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Abstract— Movement prioritization is a common approach
to combine controllers of different tasks for redundant robots,
where each task is assigned a priority. The priorities of the
tasks are often hand-tuned or the result of an optimization,
but seldomly learned from data. This paper combines Bayesian
task prioritization with probabilistic movement primitives to
prioritize full motion sequences that are learned from demon-
strations. Probabilistic movement primitives (ProMPs) can
encode distributions of movements over full motion sequences
and provide control laws to exactly follow these distributions.
The probabilistic formulation allows for a natural application of
Bayesian task prioritization. We extend the ProMP controllers
with an additional feedback component that accounts inac-
curacies in following the distribution and allows for a more
robust prioritization of primitives. We demonstrate how the
task priorities can be obtained from imitation learning and
how different primitives can be combined to solve even unseen
task-combinations. Due to the prioritization, our approach can
efficiently learn a combination of tasks without requiring indi-
vidual models per task combination. Further, our approach can
adapt an existing primitive library by prioritizing additional
controllers, for example, for implementing obstacle avoidance.
Hence, the need of retraining the whole library is avoided in
many cases. We evaluate our approach on reaching movements
under constraints with redundant simulated planar robots and
two physical robot platforms, the humanoid robot “iCub” and
a KUKA LWR robot arm.

I. INTRODUCTION

Complex robots with redundant degrees of freedom can,
in principle, perform multiple tasks at the same time, e.g.,
reaching for an object with a humanoid robot while bal-
ancing, or reaching for an object with a robotic arm while
avoiding an obstacle. However, simultaneously performing
multiple tasks using the same degrees of freedom, requires
combining the control signals from all tasks.

While many schemes for combining control signals have
been developed, this paper focuses on approaches that re-
solve the control combination by prioritizing the tasks, i.e.,
approaches which assume that one task can be executed
with priority over another task, even if the latter will not
be performed sufficiently well.

In contrast to current approaches, where the priorities
are set by experts, we propose learning the priorities from
demonstrations. The Learning from Demonstrations (LfD)
paradigm has been very successful in movement generation
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Fig. 1. The iCub robot performing a bi-manual reaching task. With the left
end-effector, the robot initiates a supportive contact with the environment,
while it performs a reaching task with the right end-effector. We illustrated
our setup if the first picture. The robot stands on the floor and can choose
three supporting contact locations, shown in blue, green, and red. With the
right end-effector the robot reaches for one of three different objects, a
marker, a ball, or a piece of cake. In the remaining pictures we present our
results for learning and generalizing to new task combinations of reaching
and contact support locations.

for complex robotic tasks. In LfD a solution is provided by
demonstrations and, therefore, avoids using hand-coded con-
trollers or the setting up a cost function for further planning
or optimization. Yet, LfD has not been yet fully explored
in prioritized control. LfD can introduce new properties to
current prioritization approaches, such as adaptation to new
situations and reproduction of unseen combinations of tasks,
without retraining.

Further, in many robotic tasks, accurate reproduction for
the whole duration of the task may not affect its performance.
For example, a successful reproduction of a pick-and-place
task, depends on highly accurate movements during picking
and placing, but not for the rest of task’s execution. In
classical approaches, where there is no notion of the task’s
accuracy, combining tasks results in insufficient performance
when the combination of both tasks is not physically possi-
ble. However, in our approach, we extract the time-varying
task accuracy from demonstrations and we use it to modulate
the task prioritization, where the accuracy implicitly defines
the task’s priority. When a task has low accuracy, our
approach allows for deviations from the reference trajectory
and, therefore, enables tasks with higher accuracy to be
executed at the same time without reaching the physical
limitations of the system. Hence, our approach allows for
a more efficient combination of tasks.

In this paper, we propose a novel data-driven framework



for learning prioritized task representations, i.e., learn the
tasks and their relative priorities, from demonstrations. We
combine Bayesian task prioritization [1] that allows the
computation of the combined control signal from multi-
ple tasks at different operational spaces with Probabilistic
Movement Primitives (ProMPs) [2], [3] to learn prioritized
complete motion sequences. MPs [2]–[6], are a powerful
representation for encoding complex movements, much more
flexible than using attractors or point-to-point movements,
and enable adaptation of the learned movements without
retraining. No primitive representation has so far taken
advantage of introducing task priorities. ProMPs model the
task and its desired accuracy from multiple demonstrations,
provide a mechanism for adapting a learned task to novel
situations, and an acceleration-space control law that follows
the encoded task. The demonstrations can be acquired by
several imitation learning techniques, including kinesthetic
teach-in and tele-operation. We extend the Bayesian task
prioritization [1] to provide a more general derivation for
torque control and show that existing prioritization tech-
niques are a special case of the Bayesian approach. We
use the ProMP approach as it can naturally be combined
with Bayesian task prioritization in a single, principled,
probabilistic framework. We derive our approach based on
ProMPs, however, other stochastic movement representations
could be used analogously [5], [7].

