
Noname manuscript No.
(will be inserted by the editor)

Using Probabilistic Movement Primitives in Robotics

Alexandros Paraschos · Christian Daniel · Jan Peters ·
Gerhard Neumann

the date of receipt and acceptance should be inserted later

Abstract Movement Primitives are a well-established

paradigm for modular movement representation and

generation. They provide a data-driven representation

of movements and support generalization to novel situ-

ations, temporal modulation, sequencing of primitives

and controllers for executing the primitive on physi-

cal systems. However, while many MP frameworks ex-

hibit some of these properties, there is a need for a uni-

fied framework that implements all of them in a princi-

pled way. In this paper, we show that this goal can be

achieved by using a probabilistic representation. Our

approach models trajectory distributions learned from

stochastic movements. Probabilistic operations, such as

conditioning can be used to achieve generalization to

novel situations or to combine and blend movements in

a principled way. We derive a stochastic feedback con-

troller that reproduces the encoded variability of the

movement and the coupling of the degrees of freedom

of the robot. We evaluate and compare our approach

on several simulated and real robot scenarios.

1 Introduction

Movement Primitives (MPs) are a well-established ap-

proach for representing movement policies in robotics.

MPs have several beneficial properties; generalization

Alexandros Paraschos · Christian Daniel ·
Jan Peters · Gerhard Neumann
Technische Universität Darmstadt
Hochschulstrasse 10, 64289 Darmstadt, Germany
Tel.: +49-6151-166167, Fax: +49-6151-167374
E-mail: {lastname}@ias.tu-darmstadt.de

Jan Peters
Max-Planck-Institut für Intelligente Systeme
Spemannstrasse 38, 72076 Tübingen, Germany

Fig. 1 Two real robot setups that we used for the evaluation
of our approach. (left) The KUKA arm playing the maracas
musical instrument. We demonstrated a slow version of the
rhythmic shaking movement and we progressively increased
the speed. (right) The KUKA arm playing with an Astrojax.
The robot learned the game from demonstrations.

to new situations, temporal modulation of the move-

ment, co-activation of multiple primitives to concur-

rently solve multiple tasks, sequencing of primitives

to generate longer and more complex movements, and

they are easy to learn from demonstrations. Using such

properties, MPs were successfully applied to reach-

ing [7], locomotion [9, 29] and are state of the art for

robot movement representation and generation. How-

ever, many approaches for movement generation based

on MPs [7, 17, 18, 41–43, 54] exhibit only a subset of

these properties. Hence, a generalized framework that

unifies all these properties in one principled framework

is needed.

We formalize the concept of probabilistic movement

primitives (ProMPs) as a general probabilistic frame-

work for representing and learning MPs. A ProMP rep-

resents a distribution over trajectories. The trajectory

distribution can be defined in either joint-space, task-

space, or any other space that accommodates the exper-

2 Alexandros Paraschos et al.

iment. In this paper, we focus on joint-space trajecto-

ries. Working with distributions enables us to formulate

the described properties using operations from proba-

bility theory. For example, modulation of a movement

to a novel target can be realized by conditioning on the

desired target’s positions or velocities. Similarly, con-

sistent parallel activation of two elementary behaviors

can be accomplished by a product of two independent

trajectory distributions. A trajectory distribution can

encode the variance of the movement, and, hence, a

ProMP can directly encode optimal behavior in sys-

tems with linear dynamics, quadratic costs and Gaus-

sian noise [50]. In contrast, deterministic approaches,

e.g., the DMP approach, can only represent the mean

solution, which is known to be suboptimal. Even if as-

sumption does not hold, we believe that it offers a good

a approximation of physical robotic systems. Finally, a

probabilistic framework allows us to model the coupling

between the degrees of freedom (DoFs) of the robot by

estimating the covariance between different DoFs.

The benefits of using a probabilistic representation

have so far not been extensively exploited for repre-

senting and learning MPs. The main reason for this

limitation has been the difficulty of extracting a policy

for controlling the robot from a trajectory distribution.

We show how this step can be accomplished and de-

rive a control policy that exactly reproduces a given

trajectory distribution. While ProMP introduces many

novel components, it also incorporates many of the ad-

vantages from well-known previous movement primitive

representations [7, 46], such as temporal rescaling of

movements and the ability to represent both rhythmic

and stroke based movements.

In this paper, we unify and complement our prior

work [33,36,37] on ProMPs. Note that the reference [33]

contains only a brief summary of our work on ProMPs

presented in the context of an overview paper that

spans over multiple topics. Therefore, [33] provides less

information than the corresponding conference papers.

In this paper, we present much more details which are

necessary to reproduce the results. We introduce a new

regularization technique for achieving smoother move-

ments and present an expectation-maximization algo-

rithm for learning rhythmic ProMPs in more detail. We

extended the description of our controller derivation

and show how it is used on physical tasks, e.g. control-

ling a 7-DoF arm for playing Maracas, robot-hockey,

and ‘Astrojax’. Moreover, we show new comparisons to

state of the art MP approaches in terms of optimality,

generalizability, composition of primitives and robust-

ness of the movement representations. We also evaluate

our ProMP controller on non-linear systems and made

the source code of all examples publicly available1.

2 Properties of Movement Primitive

Frameworks

We categorize MPs into state-based [4, 18] and

trajectory-based representations [34, 42, 43, 46].

Trajectory-based primitives typically use time as

the driving force of the movement. They require

simple, typically linear, controllers, and scale well

to a large number of DoFs. In contrast, state-based

primitives [4,18] do not require the knowledge of a time

step but often need to use more complex, non-linear

policies. Such increased complexity has limited the

application of state-based primitives to a rather small

number of dimensions, such as the Cartesian coordi-

nates of the task space of a robot. The main focus of

this paper is on trajectory-based representations. We

begin with a discussion on the properties of MPs.

Concise representation. MPs offer a concise repre-

sentation of the movement, with a few open parame-

ters to set. The small number of parameters simplifies

learning the movement from demonstrations and the

use of reinforcement learning algorithms to adapt and

refine the primitive through trial-and-error. MP frame-

works can be trained from demonstrations using sim-

ple learning methods, e.g. linear regression, and have

been successfully used in fairly complex scenarios, in-

cluding “Ball-in-the-Cup” [21], Ball-Throwing [47, 53],

Pancake-Flipping [23], Tetherball [6], and bi-pedal lo-

comotion [32].

Adaptation and time modulation. Many MPs of-

fer an intrinsic adaptation mechanism to match a new

situation or an altered task, e.g., hitting a different in-

coming balls when playing table tennis. The adapta-

tion commonly comes in a form of modification of the

desired target position and velocity at the end of the

primitive or as a modulation of the amplitude of the

primitive [17]. Our approach [36, 37] can be used to

adapt the movement at any time point during the tra-

jectory’s execution.

Furthermore, adaptation of MPs include temporal

modulation. Temporal modulation is a valuable prop-

erty as it enables MPs to be applied in scenarios where

correct timing is critical for the success of the task, e.g.,

in hitting, batting, or in locomotion to adjust the walk-

ing speed of the robot [41].

