In Proceedings of the International Conference on Machine Learning (ICML),
2012.

43. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 1998.
44. R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Arti�cial intelligence, 112(1):181�211,
1999.

45. E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral control approach to
reinforcement learning. The Journal of Machine Learning Research, 11:3137�3181, 2010.

46. H. van Hoof, J. Peters, and G. Neumann. Learning of non-parametric control policies
with high-dimensional state features. In Proceedings of the International Conference on
Arti�cial Intelligence and Statistics (AIstats), pages 995�1003, 2015.

47. A. Vezhnevets, V. Mnih, S. Osindero, A. Graves, O. Vinyals, J. Agapiou, et al. Strategic
attentive writer for learning macro-actions. In Advances in Neural Information Processing
Systems, pages 3486�3494, 2016.

48. C. Watkins and Y. Buttkewitz. Sex as Gibbs sampling: a probability model of evolution.
Technical Report 1402.2704, ArXiv, 2014.

49. P. Wawrzy«ski. Control policy with autocorrelated noise in reinforcement learning for
robotics. International Journal of Machine Learning and Computing, 5:91�95, 2015.

50. R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3-4):229�256, 1992.

51. D. Wingate, N. D. Goodman, D. M. Roy, L. P. Kaelbling, and J. B. Tenenbaum. Bayesian
policy search with policy priors. In International Joint Conference on Arti�cial Intelli-
gence (IJCAI), 2011.

52. J. Wyatt. Exploration and Inference in Learning from Reinforcement. PhD thesis, Uni-
versity of Edinburgh, College of Science and Engineering, School of Informatics, 1998.