We use our approach to learn multiple primitives for
different operational spaces, e.g., the end-effector or the
center of mass space. Each primitive solves a specific task
in the corresponding space. We present how to adapt the
task combination to new situations, e.g., reach a differ-
ent via-point with an end-effector, that can be achieved
without explicitly solving an inverse kinematics problem.
Furthermore, we demonstrate how multiple primitives of
different operational-spaces can now be seamlessly combined
in order to achieve a new, unseen combination of tasks.
Our prioritized LfD approach can be efficiently used without
requiring re-learning the unseen combinations. As shown in
our experiments, using prioritization also allows to adapt a
library of primitives to changes in the environment, e.g., the
introduction of an obstacle in the scene. We use simulates
and real robot platforms to evaluate our approach.

II. RELATED WORK

A common approach for combining different control sig-
nals is to prioritize the tasks, under the assumption that this
prioritization is not allowed to be violated. We refer to such
schemes as strict prioritization schemes. In these schemes,
a higher priority task does not get disturbed by the control
signals of the lower priority ones [8]–[15]. A lower priority
task is always projected in the null-space of the high priority
task. Although these approaches provide guarantees on the
prioritization performance, strict prioritization approaches
can get numerically unstable when the robot enters a singular
kinematic configuration. Numerical regularization can be
used, but it violates the null-space projection [16]. The
introduction of regularization has the side-effect that a low

priority task can interfere with a higher priority task. We
show how our approach can obtain similar regularizations
from demonstrations.

For some tasks, such a prioritization scheme is natural,
for example, a humanoid robot should not tip over and,
therefore, the balancing controller should always have the
highest priority. However, defining a strict priority can be
problematic in general. For example, for reaching an object
with one hand of a humanoid robot, while simultaneously
reaching for a different object with the other hand, it is not
clear these tasks can be prioritized. Both tasks could have
the same importance, i.e. priority, or, the importance of each
tasks could vary in time and depending on, e.g., the desired
execution accuracy at that point in time. For such scenarios,
the relative importance between the tasks can be easier to set.
These problems are partially addressed in [17]–[19], where a
“soft” prioritization scheme was introduced. In our approach,
we step further and propose to learn the relative priorities
from data and, therefore, minimize the amount of parameters
that require tuning through expert knowledge.

“Soft” prioritization approaches do not assume a hierarchy
of tasks a priori, but use the relative priorities between
the tasks. In this scheme, every task contributes to the
control signal. The degree of contribution depends on its
relative priority. “Soft” prioritization approaches demonstrate
promising results [17], [20], [21] to successfully perform
multiple tasks due to the relaxation of the initial problem.
Intuitively, “soft” prioritization schemes could be thought
of as violating the hierarchy of priorities. They are often
stated as multi-objective optimization problems [17], [20],
[21]. Each task is formulated as a quadratic cost function
and uses the relative priority as weight. The result of the
optimization yields the controls that minimize the total cost
and, therefore, allow lower priority tasks to perturb higher
priority ones as long as the total cost is decreased.

Current prioritization approaches often assume a static
prioritization or weighting scheme, where the importance
of each task remains constant during the execution of the
movement [10], [19]. However, modulating the importance of
the tasks during the movement can be beneficial. First, tasks
that are no longer desired to be executed can be faded-out and
new tasks can be smoothly introduced, without torque jumps.
Salini et al. [17] proposed to dynamically adjust the priorities
for achieving movement sequencing and task transitions.
More importantly, the modulation of the priorities can be
related to the desired accuracy of the task. During the time-
steps with low task-priority, the robot can focus on executing
other tasks. Therefore, setting the relative priorities can be a
simpler problem then specifying the strict task hierarchy, as
the expert has to specify only the time points that require
higher accuracy. Lober et al. [21] demonstrated that this
approach increases the flexibility of the system and decreases
“lock-ups” where a more important movement prohibits the
execution of less important tasks, while requiring less expert
knowledge. Modugno et al. [22] proposed the use of an
optimization algorithm to find suitable relative priorities that
further decreases expert knowledge.