1 http://www.ausy.tu-darmstadt.de/uploads/Team/

AlexandrosParaschos/ProMP_toolbox.zip

http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/ProMP_toolbox.zip
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/ProMP_toolbox.zip

Using Probabilistic Movement Primitives in Robotics 3

Combination and sequencing. The expressiveness

of an MP approach can be significantly improved if

multiple primitives can be simultaneously co-activated

to compose more complex movements. However, most

MP approaches do not support co-activation of primi-

tives in a principled way. Instead, the concurrent acti-

vation requires a prioritization scheme [31, 39] in order

not to disrupt the motion. In our approach [36], we co-

activate primitives to solve multiple tasks at the same

time, without the need of such a scheme. Besides simul-

taneous activation, MP architectures aim to support se-

quencing MPs [22] to acquire a smooth transition from

one primitive to another. Such sequencing is needed to

dynamically concatenate primitives in order to acquire

longer, more complex movements. We show that in our

framework a smooth transition can be achieved in a

principled way similar to the combination of primitives.

Coupling the DoFs. Movement primitives ap-

proaches are typically applied to robots with multiple

Degrees of Freedom (DoF). In order to reproduce coor-

dinated movements, MPs need a synchronization mech-

anism among the different DoF. Using time, or a func-

tion of time, as a reference signal [15, 45], one can im-

plement simple time alignment mechanisms. However,

when experiencing deviations from the desired trajec-

tory due to noise or unmodeled effects, coordinated re-

covering from perturbations is advantageous. ProMPs,

additionally to time synchronization, estimate such cor-

relations directly from demonstrations and use them to

synchronize the DoFs of the system.

Optimal behavior. Many trajectory-based represen-
tations use a single desired trajectory that is followed

by a feedback controller with constant gains. However,

following such a single trajectory has been proven to be

suboptimal for many tasks if the system’s dynamics are

stochastic [50]. In this paper, we focus on control affine

systems with Gaussian control noise, which is a stan-

dard assumption for physical systems. In this case, a

distribution over trajectories is a good representation of

the optimal behavior. Such distribution can be achieved

by using time-varying feedback gains, which are often

used as approximation for optimal behavior [26]. Feed-

back controllers with time varying gains modulate the

stiffness of the system to provide high precision at the

‘important’ time points of a task while the system is less

controlled for time points where accurate control in not

so critical. The time varying gains of the controller can

be approximated [5], computed using a LQR by speci-

fying a cost function [1,3], improved with reinforcement

learning [2], or, as in our approach, computed in closed

form [36].

Stability. Generating stable behavior is an important

aspect of MPs. However, stability guaranties often have

limited use as they assume linearity in the dynamics.

Yet, however simple, real-world, systems are non-linear,

e.g., a pendulum, where the gravity alone introduces

non-linearities in the dynamics. Discrete DMPs [17]

generate stable behavior by moving towards an at-

tractor at the end of the movement, while periodic

MPs [17, 41] stabilise the movement on a unit circle.

The probabilistic framework from [4] initially did not

provide any stability guarantees, but it was still gener-

ating stable movements as long as the disturbances did

not perturb the system “far” from the region where the

demonstration occurred. With [18] the authors alleviate

the problem and learned asymptotically stable control

laws. Recently, Calinon et al. [3] proposed the use of

a Linear Quadratic Regulator (LQR) for control, that

is stable for closed-loop systems [49]. The ProMPs [36]

derive a controller that exactly reproduces the demon-

strated trajectory distribution and, thus, provide sta-

bility guaranties as long as the demonstrated trajectory

distribution was generated by a stable control law.

3 Related Work

A commonly used trajectory-based representation is the

Dynamic Movement Primitive (DMP) approach, intro-

duced in [17] and [16] for a recent review. They repre-

sent a linear attractor system which is modulated by a

time-dependent forcing function. The DMP introduced

the concept of a phase, defined as a monotonic function

of time. By adjusting the phase derivatives, we can tem-

porally scale the movement. The forcing function is rep-

resented by normalized Gaussian basis functions, mul-

tiplied with the phase signal. Since the phase decreases

exponentially to zero, the forcing function will asymp-

totically vanish at the end of the movement. At that

time, only the attractor dynamics stay active, which

guarantees the stability of the linear system. When used

in an imitation learning scenario, the weights of the ba-

sis functions can be fitted from a single demonstration

using linear regression. Generalization to new, unseen,

situations in DMPs is limited. The original formulation

only allowed for changing the position at the end of the

movement, which is implemented by modifying the po-

sition of the goal attractor or, for rhythmic DMPs, by

adjusting the amplitude of the forcing function. Exten-

sions exist that also allow setting a desired final veloc-

ity [21,31,38]. Directly changing intermediate points in

the trajectory is not possible. DMPs can be sequenced

given proper initialization [38], but only instant switch-

ing from one primitive to another is considered. Kulvi-

cius et al. [24] extended DMPs to support sequencing

4 Alexandros Paraschos et al.

of primitives and evaluated their approach on a hand-

writing dataset. Gams et al. [13] proposed the use of

DMPs for tasks that include interactions with the en-

vironment.

Despite that DMPs introduce many beneficial prop-

erties, such as temporal scaling of the movement, learn-

ing from a single demonstration or generalizing to new

final positions, further work is still needed for con-

currently activating multiple primitives, generalizing to

intermediate via-points, representing optimal behavior

in stochastic systems, and capturing the correlation of

the individual joints of the robot. Trajectories based on

DMPs applied to multiple DoF systems are synchro-

nized based only on the internal phase variable. Multi-

ple DMPs for the same DoF cannot be activated simul-

taneously without further considerations on prioritized

control and partial cancellation of the movement.

Probabilistic approaches use distributions to addi-

tionally encode the variability of the movement [3,4,23,

42]. The variability of the movement, or the variance in

distribution terms, is crucial, as it reflects the impor-

tance of single time points for the movement execution

and it is often a requirement for representing optimal

behavior in stochastic systems [50]. Moreover, captur-

ing the variance of the movement leads to better gener-

alization capabilities and to more natural movements.

A probabilistic MP approach was proposed by Calinon

et al. [4], where a Gaussian Mixture Regression (GMR)

model was used to represent the trajectory. Given a set

of trajectories, the GMR was trained with an Expec-

tation Maximization (EM) algorithm [42]. A unifying

formulation that extends the DMPs and uses them in

a probabilistic framework is discussed in [23]. Yet, it is

unclear how a GMR model can be conditioned to reach

different final or intermediate positions. An extension of

the approach [3] enabled generalization to different situ-

ations by recording the movement from different spaces

and tracking the affine transformation to each space.

While the approach is capable of generalizing, for ex-

ample when an object changes its position, it can not

modulate the encoded variance.

Besides representing the variance of the trajectory,

we need a controller that reproduces the encoded dis-

tribution on a real system. A feedback controller where

the gains are based on the inverse of the covariance of

the current time-step was presented in [5]. The control

law is based on the intuition that the gains have to be

lower when the variance of the trajectories is higher. A

comparison to this control law is presented at the eval-

uation section of this paper. As our experiments show,

the resulting trajectory distribution from executing this

controller does not match the desired one. In [1,3], the

authors proposed the use of minimum intervention con-

trol to generate the gains of the feedback controller. In

this approach, the authors use the inverse of the co-

variance at every time point as metric for the quadratic

state costs. However, while intuition-wise weighting the

state with the inverse of the covariance is appropriate,

we will show in our comparison that this approach can

not match the desired trajectory distribution. Addition-

ally, the cost function proposed by the authors include

a quadratic action penalty to limit the actions that is

not learned by the demonstrations.