III. PROBABILISTIC PRIORITIZATION OF
MOVEMENT PRIMITIVES

This paper presents a generic probabilistic framework for
simultaneously combining multiple tasks. We assume that
each task has a different level of accuracy and that the
accuracy can change over the execution of the task. The task
accuracy is associated with the respective importance for the
task combination.

First, we encode the time-varying accuracy in an efficient
representation and, importantly, obtain it from imitation data.
Second, we develop our stochastic combination approach
using the task accuracy as relative priorities. Furthermore,
we show that current prioritization approaches can be derived
within our probabilistic approach, when some uncertainty
parameters are set to zero. Finally, we present an extension
to the ProMPs controller that increases the tracking perfor-
mance when prioritizing several primitives. We extend our
approach to multiple operational-space controllers in Sec. III-
C. In Sec. IV we show that our stochastic prioritizing scheme
can be generalized to a wider class of controllers.

A. Encoding Task Accuracy from Demonstrations

Representing the desired task accuracy throughout the du-
ration of the task is critical for relative prioritization schemes.
A measure for the task accuracy is the task variance that is
be obtained over multiple executions of the task. Stochastic
movement primitive representations can not only represent
the task variance but also be trained from demonstration data.
To this end, we use the Probabilistic Movement Primitives
(ProMPs) approach [2], [3] as our representation.

ProMPs represent a single trajectory as a weighed linear
combination of Gaussian basis functions Φt and the respec-
tive weights w, i.e., yt = Φtw, where yt = [x, ẋ]T rep-
resents the state of the task, i.e., positions and velocities, at
time t. The task state yt is a vector that contains the variables
that define the state of the tasks, e.g., the joint or end-effector
positions and velocities. Each task demonstration is used to
estimate the weights w for that execution using a maximum
likelihood approach [2]. From the set of estimated weights,
ProMPs estimate a distribution over the weights, i.e.,

p(w) = N (w|µw,Σw) , (1)

which is assumed to be approximated well by a Gaussian, or
a Gaussian mixture [23], [24]. Thus, ProMPs offer a compact
representation of the trajectory distribution in task space, that
is, the mean movement, the correlation between the task’s
variables, and their variance. With ProMPs, we can evaluate
the distribution of the state p(yt) at every time-step

p(yt) =

ˆ
p(yt|w)p(w)dw = N (yt|µyt ,Σy) (2)

in closed form. ProMPs also provide a stochastic linear
feedback controller, which is also derived in closed form. The
controller can follow the encoded task distribution exactly,
i.e., it matches mean and variance of the distribution. In [2],
[3], ProMPs are used to control the joints of the robot
and, therefore, the controller outputs are joint torques. In

this paper, we generalize ProMPs to model and control in
operational space, e.g., the robot’s end-effector space. To
do so, we adjust the ProMP controller’s output to be the
acceleration of task space variables. The stochastic controller
is, therefore, given by

p(ẍ|yt) = N (ẍ|Ktyt + kt,Σẍ) . (3)

The mean of the controller is given by a linear feedback
control law. The controller additionally contains the covari-
ance of the task in the acceleration space, which plays an
important part in our approach as it specifies the required
accuracy of the control, see Sec. III-B. In summary, ProMPs
are capable of representing and learning the task covariance
Σy , and transforming it to the acceleration covariance Σẍ.

B. Probabilistic Combination of Tasks

We begin our derivation given two tasks, a joint-space task
and an operational-space task. For each task, a stochastic
controller is obtained from the corresponding ProMP that
has been trained from demonstrations. Every output of each
controller is normally distributed, i.e.,

p1(q̈) ∼ N (q̈|µq̈,Σq̈) , p2(ẍ) ∼ N (ẍ|µẍ,Σẍ) . (4)

The vector q̈ denotes the joint acceleration for all of the
joints of the robot and the vector ẍ the operational-space
acceleration. We drop the time-index for simplicity.

The operational-space controller and the joint-space con-
troller can not be used simultaneously without accounting
for the kinematics of the system. The system kinematics
introduce a constraint between the operational and the joint
space acceleration. The constraint is commonly defined in the
velocity space by ẋ = Jq̇, where J denotes the Jacobian
from a base-frame to the operational-space. Equivalently,
by differentiation over time, we obtain the acceleration-
space formulation ẍ = Jq̈ + J̇ q̇ of the constraint, where
J̇ denotes the time derivative of the Jacobian. Given the
constraint in the acceleration-space, the operational-space
controller depends on the current joint-acceleration q̈. The
probability of the operational-space acceleration ẍ given the
joint acceleration q̈ is defined as the conditional

p2|q̈(ẍ|q̈) ∼ N
(
ẍ
∣∣∣Jq̈ + J̇ q̇,Σẍ

)
, (5)

where the mean of the conditional distribution is given by
the constraint and the variance is given by the desired task
accuracy. We can now use the joint space ProMP as prior
distribution and the desired task-space mapping p2|q̈(ẍ =
µẍ|q̈) as likelihood to obtain the posterior distribution for
the joint space controller using Bayes theorem, i.e.,

p1|ẍ(q̈|ẍ = µẍ) =
p2|q̈(ẍ = µẍ|q̈)p1(q̈)

p2(ẍ)
= N (q̈|µ,Σ) .

The control law for the joint accelerations q̈ is then obtained
by computing the marginal distribution

p1|2(q̈) =

ˆ
p1|ẍ(q̈|ẍ)p2(ẍ)dẍ = N

(
q̈
∣∣µ′q̈,Σ′q̈) . (6)



The mean µ′q̈ and the covariance Σ′q̈ are computed as

µ′q̈ = J†
(
µẍ − J̇ q̇

)
+
(
I − J†J

)
µq̈ (7)

Σ′q̈ =
(
I − J†J

)
Σq̈ + J†ΣẍJ

†,T (8)

where the J† denotes the generalized inverse of the Jacobian

J† = Σq̈J
T
(
Σẍ + JΣq̈J

T
)−1

. (9)

In our approach, the joint space acceleration q̈ and the
task-space acceleration ẍ are obtained from the stochastic
feedback controller of the ProMPs. The variance of the task-
space controller Σẍ is used as the regularization matrix and
the variance of the joint-space controller Σq̈ as weighting.
The regularization matrix Σẍ is full-rank.

C. Extension to Multiple Tasks

Multiple operational-space controllers can be naturally
integrated in our approach where each task i ∈ 1 . . . N can
operate in a different operational space. In principle, it is
sufficient to compute the posterior distribution over the joint
acceleration q̈, given the accelerations of all task controllers
{ẍi}1...N , i.e., p(q̈|{ẍi}1...N ), that can be computed recur-
sively, or in a single step [1]. The single step solution does
not relate to existing prioritization approaches.

For the recursive computation, we start with our prior
distribution over the joint accelerations p1(q̈). We condi-
tion it with the operational-space acceleration distribution
pN (ẍN ) of the highest priority task. The resulting posterior
distribution p1|N (q̈|ẍN ) is then used as a new prior distri-
bution and is conditioned with pN−1(ẍN−1). We continue
conditioning until we reach the task i = 1. During the
computation of the new prior distribution, we can perform a
numerical stability analysis of the matrix, Σẍ + JΣq̈J

T ,
e.g., by computing the condition number of the matrix.
If the inversion becomes numerically unstable, then the
task io added at this step is incompatible to the already
added tasks N . . . io − 1. The order of inference should
be chosen by starting from the most important to the least
important tasks, when physical limitations are reached, no
more tasks would make sense to be added. Otherwise, the
order of inference is not modify the resulting controller in our
approach. Our recursive approach has similarities with the
hierarchical prioritization approaches presented in [8], [9].
However, in our approach we use the regularized generalized
inverse, as presented in Sec. III-B, where the tasks accuracies
are obtained from imitation data, instead of treating each task
with an infinite accuracy that can cause numerically unstable
solutions.

D. Robust Trajectory Distribution Tracking

We use the ProMP controller to get the desired acceler-
ations in both, the task and joint spaces. The controller is
based on [2], where the authors derive Eq. (3) by matching
the change in the sufficient statistics of the system, i.e.,
change of mean and covariance, at the current time-step.
Hence, it is assumed that µt, µ̇t,Σt and Σ̇t are known.

TABLE I
COMPARISON OF DIFFERENT PSEUDO INVERSES USED FOR OPERATIONS

J† = JT
(
JJT

)−1 Generalized inverse

J† =M−1JT
(
JM−1JT

)−1 Weighted
generalized inverse,
weighted with the
inverse of the mass

J† = Σq̈J
T
(
Σẍ + JΣq̈J

T
)−1 Bayesian inverse,

weighting and regu-
larization are com-
puted in closed form.