A different approach for computing a control law

for a GMR model was proposed by Khansari-Zadeh et

al. [18]. In this approach, the control gains are proven

to be stable if the system is linear. The authors derive

the stability constraints from the Lyapunov stability

theory. In [19], the authors extend their approach to

generate stable controllers with state-dependent stiff-

ness. The resulting controller share similarities with the

ProMPs controller.

The approach by Rueckert et al. [43] also offers

a probabilistic interpretation of MPs by representing

them with learned graphical models. A probabilistic

planning algorithm is used to obtain a controller that

optimizes the cost function represented by the graphi-

cal model. The resulting controller is also a linear feed-

back controller with time varying gains. However, this

approach heavily depends on the quality of the used

planner and imitation learning of such a representation

is not straightforward.

The ability to combine multiple MPs into a single

movement provides significantly better generalization

capabilities, enables the use of MP libraries, and has re-

cently attracted attention of the community. Muelling

et al. [31] use a library for table tennis which is con-

currently activating multiple DMPs to perform strik-

ing movements. Each primitive is activated with an

activation provided by a trained gating network. The

primitives are then combined on the acceleration level

which is equivalent to a linear combination of primi-

tives in parameter space. The primitives and the acti-

vation weights were refined with Reinforcement Learn-

ing (RL). A different approach was proposed by Mat-

subara et al. [28] using DMPs in combination of with

a style parameter. The parameters of DMPs are lin-

early interpolated according to the given style parame-

ter. Forte et al. [12] proposed a similar approach, where

a library of DMPs learned from multiple demonstra-

tions is used. Generalization is obtained from a Gaus-

sian Process Regression (GPR) model which is capable

of modeling non-linear transformations of the style vari-

able. The major limitation of approaches based on de-

terministic representations, e.g., on DMPs, is the inabil-

ity to concurrently solve a combination of tasks where

Using Probabilistic Movement Primitives in Robotics 5

we have one task per primitive. Since there is no notion

of the importance of each time point in the trajectory

the resulting combined primitive is just an interpola-

tion of the participating primitives trajectories. In con-

trast, probabilistic representations [4, 18] leave unclear

how primitives can be combined. In ProMPs, we pro-

pose a new combination operator based on a product of

trajectory distributions. We show that by co-activating

ProMPs, the resulting movement solves a combination

of tasks that is given by a combination of different cost

functions. We evaluate this property in two different

scenarios in the experiments section.

Smoothly sequencing, also called blending, two

movement primitives can be considered as a special case

of a combination of MPs. Discrete DMPs can be triv-

ially sequenced [38], however the transition from one

primitive to then next one is typically instantly, which

can lead to a jump in the acceleration profiles. Special

cases of discrete and periodic primitive blending, such

as transient motions, have been considered in [8, 10].

As opposed to the previous approaches, the ProMPs

can cope with combination and blending of primitives

independently of their periodicity.

In the next section, we will first introduce proba-

bilistic movement primitives and show their advanta-

geous properties. Next, will show how to compute a

time-varying feedback controller that reproduces the

given trajectory distribution. Subsequently, we will

demonstrate the performance and advantageous prop-

erties of ProMPs in several experiments on simulated

and real robot tasks.

4 Probabilistic Movement Primitives (ProMPs)

ProMPs provide a single principled framework for im-

plementing the desirable properties of MPs, summa-

rized in Table 1. We will first introduce the probabilistic

model for representing the trajectory distribution, that

is based on a basis function representation. Such a rep-

resentations significantly reduces the amount of model

parameters and facilitates learning. We proceed by il-

lustrating how our representation can be trained from

imitation data for both stroke-based and periodic move-

ments. Training from imitation allows to rapidly repro-

duce tasks that are easy to demonstrate to the robot.

Here, we describe a simple maximum likelihood training

procedure that can be used for stroke-based movements

and an expectation-maximization algorithm that can

be used to train the primitive in case of missing data

or also for rhythmic movements. We continue by dis-

cussing the implementation of the desirable properties,

i.e. temporal modulation of the movement, encoding of

Table 1 Properties and their implementation in the ProMPs

Property Implementation

Co-Activation Product of pi(τ)
Modulation Conditioning
→ final positions X
→ final velocities X
→ via-points X
Optimality Encode variance
Coupling Mean, Covariance
Learning Max. Likelihood
Temporal Modulation Modulate Phase
Rhythmic Movements Periodic Basis

the coupling between the joints that allows the genera-

tion of coordinated movements, conditioning to general-

ize a trained primitive to a novel situation, adaptation

to task parameters to allow task-dependent variables

to modify the primitive, and combination and blend-

ing of primitives to solve more complex tasks. Finally,

in Sec. 4.4, we present the analytical derivation of a

stochastic feedback controller that is capable of exactly

reproducing the trajectory distribution. Such feedback

controller is essential for using trajectory distributions

for controlling a physical system.

4.1 Probabilistic Trajectory Representation

We start our discussion with the simple case of a single

degree of freedom, where the joint angle q is a scalar,

and we subsequently extend it to the multiple DoF

case, where the vector q describes multiple joint an-

gles. We model a single movement execution as a tra-

jectory τ = {qt}t=0...T , defined by the joint angle qt
over time. In our framework, a MP describes multiple

ways to execute a movement, which naturally leads to

a probability distribution over trajectories. We encode

our policy representation with a hierarchical Bayesian

model, which is presented inFig. 2.

4.1.1 Concise Encoding of Trajectory Distributions

Our movement primitive representation models the

time-varying variance of the trajectories. Representing

the variance information is crucial as it reflects the im-

portance of single time points for the movement exe-

cution. We use a basis-function representation as it

reduces the amount of model parameters in compar-

ison to a simple distribution over the joint positions

for each time step. This reduction in parameters can

greatly facilitate learning. Additionally, it allows us to

derive a continuous time approach and transfer data

between systems, e.g., from a motion capture system

to the robotic platform, directly without interpolating

6 Alexandros Paraschos et al.

θ
w

p(w; θ)

yt

p(yt|w)

t = 1 . . . T

Fig. 2 The Hierarchical Bayesian Model used in ProMPs.
The probability distribution p(y1:T |w) of the observed tra-
jectories depends on the parameter vectorw. The distribution
over the parameter vector w is given by p(w|θ). The param-
eter vector w is integrated out in the ProMP formulation.

the data. When controlling the system, a continuous

time approach allows for choosing the control frequency

and is robust to jitter. Further, as we will discuss in

Sec. 4.1.2, it enables the temporal modulation of the

movement. Additionally, it allows us to generalize the

primitive at any time-point, Sec. 4.3.1 and to derive our

feedback controller in closed form, Sec. 4.4.

We use a weight vector w to compactly represent a

single trajectory. The probability of observing a trajec-

tory τ given the underlying weight vector w is given as

a linear basis function model

yt =

[
qt
q̇t

]
= Φtw + εy, (1)

p(τ |w) =
∏
t

N (yt|Φtw,Σy) , (2)

where Φt = [φt, φ̇t]
T defines the 2×n dimensional time-

dependent basis function matrix for the joint positions

qt and velocities q̇t. The basis functions for the veloci-

ties φ̇t are the time derivatives of φt. The variable n de-

fines the number of basis functions and εy ∼ N (0,Σy)

represents zero-mean i.i.d. Gaussian noise.