Due to the prioritization of multiple primitives, if devi-
ations that were not present in the demonstrations occur
and the system drift away from the demonstrated area. The
controller computation presented in [2] generates gains that
are not optimal for the drifted state distribution and these
errors yield in an inaccurate tracking behavior, where the
reproduction distribution does not match the demonstrated.

We propose to adjust the current belief of the mean state
µt and its derivative µ̇t, according to the current observation
of the state yt. We adapt the mean belief µt as a weighted
average of the mean state obtained from demonstrations
µdemo
t and the current state yt as

µt = γ µdemo
t + (1− γ)yt, (10)

where γ is computed by a sigmoid activation based on the
likelihood of the current state, i.e.,

γ(yt) =
(
1 + exp

(
− log (p (yt;θ))β

−1 − α
))−1

, (11)

where α, β are open parameters. Additionally, we adapt
the time derivative of the mean state µ̇t with a feedback
controller to converge to the demonstrated µ̇demo

t , i.e,

µ̇t =

[
µq̇t

µq̈t

]
=

[
µdemo

q̇t

KSC
(
µdemo
t − µt

)
+ µdemo

q̈t

]
, (12)

where KSC are feedback gains. If the current state is inside
the distribution, γ will be 1 and the correction term for the
mean will not be activated. However, if the current state is
outside the distribution, i.e., we have a small likelihood, it is
an indication that inaccuracies in the controller computation
accumulated, such that the distribution is not matched any
more. In this case, the additional feedback controller is used
to push the mean back to the desired mean, and, hence,
increasing the tracking performance.

IV. RELATION TO OPTIMIZATION-BASED
PRIORITIZATION SCHEMES

Our approach can be generalized to a wider class of prob-
lems, where the constraints are linear to the joint acceleration
q̈, i.e., can be formulated as Aq̈ = b, where the matrix A
and vector b possibly depend on the current state of the robot
q and q̇ at time t. The constraint imposed by the robot’s
mechanics can be re-formulated in the generalized form by
setting A = J and b = ẍ− J̇ q̇.

We formulate an optimization problem that incorporates a
soft version of this constraint while staying close to the prior



mean. The covariance matrices serve as L2 norm metrics for
the objectives, i.e.,

argmin
q̈
J =argmax

q̈
(Aq̈ − b)TΣ−1ẍ (Aq̈ − b)

+ (q̈ − µq̈)
TΣ−1q̈ (q̈ − µq̈)

T . (13)

This formulation resembles the optimization framework pre-
sented in [8], but with Aq̈ − b imposed as soft-constraint
and not as hard constraint. For Σẍ = 0, we obtain a hard
constraint and all the control laws in [8] can be recovered.
The optimization view does not provide a direct way to
update the joint covariance Σq̈ if several tasks need to be
prioritized, in contrast to the Bayesian approach.

A. Comparison to Strict Prioritization Approaches.
Our control law can be formulated for torques u instead

of desired accelerations q̈. These derivations are given in the
appendix. The mean µu of the controls, given in Eq. (14),
has a similar structure as well-known operational-space con-
trol laws [8]–[15]. It consists of a model-based component
to compensate for the dynamics of the system, the desired
acceleration in the operational-space —which, for example,
can be the output of a feedback controller— and a projection
component

(
I − J†J

)
.

The difference to the aforementioned approaches lays in
the computation of the generalized inverse matrix of the
Jacobian J†. By applying a Bayesian approach, we obtain
a generalized inverse matrix of the Jacobian which is both
regularized and weighted, while strict prioritization methods
use an un-regularized inverse.

All these related approaches can be derived by assum-
ing that the operational-space variance Σẍ is zero, i.e.
Σẍ = limα→0 αI and, therefore, degrade our approach
to a deterministic case. If the operational-space variance is
zero, the matrix JJ† = I of the projection is a null-space
projection, i.e. the lower priority tasks will not interfere with
the higher priority tasks. Therefore, decreasing the variance
of the operational-space controller Σẍ can be interpreted as
“hardening” the prioritization of the two controllers.

A consequence of not regularizing the generalized inverse
is the numerical instability of the inversion at singular
kinematic configurations. A regularization of the form λI is
commonly used [16]. In our approach, this regularization has
the physical interpretation of adapting the covariance of the
operational space task. To our knowledge, the interpretation
of this regularization has not been previously discussed.