In order to capture the variance of the trajectories,

we introduce a distribution p(w;θ) over the weight vec-

tor w, with parameters θ. In most cases, the distri-

bution p(w;θ) will be Gaussian where the parameter

vector θ = {µw,Σw} specifies the mean and the vari-

ance of w. However, also more complex distributions

such as Gaussian mixture models can be used for this

task [44]. The trajectory distribution p(τ ;θ) can now

be computed by marginalizing out the weight vector w,

i.e.

p(τ ;θ) =

ˆ
p(τ |w)p(w;θ)dw, (3)

to obtain the probability distribution over the trajecto-

ries τ . The distribution p(τ ;θ) defines the hierarchical

Bayesian model that is illustrated at Fig. 2. The model’s

parameters are given by the observation noise variance

Σy and the parameters θ of the weight distribution

p(w;θ).

Illustrative example. To illustrate the properties of

our MP representation, we use a simple toy-task as

a running example throughout this section where we

also compare to other state-of-the-art MP approaches.

In our toy-task, we use a trajectory distribution that

passes through two via-points. The simulated system

has linear dynamics and Gaussian i.i.d. noise on the

actions. In this illustrative example, we control the ac-

celeration of the system. We generate demonstrations

with an optimal control algorithm [52]. The cost func-

tion is given as

C(τ ,u) =
∑

i={tvia}
(ydi−yi)TQ(ydi−yi)+

T∑
i=1

uTi Rui, (4)

where tvia = {0.4s, 0.7s} is a set of the time-points

for the via-points and Q,R are are the state and ac-

tion cost matrices, respectively. We simulate trajecto-

ries with the resulting controller to obtain the demon-

strations. The demonstrations exhibit variability due to

the noise of the system. The optimal trajectory distri-

bution is presented in Fig. 3(a).

The use of a cost-function enables us to quantify

the quality of the resulting MP policies. The ProMP

policy is capable of reproducing exactly the variance of

the movement, as shown in Fig. 3(b). For the trajec-

tory reproduction of ProMPs, we used the controller

that we describe in Sec. 4.4. Additionally, we evalu-

ate the heuristic controller presented in [5], which com-

putes the feedback gains inverse proportionally to the

variance of the trajectory. The trajectory distribution

of the inverse covariance controller does not match the

demonstrated distribution, see Fig. 3(c). The DMP ap-

proach uses constant feedback gains to follow a single

trajectory, and, hence, can not adapt the variance of the

resulting trajectory distribution. In Fig. 3(d), we gener-

ated trajectory distributions for two different settings of

the feedback gains to illustrate the resulting variances.

We empirically optimized the gains for the inverse co-

variance controller and the DMPs using search. The av-

erage costs generated by each control law are shown in

the upper part of Table 2. The ProMP achieve a similar

cost to the optimal controller while all other controllers

can not reproduce the optimal behavior.

Further, we compare our approach to [3], where we

fit the proposed Gaussian Mixture Model (GMM) to

the demonstrations and then use Gaussian Mixture Re-

gression (GMR) to derive the desired trajectory distri-

bution. We present the fitted regression model in Fig. 4

(blue). We generated trajectories using Minimum In-

tervention Control [3] and we present the results in

Fig. 4 (red) where we jointly optimized for the number

of mixture components and the action penalty. We also

Using Probabilistic Movement Primitives in Robotics 7

used the optimal number of components, but the same

action penalty as in the cost function used to gener-

ate the demonstrations (green). The resulting controller

can not reproduce the given distribution.

Moreover, we evaluated our approach using simple

Gaussian distributions and optimal control. At every

time-step, we fit a Gaussian distribution over the state

and we use it to set a quadratic cost function. The cost

function has the form of Equation (4) where ydi is set

to the mean and Q to the inverse of the covariance. We

optimize for the action penalty R such that the true

cost function we used to generate the data is minimized.

We present our results in Table 2. This approach uses

the same approach for deriving the controller as in [3],

but uses a simple Gaussian distribution to model each

time-step instead of the state-defined GMR. Compared

to ProMPs, the performance on the true cost function

is worse as can be seen in the table. This approach

also does not provide any generalization or modulation

mechanism.

As another baseline, we fit a Gaussian distribution

at every time-step on the state- action space. At re-

production, we condition the distribution of that time-

step on the current state to obtain the action, which

results in a linear Gaussian action policy. As the demon-

strations have been generated by a time-dependent lin-

ear controller, the performance of this approach is is

close to optimal and similar to the ProMP controller

as shown in Table 2. However, fitting a Gaussian dis-

tribution over the state-action requires the actions to

be known during the demonstrations and, which limits

the applicability of the approach to tele-operation se-

tups. Similar to the optimal control approach from the

previous paragraph, this approach does not provide any

generalization mechanism.

4.1.2 Temporal Modulation

With temporal modulation, we can adjust the execu-

tion speed of the movement. Similar to the DMP ap-

proach, we introduce a phase variable z to decouple

the movement from the time signal. By modifying the

rate of the phase variable, we can modulate the speed

of the movement. Without loss of generality, we define

the phase as z0 = 0 at the beginning of the movement

and as zT = 1 at the end. We typically use a constant

velocity żt = 1/T for reproducing the recorded motion,

but we can also adapt it dynamically during the exe-

cution of the movement. The basis functions φt now

directly depend on the phase instead of time, such that

φt = φ(zt), (5)

φ̇t = φ̇(zt)żt, (6)

where φ̇t denotes the corresponding derivative. An il-

lustration of temporal scaling for our running example

is shown in Fig. 5.

4.1.3 Rhythmic and Stroke-Based Movements

The choice of the basis functions depends on the type

of movement, which can be either rhythmic or stroke-

based. For stroke-based movements, we use Gaussian

basis functions bGi , while for rhythmic movements, we

use Von-Mises basis functions bVM
i to model periodicity

in the phase variable z, i.e.,

bGi (z) = exp

(
− (zt − ci)2

2h

)
, (7)

bVM
i (z) = exp

(
cos(2π(zt − ci))

h

)
, (8)

where h defines the width of the basis and ci the cen-

ter for the ith basis function. We normalize the basis

functions

φi(zt) =
bi(z)∑n
j=1 bj(z)

, (9)

to obtain a constant summed activation and improve

the regression’s performance. The centers of the basis

functions are uniformly placed in [−2h, (1 + 2h)] the

phase domain. We center basis functions outside the in-

terval [0, 1] to improve homogeneity of the basis vector,

i.e., by including the “tails” of the basis placed outside,

and therefore improve the performance of our model.

Table 2 Comparison of different control approaches on a
hand-specified cost function. As baseline, we compare the ap-
proaches to an optimal controller that maximizes the cost.
The ProMPs can produce trajectories with a similar cost.
The newly presented regularization scheme for the weights
(jerk penalty, Sec. 4.2.1) achieves a slightly lower costs due
to the smoother torque profiles produced by this approach.