By setting the joint-space covariance to Σq̈ = I , the
pseudo inverse is un-regularized and unweighted and we can
obtain controls laws as in [8]–[13], [15]. Setting the joint-
space covariance to Σq̈ =M−1, we obtain controllers based
on the Gauss principle of least constraint, and consistent to
d’Alambert’s principle of virtual work [8], [14]. The different
approaches for computing the generalized inverse are shown
in Table I.

V. EXPERIMENTAL EVALUATION

We evaluate our approach on redundant simulated and
physical robots combining tasks learned by demonstrations.
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Fig. 2. A visualization of the 7-link planar robot trajectory for different
time-steps. The dark configuration denotes the mean reproduction of the
demonstrated primitive. In green and red we show the mean reproduction
after conditioning at t = 0.66s to different via-points in end-effector space.
The boxes show the targets of the end-effector.
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Fig. 3. We present the end-effector trajectory distribution of the 7-
link planar robot evaluation. The demonstrated distribution is shown in
blue. The shaded area represents two times the standard deviation. In the
first row, the reproduced trajectory distribution, shown in yellow, follows
accurately the demonstrations. The boxes illustrate the via-points present
in the demonstrations. In the second and third rows, we present the
reproduction distribution after adapting the primitive. The boxes illustrate
the conditioning points. In the forth row, we evaluate the performance of
the proposed feedback controller. The reproduction distribution is shown in
green and the reproduction of the original controller is shown in gray.

First, we demonstrate that our approach can be used for
conditioning in operational space, an operation that was
not feasible for the original ProMP approach. Second, we
show that additional controllers can be smoothly integrated
in our framework to implement additional constraints that
were not present during training, e.g., for avoiding obstacles
or keeping contact with another object. Third, we show how
we learn a combination of tasks with considerably improved
data efficiency and even generalize to unseen combinations.

A. Data-Driven Task-Space Adaptation

In this section, we adapt the learned task-space movement
without explicitly solving the inverse kinematics problem.
The adaptation, instead, is data-driven with the resulting
trajectories staying close to the demonstrations. For the eval-
uation, we used a planar robot with seven degrees of freedom
(DoFs) and optimal control to generate demonstrations in



Fig. 4. The iCub robot performing a bi-manual reaching task while its
“hip” stays fixed. The importance of the targets is time-varying, allowing
the robot to perform all tasks.

joint-space. Optimal control allows for generating trajectories
under the assumption that the cost function of the task is
known. For a real application though, the cost function is
typically not available.

We used ten demonstrations for training a joint-space
ProMP and a task-space ProMP. The movement of the robot
is visualized in Fig. 2. The demonstrations have different
variability at different time-steps of the movement, e.g., at
time step t = 0.33s the end-effector has low variability in
both task-space dimensions. First, in Fig. 3 we show that our
proposed controller can accurately track the demonstrated
movement. Further, we adapt the task-space primitive by
conditioning. Due to our prioritization scheme, no inverse
kinematics algorithm is needed to find the respective joint
configuration. Instead, the inverse kinematics problem is
solved implicitly, in a data-driven way, using the prioritized
controllers. We present our results in Fig. 2 and 3, where
we adapt the learned primitive for two via-points. The
reproduction can accurately pass through the via-points while
it maintains the shape of the movement learned from the
demonstrations. We compare the performance of the pro-
posed robust feedback controller to the controller proposed
in [2] in Fig. 3, where the latter shows an improved tracking
performance.

B. Incorporation of External Control Laws

Expert-knowledge can be incorporated in our approach to
adapt the learned primitives. We demonstrate our approach
on a planar robot with two end-effectors that has three
links for the torso and five links for each arm. Each link
is one meter long. The robot tracks a “hip” movement that
stays at a constant height of 2.5m. An expert designed two
feedback controllers with high gains and low variance Σu =
103 that attract end-effectors at {2, 6}(m) and {−2, 6}(m),
respectively. The resulting movement is shown in Fig. 5,
where the robot performs successfully all of the three tasks;
it reproduces accurately the hip movement staying at the
desired height and places its end-effectors at the desired
locations set by the expert.

Similarly, we evaluated our approach on the “iCub” robot.
We defined a target for each hand of the robot to be reached
with high accuracy at different time points. The hip of the
robot should remain fixed for maintaining balance. The robot
can successfully perform all tasks, as shown in Fig. 4.