Control Approach Average Cost

R
ep

ro
d
u

ct
io

n

Optimal Controller 2.07·104±2.58·102

Model-Free Gaus. Ctl 2.25·104±3.21·102

ProMP Jerk Penalty 2.29·104±3.35·102

ProMP Weight Reg. 2.35·104±3.25·102

Opt. Ctl. — Gaus. Dist. 3.37·104±4.41·102

GMM/GMR - Min Int. 4.47·104±7.25·102

DMP 5.16·104±13.2·102

Inv. Cov. Controller 7.36·104±16.1·102

DMP with Low Gains 76.5·104± 392 ·102

C
o
m

b
in

. Optimal Controller 3.36·104±3.52·102

ProMP 5.46·104±3.55·102

Inv. Cov. Controller 6.54·104±7.30·102

DMP 208 ·104± 107 ·102

8 Alexandros Paraschos et al.

−0.5

0

q
(r
a
d
)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
a
d
/
s)

(a) Demonstrations

0 0.25 0.5 0.75 1

time(s)

(b) ProMPs

0 0.25 0.5 0.75 1

time(s)

(c) Inv. Cov. Controller

0 0.25 0.5 0.75 1

time(s)

(d) DMPs

Fig. 3 Trajectory distribution showing the joint positions (first row) and velocities (second row). The shaded area denotes two
times the standard deviation. (a) The demonstrated trajectory distribution that was generated by an stochastic optimal control
algorithm for a via-point task. The resulting trajectories show variability due to the noise in the system. (b) The trajectory
distribution generated using ProMPs (blue). ProMPs can exactly reproduce the demonstrated trajectory distribution (shown in
red below the blue shaded area). (c) The resulting trajectory distribution produced by the inverse covariance control approach
(blue). Due to latency-effects it missed the via-points in time and generated high actions which led to the velocity spike. (d)
Trajectory distribution produced by DMPs. While the DMP can follow the mean of the demonstrations, it can not adapt its
variance. The accuracy at the via-points is worse than ProMPs, while the control actions are higher in non-relevant areas of
the trajectory. In blue we tuned the DMP gains for reproducing the trajectory distribution with the lowest cost and in green
we used lower gains.

0 0.25 0.5 0.75 1

−0.5

0

time(s)

q
(r
ad

)

Fig. 4 Evaluation of the GMM-GMR approach, using the
minimum innervation principle for control [3]. The learned
distribution using the GMM-GMR approach is presented in
blue. The approach captures the mean of the distribution
accurately, however, the variance at the via-points is higher
than in the demonstrations. For reproduction, we used the
optimal action penalty (red) or the same action penalty as
in the demonstrations (green). While the mean of the repro-
ductions matches the mean of the demonstrations, there is a
miss-match for the variance.

4.1.4 Encoding Coupling between Joints

So far, we have considered each degree of freedom to

be modeled independently. However, for many tasks we

have to coordinate the movement of multiple joints. The

trajectory distributions p (τ ;θ) can be easily extended

to the multi-DoF case. For each dimension i, we main-

tain a parameter vector wi, and we define the combined

weight vector w as w = [wT
1 , . . . ,w

T
n]T , a concatena-

tion of the weight vectors. The basis matrix Φt now

Fig. 5 Temporal
Modulation of
the ProMPs. The
demonstrated
distribution is
shown in red.
The green shows
an execution at
a slower pace,
whereas the blue
at a faster one.

0 0.25 0.5 0.75 1 1.25

−0.5

0

time(s)

q
(r
a
d
)

extends to a block-diagonal matrix containing the ba-

sis functions and their derivatives for each dimension.

The observation vector yt consists of the angles and ve-

locities of all joints. The probability of an observation

y at time t is given by

p(yt|w) = N


y1,t

...

yd,t

 ∣∣∣∣∣
Φt . . . 0

...
. . .

...

0 · · · Φt

w,Σy


= N (yt|Ψ tw,Σy) (10)

where yi,t = [qi,t, q̇i,t]
T denotes the joint angle and ve-

locity for the ith joint. We now maintain a distribu-

tion p(w;θ) over the combined parameter vector w.

By introducing p(w;θ), we extended our representa-

tion to additionally capture the correlation between the

joints. The extended multi-DoF representation is used

Using Probabilistic Movement Primitives in Robotics 9

Algorithm 1: Learning Stroke-Based Movements

Data: A set of N trajectories with position
observations Y i, i = 1 . . . N at time ti.

Input: Number of basis functions K, Basis function
width h, Regression parameter λ.

Result: The mean µw and covariance Σw of
p(w) ∼ N (w|µw,Σw).

foreach trajectory i do
→ Compute phase: zi = ti/tend

i
;

→ Generate basis: Ψt = f(zi,K, b), Equation (9);
→ Compute the weight vector wi for trajectory i

wi =
(
ΨT

t Ψt + λI
)−1

ΨT
t Y i.

end
→ Fit a Gaussian over the weight vectors wi

µw =
1

N

N∑
i=1

wi, Σw =
1

N

N∑
i=1

(wi−µw)(wi−µw)T .

return µw,Σw.

throughout the rest of the paper, including the experi-

mental section. Controlling the robot in a co-ordinated

manner using the coupling between the joints, for ex-

ample, allows the robot to reach a via-point defined in

the task-space while the joints exhibit variability. In

the multi-DoF model, Equation (2) becomes

p(τ |w) =
∏
t

N (yt|Ψ tw,Σy) . (11)

Additionally, our model captures the covariance of joint

positions and velocities for each time step. Therefore,

it encodes a linear relationship between them and en-

ables to compute the desired velocity if the position is

known or vice versa. We further exploit this property

in Sec. 4.3.1 for adaptation to novel situations.

4.2 Learning from Demonstrations

To simplify the learning of the parameters θ, we

will assume a Gaussian distribution for p(w;θ) =

N (w|µw,Σw) over the parameters w. Consequently,

the distribution of the state p(yt|θ) for time step t is

given by

p (yt;θ) =

ˆ
N (yt|Ψ tw,Σy)N (w|µw,Σw) dw

= N
(
yt

∣∣∣Ψ tµw,Ψ tΣwΨTt +Σy

)
, (12)

and, thus, we can easily evaluate the mean and the

variance for any time point t. As a ProMP represents

multiple ways to execute an elemental movement, we

need multiple demonstrations in order to learn p(w;θ),

or, in the special case that only one demonstration is

available, a prior variance profile for p(w) should be

given2.

4.2.1 Learning Stroke-based Movements

For stroke-based movements, we can estimate the pa-

rameters θ = {µw,Σw} from demonstrations by a sim-

ple maximum likelihood estimation algorithm. We esti-

mate the weights for each trajectory individually with

linear ridge regression, i.e.

wi =
(
ΨTΨ + λI

)−1
ΨTY i (13)

where Y i represents the positions of all joints and time

steps from the demonstration i, and Ψ the correspond-

ing basis function matrix for all time steps. We align

the demonstrations by adjusting the phase signal. For

each demonstration, we assume that zbegin = 0 and at

the end zend = 1. The ridge factor λ is generally set to

a very small value, typically λ = 10−12, as larger values

degrade the estimation the trajectory distribution. In

this paper, we also propose a new regularization scheme

that is based on minimizing the jerk of the trajectories,

i.e.,

wi =
(
ΨΨ + λΓ TΓ

)−1
ΨTY i, (14)

where Γ denotes the third derivative3 of Ψ . The third

derivative is needed as the jerk is given by the third

derivative. The jerk minimization scheme can generate

smoother torque profiles and, hence, performs better in

the cost function comparison presented in Table 2. The

mean µw and covariance Σw are computed from the

samples wi,

µw =
1

N

N∑
i=1

wi, Σ̂w =
1

N

N∑
i=1

(wi − µw)(wi − µw)T

(15)

where N is the number of demonstrations. We use an

Inverse-Wishart distribution as a prior to the covari-

ance matrix Σw. The maximum a-posteriori estimate

of the covariance [35] given the prior becomes

Σw =
NΣ̂w + λwI

N + λ
, (16)

where the value of λw is set such that the covariance

matrix Σw is positive-definite. The complete algorithm

is shown in Algorithm 1.

2 This prior variance profile can be just set to αI, where α
is a small constant and I is the identity matrix.
3 The third derivative of Ψ can be computed numerically.

10 Alexandros Paraschos et al.

4.2.2 Learning Periodic Movements

In this section we present an Expectation-Maximization

(EM) algorithm that can be used to learn from miss-

ing data or rhythmic movements. Using the previous

learning approach for periodic movements would re-

quire that each demonstration finishes at the same state

as it started, as we use a single weight vector per demon-

stration and the basis functions are periodic. However,

due to the variability, single trajectories typically do not

end exactly where they started. Yet, rhythmic move-

ments can be learned by using an EM-algorithm that

we can train with partial trajectories, i.e., trajectories

that do not cover a whole period.

We derive an Expectation Maximization (EM) al-

gorithm that infers the latent variables, i.e. the weights

for each demonstrations during training [11]. We as-

sume that our set of demonstrations contains multiple

periods. First, we determine the period length from the

demonstration and we construct the basis and phase

signal. We randomly split the demonstration to N po-

tentially overlapping segments. The size of the segment

must be shorter than a period to avoid the periodicity

in the basis functions for a single demonstration. The

initial guess for the parameters is estimated using lin-

ear ridge regression. In the expectation step, we need

to compute the posterior distribution of the weights

p(wi|Y i,µw,Σw) ∝ p(Y i|wi)p(wi|µw,Σw), (17)

for each demonstration. The posterior can be computed

using the Bayes rule for Gaussian distributions. The

expectation step becomes

µi = µw + ΨTi

(
Ψ iΣwΨ

T
i

)−1
(Y i − Ψ iµw) , (18)

Σi = Σw −ΣwΨTi
(
Ψ iΣwΨ

T
i

)−1
Ψ iΣw, (19)

where the index i denotes the i-th segment of the

demonstration and Ψ i the basis functions for that seg-

ment. We dropped the time dependency from the nota-

tion of Ψ i for clearness. In the maximization step, we

need to optimize the complete-data log-likelihood

argmaxθ′

N∑
i=1

ˆ
w

p (wi|θ) log p
(
Y i

∣∣θ′) p (w∣∣θ′) dw
(20)

where θ′ = {µ′w,Σ
′
w} denote the new parameters for

the weight distribution. Thus, the maximization step

Algorithm 2: Learning Periodic Movements

Data: A trajectory with multiple periods with
position observations Y , at time t

Input: Number of basis functions K, Basis function
width b, Regression parameter λ, Number of
segments to split N , EM convergence
parameter ε

Result: The mean µw and covariance Σw of
p(w) ∼ N (w|µw,Σw)

→ Detect base frequency: fq by FFT;
→ Periodic phase signal: z = mod(tfq, 1);
→ Split randomly: {Y , z} into N segments;
→ Initial guess: µw and Σw from Algorithm 1;
repeat

Expectation step:

µi = µw + ΨT
i

(
Ψ iΣwΨ

T
i

)−1
(Y i − Ψ iµw) ,

Σi = Σw −ΣwΨ
T
i

(
Ψ iΣwΨ

T
i

)−1
Ψ iΣw

Maximization step:

µ′w =
1

N

N∑
i=1

µi ,

Σ′w =
1

N

N∑
i=1

(
(µi − µ′w) (µi − µ′w)T +Σi

)
until difference in log-likelihood < ε;
return µ′w,Σ

′
w.

becomes

µ′w =
1

N

N∑
i=1

µi , (21)

Σ′w =
1

N

N∑
i=1

(
(µi − µ′w) (µi − µ′w)

T
+Σi

)
, (22)

for computing the updates in closed form. We iterate

between the expectation step and the maximization

step until convergence. Our algorithm is based on the

EM from HBMs with Gaussian distributions approach

presented in [25] and has been evaluated in [11, 36] for

the ProMP representation. The algorithm for learning

periodic movements is shown in Algorithm 2.

In both learning approaches, the weight covariance

Σw may become not positive definite because of nu-

merical problems. To correct these numerical problems

we use an eigen-decomposition to find the closest sym-

metric positive definite matrix to our estimation, as de-

scribed in [14].

4.3 New Probabilistic Operators for Movement

Primitives

With the probabilistic representation we can exploit

probabilistic operators, i.e., modulate the trajectory by

Using Probabilistic Movement Primitives in Robotics 11

conditioning and co-activate MPs by computing the

product of distributions. Using Gaussian distributions

for p(w;θ), all operators can be computed in closed

form.

4.3.1 Modulation of the Trajectory Distribution by

Conditioning

The modulation of via-points and final positions is an

important property to adapt the MP to new situations.

In our probabilistic formulation, such operations can

be described by conditioning the MP to reach a certain

state y∗t at time t. Note that conditioning can be per-

formed for any time point t. It is performed by adding

a desired observation

x∗t =
{
y∗t ,Σ

∗
y

}
(23)

to our probabilistic model and applying Bayes theorem,

i.e.

p (w|x∗t) ∝ N
(
y∗t
∣∣Ψ tw,Σ∗y) p(w), (24)

where the state vector y∗t represents the desired posi-

tion and velocity vector at time t and Σ∗y describes the

accuracy of the desired observation. We can also con-

dition on any subset of y∗t . For example, specifying a

desired joint position q1 for the first joint the trajectory

distribution will automatically infer the most probable

joint positions for the other joints. Conditioning par-

tially on the state is done by constructing the basis

function matrix Ψ used in Equations (25) and (26) to

contain only the variables that participate in the con-

ditioning. For example, Maeda et al. [27] used such an

approach based on ProMPs to model human-robot in-
teraction where conditioning on the human movement

yields the desired movement of the robot.

For Gaussian trajectory distributions, the condi-

tional distribution p (w|x∗t) for w is Gaussian with

mean and variance

µ[new]
w = µw +L

(
y∗t − Ψ

T
t µw

)
, (25)

Σ[new]
w = Σw −LΨTt Σw, (26)

where L is

L = ΣwΨ t

(
Σ∗y + ΨTt ΣwΨ t

)−1
. (27)

Illustrative Example. Conditioning a ProMP to dif-

ferent target states, positions and velocities, is illus-

trated in Fig. 6. We observe that, despite the modu-

lation of the ProMP by conditioning, the ProMP stays

within the original distribution. How the ProMPs mod-

ulate is hence learned from the original demonstrations.

Modulation strategies in other approaches such as the

DMPs do not show this effect [46]. DMPs can reach the

desired target position and velocities at the end of the

movement, but deform the trajectory significantly. In

contrast, the trajectory distribution obtained by condi-

tioning a ProMP even matches the distribution of the

optimal controller that has the conditioned via-point as

additional cost term.

4.3.2 Adaptation to Task Parameters

In many situations, we need to adapt the primitive

based on an external state variable ŝ, such as a de-

sired target angle when shooting hockey pucks. The

value of such external variables is typically known dur-

ing training and also before reproduction of the prim-

itive. Hence, we can directly learn this adaptation by

learning a mapping from the external variable to the

mean weight vector µw. We use a simple linear map-

ping, which is equivalent to modeling a joint distribu-

tion

p (w, ŝ) = N
([
w

ŝ

]∣∣∣∣µ,Σ)
= N (w|Oŝ+ o,Σw)N (ŝ|µŝ,Σŝ) , (28)

however, the transformation parameters {O,o} are

learned directly with linear ridge regression.