C. Increased data efficiency

We demonstrate the increased learning efficiency of our
approach in combining tasks of different end-effectors, over
the traditional approach of learning all task combinations
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Fig. 5. The planar robot per-
forming a bi-manual reaching
task while moving its “hip”,
by combining three tasks, the
two end-effector tasks and the
hip task. The robot accurately
stays at the desired targets
with its end-effectors during
the movement while the “hip”
tracks a trajectory to remain at
constant height.
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Fig. 6. A visualization of the two end-effector robot. We present the final
configuration, t = tend, of the robot in task space for all nine different tasks.

independently. For our experiments we used the planar robot
with two end-effectors and thirteen DoF. The two concurrent
end-effector tasks are not independent, as they control the
common joints of the torso.

First, we generated demonstrations where each end-
effector reaches one out of three end-points at tend = 1.
The end-point can either be set at {±4, 1}, {±4, 4}, or
{±2, 6}. An illustration of the configuration of the robot
at these points is shown in Fig. 6. The combination of all
three tasks of the two end-effectors yields nine different
task combinations. For each combination, we generate a
set of noisy demonstrations. As a baseline, we train nine
individual primitives, one for each combination of tasks. In
contrast, our approach can use all available demonstrations
per task of a single end-effector as it can learn the end-
effector tasks independently resulting in three times as much
training data per task. Therefore, our approach considerably
outperforms the baseline as the distributions can be estimated
with higher accuracy, as shown in Fig. 7. We evaluate the
average performance of both approaches which was specified
as the negative square deviation from the true desired task-
space position at the end of the movement.
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Fig. 7. Comparison between the prioritization of MPs and learning each
task combination independently, used as a baseline. We vary the number
of demonstrations used per task combination. Using prioritization, we can
learn the tasks for each end-effector independently, and, therefore, use more
training data per task. The baseline can only learn each combination of the
end-effector tasks individually. The plot shows the average negative square
deviation from the true end-effector position averaged over ten trials.



TABLE II
INITIATING CONTACTS DURING REACHING EVALUATION

Left Task Err. (cm) Right Task Err. (cm)

Blue — Marker 2.38 ± 0.91 3.09 ± 1.22
Blue — Ball 2.34 ± 0.96 3.18 ± 1.10
Blue — Cake 2.05 ± 0.71 3.56 ± 1.45

Green — Marker 2.21 ± 0.64 1.70 ± 0.81
Green — Ball 2.47 ± 0.89 2.28 ± 1.26
Green — Cake 2.97 ± 0.84 3.85 ± 1.02

Red — Marker 3.67 ± 0.76 2.89 ± 1.66
Red — Ball 2.82 ± 0.75 2.43 ± 1.13
Red — Cake 3.31 ± 1.26 4.23 ± 1.62

D. Initiating Contacts during Reaching

We performed a bi-manual experiment using the “iCub”
to reach objects while improving its stability by partially
supporting its weight on a table. The experiment is difficult
to demonstrate using kinesthetic teaching, as the teacher
would have to simultaneously move both arms of the robot
and keep track of the torso configuration. However, using
the decoupling properties of our approach the task can be
demonstrated with ease, a single arm at a time. Additionally,
the decoupling approach utilizes improved data-efficiency, as
it was shown in Sec. V-C, and allows to generalize in novel
movement combinations.

Reaching objects that require the robot to bend the torso
can move the center of gravity of the robot out of the
support polygon defined by the feet, and, as a result, the
robot will loose its balance. The task of the robot is to
perform a reaching movement while it initiates a contact to
stabilize itself. With its right arm reaches for three different
objects, as shown in Fig. 1. Concurrently, with the left arm,
initiates a contact with the table that increases the its stability.
The location of the contact varies over three positions. We
provided ten demonstrations for reaching each object and for
each supportive contact location. The robot was capable of
reproducing the movements using the prioritized movement
primitives and generalizing to task combinations not present
in the demonstrations. The reaching performance is shown
in Table II.

E. Adaptation of a Movement Primitive Library

We demonstrate how to adapt a movement primitive
library to changes of the environment, e.g., an obstacle
that was not present during training. In our setup, Fig. 8,
we used a seven DoF humanoid arm mounted on a fixed
base, with a hand as its end-effector. The hand was not
controlled during the experiments. We trained the robot with
three distinct movements using kinesthetic teaching. First,
approach a bottle for grasping, second, drop a peg into a
bowl, and, third, push a button. Each primitive can generalize
into a 25cm × 25cm area. We provided ten demonstrations
for each primitive. After training the primitives, we introduce
an obstacle, the cat, into the environment. The robot collides
with the cat during the execution of the primitives. To adapt
the library, we demonstrated an additional primitive that

Fig. 8. The setup used for adapting a primitive library due to environmental
changes. The robot learns how to grasp a bottle, place a peg into a bowl, and
push a button with kinematic teaching. The cat is then placed in a position
that collides with the robot during reproduction.

Fig. 9. In the left, each row shows the reproduction of the respective prim-
itive after training and the introduction of the obstacle without adaptation.
The robot collides with the head of the cat. In the right, we present the
reproduction after adaptation where the robot avoids collisions.

avoids collisions with the obstacle, but without any of the
three objects present in the environment during the demon-
strations. While the robot does not perceive the obstacle, the
information of avoiding it is encoded in the new primitive. By
combining the new primitive with each of the primitives in
the library, we avoid collisions with the obstacle, as shown
in Fig. 9. The success rate of the experiment is presented
in Table III, averaging over ten reproductions per case.
Finally, we evaluated classical prioritization approaches on
our system. We modelled the mean trajectory using ProMPs,
set Σq̈ = I , and Σẍ = λI . The value of λ was optimized
to reduce the Cartesian error at the end of the movement.
The tasks could not be effectively combined using standard
methods [8]–[16], as shown in Table III.

TABLE III
ADAPTATION OF A MP LIBRARY — TASK EVALUATION

Bottle Peg Button

Obstacle Avoidance Rate

Before Adaptation 0.0 0.1 0.3
After Adaptation 0.9 1.0 1.0
Std. Approaches 1.0 1.0 1.0

Avg. End-Effector Error (cm)

After Adaptation 0.48 ± 0.23 0.67 ± 0.23 0.45 ± 0.51
Std. Approaches 12.83 ± 4.57 3.21 ± 1.45 2.12 ± 1.53



VI. CONCLUSION

In this paper, we presented a novel approach for movement
prioritization based on the combination of Bayesian task pri-
oritization and the Probabilistic Movement Primitives. While
prioritization is a well established concept in control, it has
not been explored in the context of learning movements from
demonstrations. We have shown that combining prioritization
with learning approaches yields in a powerful representation
that can be used to solve a combination of tasks with
different end-effectors. Our approach is data-driven, i.e., it
can solely be trained form demonstrations and minimizes
expert knowledge. It avoids the problem of specifying a
cost function for the task at hand, which is still an open
problem. We demonstrated that our approach can be used
to adapt task-space movements without solving an inverse
kinematics problem and, importantly, staying close to the
demonstrated data. Further, we propose an extension to the
ProMP controller that can handle deviations that occur from
the demonstrated movements due to the prioritization.

A key contribution of our approach is the ability to
combine tasks of different end-effectors in a principled
and data-efficient way. Our approach can generalize to task
combinations that were not present in the demonstrations and
requires significantly less training data to achieve the same
level of performance. Our approach can be used to adapt a
library of primitives without extensive retraining.

Given that our approach is data-driven, it heavily relies
on quality demonstrations. If the task is too difficult to
be demonstrated or if non-informative demonstrations are
provided, our approach will match the provided data and
not the intention of the user.

In future work, we will expand the evaluations of our
approach on more complex real-word scenarios. We consider
multiple task execution with physical robot interaction under
the present of contacts as interesting research direction.

APPENDIX
INCLUDING THE DYNAMICS OF THE SYSTEM

The stochastic controller on the joint acceleration given
in Eq. (6) can be used to control a physical system, i.e., by
torque control, using the rigid-body dynamics model [25],
u = M(q)q̈ + C(q, q̇) + G(q), where M(q) denotes
the inertia matrix, C(q, q̇) denotes Coriolis and centripetal
forces, and G(q) forces due to gravity. Using the rigid-body
dynamics model, we reformulate our controller to operate in
the joint torque space, i.e. p1|2(u) = N (u|µ′u,Σu) . The
mean µu of this controller is given by

µ′u =M
(
J†

(
µẍ − J̇ q̇

)
+
(
I − J†J

)
µq̈

)
+C +G,

where we used µq̈ = M−1(µu − C − G). Furthermore,
decoupling of the kinematics and the dynamics can be
obtained by setting µ̂u = µu + C + G and using it in
place of µu. In this case, the mean becomes

µ′u=MJ†(ẍ−J̇ q̇)+M
(
I−J†J

)(
M−1µu

)
+C+G (14)

that results in the resolved-acceleration controller [26], [27].
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