4.3.3 Combination and Blending of Movement

Primitives

We can use a product of trajectory distributions to con-

tinuously combine and blend different MPs into a single

movement. Suppose that we maintain a set of i different

primitives that we want to combine. We can co-activate

them by taking the products of distributions,

pnew(τ) ∝
∏
ipi(τ)α

[i]

, (29)

where the α[i] ∈ [0, 1] factors denote the activation of

the ith primitive. The product captures the overlapping

region of the active MPs, i.e., the part of the trajectory

space where all MPs have high probability mass.

We also want to be able to modulate the activations

of the primitives, for example, to continuously blend the

movement execution from one primitive to the next one.

Hence, we decompose the trajectory into its single time

steps and use time-varying activation functions α
[i]
t , i.e.,

p∗(τ) ∝
∏
t

∏
i

pi(yt)
α

[i]
t , (30)

pi(yt) =

ˆ
pi

(
yt

∣∣∣w[i]
)
pi

(
w[i]

)
dw[i]. (31)

12 Alexandros Paraschos et al.

−0.5

0

q
(r
a
d
)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
a
d
/
s)

(a) Optimal Controller

0 0.25 0.5 0.75 1

time(s)

(b) Optimal Controller

0 0.25 0.5 0.75 1

time(s)

(c) ProMPs

0 0.25 0.5 0.75 1

time(s)

(d) ProMPs

−0.5

0

q
(r
a
d
)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
ad

/
s)

(e) DMPs

0 0.25 0.5 0.75 1

time(s)

(f) DMPs

0 0.25 0.5 0.75 1

time(s)

(g) Optimal Controller

0 0.25 0.5 0.75 1

time(s)

(h) ProMPs

Fig. 6 Generalization of primitives. We want to modulate the MPs such that they go through additional via-points (blue and
green) and evaluate the quality of the generalized MP policies. The resulting distributions are illustrated only for comparison
and are not used for training. The added via-points are depicted with colored boxes. (a,b) Evaluation of the optimal controller
given the additional via-points on the final position (a) or final velocity (b). (c,d) Evaluation of the ProMP on the same via-
points. ProMPs reproduce the optimal behavior despite that the unconditioned demonstrations have been used for training.
(e,f) Generalization to the same via-points with DMPs. The position generalization is a linear interpolation of the mean
trajectory and quickly goes “outside” the demonstrated distribution. The final velocity generalization reproduce drastically
different trajectories than the demonstrated ones. (g,h) Evaluation of the optimal controller and the ProMPs on additional
via-point in intermediate and final locations, that require adaptation on both the position and the velocity simultaneously.

For Gaussian distributions pi(yt) = N (yt|µ
[i]
t ,Σ

[i]
t),

the resulting distribution p∗(yt) is again Gaussian with

variance and mean,

Σ∗t =

(∑
i

(
Σ

[i]
t /α

[i]
t

)−1)−1
, (32)

µ∗t = Σ∗t

(∑
i

(
Σ

[i]
t /α

[i]
t

)−1
µ

[i]
t

)
. (33)

Illustrative Example. Co-activation of two ProMPs

is shown in Fig. 7(c) and blending of two ProMPs in

Fig. 7(d). We trained the ProMPs such that each primi-

tive solves a different task indicated by the via points in

the figures with the same colors. The combined prim-

itive is capable of reaching all four via-points, i.e., it

achieved both tasks at the same time. Additionally, we

compare our combination approach to the optimal con-

troller by adding the cost functions of the two tasks.

The optimal controller results are shown in Fig. 7(a).

Combining movements with the DMPs results on aver-

aging between the trajectories and therefore missing all

of the via-points. The trajectory distribution is shown

in Fig. 7(b). We quantified the results in terms of the

average cost in Table 2. While the ProMP approach

achieves an average cost in the same range of mag-

Using Probabilistic Movement Primitives in Robotics 13

0 0.25 0.5 0.75 1
−0.2

0

0.2

time(s)

q
(r
a
d
)

(a) Opt. Ctl. Combination

0 0.25 0.5 0.75 1

time(s)

(b) DMP Combination

0 0.25 0.5 0.75 1

time(s)

(c) ProMP Combination

0 0.25 0.5 0.75 1

time(s)

(d) ProMP Blending

Fig. 7 Combination and blending of two primitives. We want to combine two MPs to obtain an MP that can achieve both
tasks of the single MPs at the same time. We show the resulting distribution in green and the participating primitives in blue
and red. (a) The resulting optimal distribution is generated by adding both cost-functions that have been used to generate
the single primitive distributions. (b) Combining DMPs linearly in weight space results in a linearly interpolated trajectory.
The movement misses all the via-points. (c) We co-activate two ProMPs with equal weights. The resulting movement passes
through all via-points. (d) We smoothly blend from the red primitive to the blue primitive. The resulting movement (green)
first follows the red primitive and, subsequently, switches to following exactly the blue primitive.

nitude, the performance of the DMP combination is

highly degraded.

4.4 Using Trajectory Distributions for Robot Control

In order to fully exploit the properties of trajectory dis-

tributions, a policy that reproduces these distributions

is needed for controlling the robot. To this effect, we

derive a stochastic feedback controller that can accu-

rately reproduce the mean µt, the variances Σt, and

the correlations Σt,t+1 for all time steps t of a given

trajectory distribution. The derivation of the controller

is based on moment matching on Gaussian distribution.

In our approach there is no notion of cost function.

Such controller can only be obtained by using a

model. We approximate the continuous time dynam-

ics of the system by a linearized discrete-time system

with step duration dt,

yt+dt = (I +At dt)yt +Bt dtu+ ct dt, (34)

where the system matrices At, the input matrices Bt

and the drift vectors ct can be obtained by first order

Taylor expansion of the dynamical system for the cur-

rent state yt
4. We assume a stochastic linear feedback

controller with time varying feedback gains is generat-

ing the control actions, i.e.,

u = Ktyt + kt + εu, ε ∼ N
(
εu
∣∣0,Σudt−1

)
, (35)

where the matrix Kt denotes a feedback gain matrix

and kt a feed-forward component. We use a control

noise which behaves like a Wiener process [48], and,

4 If inverse dynamics control [40] is used for the robot, the
system reduces to a linear system where the terms At, Bt

and ct are constant in time.

hence, its variance grows linearly with the step dura-

tion5 dt. By substituting Equation (35) into Equation

(34), we can rewrite the next state of the system as

yt+dt = (I + (At +BtKt) dt)yt

+Bt dt(kt + εu) + cdt

= F tyt + f t +Bt dt εu, (36)

where we defined

F t = (I + (At +BtKt) dt) ,

f t = Btkt dt +c dt . (37)

We will omit the time-index as subscript for most matri-

ces in the remainder of the paper to improve readability.

From Equation (12), we know that the distribution for

our current state yt is Gaussian with mean µt = Ψ tµw
and covariance6 Σt = Ψ tΣwΨ

T
t . As the system dy-

namics are modeled by a Gaussian linear model, we

can obtain the distribution of the next state p (yt+dt)

analytically from the forward model by integrating out

the current state

p(yt+dt) =

ˆ
yt

N
(
yt+dt

∣∣Fyt + f ,Σs dt
)
N (yt|µt,Σt)

= N
(
yt+dt

∣∣∣Fµt + f ,FΣtF
T +Σs dt

)
, (38)

where dtΣs = dtBΣuB
T represents the system noise

matrix. Both sides of Equation (38) are Gaussian dis-

tributions. The left-hand side can be computed in two

ways; from our desired trajectory distribution p(τ ;θ)

and from Equation (38). We proceed by matching the

5 As we multiply the noise by B dt, we need to divide the
covariance Σu of the control noise εu by dt to obtain this
desired behavior.
6 The observation noise is omitted as it represents indepen-

dent noise which is not used for predicting the next state.

14 Alexandros Paraschos et al.

mean and the variances of both sides with our control

law,

µt+dt = Fµt + (Bk + c) dt, (39)

Σt+dt = FΣtF
T +Σs dt, (40)

where F is given in Equation (37) and contains the time

varying feedback gains K. Using both constraints, we

can now obtain the time-dependent gains Kt and kt.

Note that the linearized model given by At, Bt and

ct depends on the current state yt which is used as

linearization point. As our computation of the gains

will depend on the linearized model, our controller

gains also depend implicitely on the current state, i.e.,

Kt = K(yt) and kt = k(yt). Therefore, our controller

is in fact a non-linear controller. However, we will om-

mit the state dependence of our gains in the remaining

derivation for the sake of clarity.

4.4.1 Derivation of the Controller Gains

We continue with the derivation of the controller gains,

K. To perform the derivation we assume, for the mo-

ment, that the stochasticity of the controller Σu is

known. In Sec. 4.4.3, we show how the stochasticity

of the controller can be computed closed form. By re-

arranging terms, the covariance constraint becomes

Σt+dt −Σt = Σs dt + (A+BK)Σt dt

+Σt (A+BK)
T

dt +O(dt2), (41)

where O(dt2) denotes all second order terms in dt. Af-

ter dividing by dt and taking the limit of dt → 0, the

second order terms disappear and we obtain the time

derivative of the covariance

Σ̇t = lim
dt→0

Σt+dt −Σt

dt

= (A+BK)Σt +Σt (A+BK)
T

+Σs, (42)

which is a special case of the continous time Ricatti

equation. Note that this operation was only possible

due to the continuous time formulation of the basis

functions.

The derivative of the covariance matrix Σ̇t can ad-

ditionally be obtained from the trajectory distribution

by

Σ̇t = Ψ̇ tΣwΨ
T
t + Ψ tΣwΨ̇

T

t , (43)

which we substitute into Equation (42). After rearrang-

ing terms, the equation reads

M +MT = BKΣt + (BKΣt)
T
, (44)

where we defined

M = Ψ̇ tΣwΨ
T
t −AΣt − 0.5Σs, (45)

to demonstrate the structure of the equation. A solution

can be obtained by setting M = BKΣt and solving

for the gain matrix K,

K = B†
(
Ψ̇ tΣwΨ

T
t −AΣt − 0.5Σs

)
Σ−1t , (46)

where B† denotes the pseudo-inverse of the control ma-

trix B.

4.4.2 Derivation of the Feed-Forward Controls

Similarly, we obtain the feed-forward control signal k by

matching the mean of the trajectory distribution µt+dt

with the mean computed with the forward model. After

rearranging terms, dividing by dt, and taking the limit

of dt→ 0, we arrive at

µ̇t = (A+BK)µt +Bk + c, (47)

the differential equation for the mean of the trajectory.

We use the trajectory distribution p(τ ;θ) to obtain

µt = Ψ tµw and µ̇t = Ψ̇ tµw and solve Equation (47)

for k,

k = B†
(
Ψ̇ tµw − (A+BK)Ψ tµw − c

)
. (48)

The time-varying feedback gains K do not depend on

the mean of the trajectory distribution, but only on the

variance at that time step. Similarly, the feed-forward

controls k, depend on the variance only through the

feedback gains K, but otherwise they depend on the

mean.

4.4.3 Estimation of the Control Noise

The last step required to match the trajectory distribu-

tion is to match the control noise matrix Σu which is

needed to generate the distribution. This noise can be

higher than the system noise to induce a higher vari-

ance in the distribution. Such a higher variance can,

for example, be useful for exploration in reinforcement

learning.

We compute the system noise covariance Σs =

BΣuB
T by examining the cross-correlation between

time steps of the trajectory distribution. To do so, we

compute the joint distribution p
(
yt,yt+dt

)
of the cur-

rent state yt and the next state yt+dt as

p
(
yt,yt+dt

)
=

N
([
yt
yt+dt

] ∣∣∣ [µt
µt+dt

]
,

[
Σt Ct

CT
t Σt+dt

])
, (49)

Using Probabilistic Movement Primitives in Robotics 15

where Ct = Ψ tΣwΨ
T
t+dt is the cross-correlation of the

subsequent time points. We use our linear Gaussian

model to match the cross correlation. The joint dis-

tribution for yt and yt+dt can also be obtained by our

system dynamics, i.e.,

p
(
yt,yt+dt

)
= N (yt|µt,Σt)N

(
yt+dt|Fyt + f ,Σu

)
which yields a Gaussian distribution with mean and

covariance

µ̂t =

[
µt

Fµt + f

]
, Σ̂t =

[
Σt ΣtF

T

FΣt FΣtF
T +Σs dt .

]
(50)

The noise covariance Σs is obtained by matching

both covariance matrices given in Equation (49) and

(50),

Σs dt = Σt+dt − FΣtF
T = Σt+dt − FΣtΣ

−1
t ΣtF

T

= Σt+dt −CT
t Σ
−1
t Ct, (51)

and solving for Σs. The variance Σu of the control

noise is then given by

Σu = B†ΣsB
†T . (52)

The variance of our stochastic feedback controller does

not depend on the controller gains and can be pre-

computed before estimating the controller gains. If the

computed desired control noise is smaller than the real

control noise of the system, we use the control noise of

the system to calculate the feedback gain matrix K.

Otherwise the estimated Σu is used to allow the tra-

jectory distribution to increase its variance.

4.4.4 Controlling a Physical System

On a non-linear physical system, we first obtain the

linearization of the dynamics model using the current

state yt and use this linearization to obtain the param-

eters of the controller for the current time step in an

online manner.

For a physical system, we also have to consider that

the variance of the control noise Σu, computed from

Equation (52), contains two sources of noise; first, the

inherent system noise Σ′u, and, second, the additional

noise injected into the system by the demonstrator.

Therefore, if we apply the control noiseΣu the inherent

system noise will still be present and, as a result, our

controller will not match the demonstrated distribution

as it already contained the system noise. Therefore, we

compute the control noise covariance

Σ[new]
u = Σu −Σ′u (53)

−1

−0.5

0

q
(r
a
d
)

0 0.25 0.5 0.75 1
−5

0

5

time(s)

q̇
(r
a
d
/
s)

(a) ProMPs

0 0.25 0.5 0.75 1

time(s)

(b) DMPs

Fig. 8 Robustness evaluation. We applied a perturbation be-
tween the dashed lines with an amplitude of P = 200(m/s2)
(green), or an amplitude of P = −200(m/s2) (blue). The
ProMPs (a) show compliant behavior but pass through the
via-point accurately. The DMPs (b) are much stiffer and
compensate the perturbation faster, before the via-point was
reached. The DMPs exhibit a less efficient recovery strategy
due to the higher actions.

by subtracting the estimated system noise Σ′u from the

controller noise Σu, computed from Equation (52). If

the resulting controller noise is not positive definite,

e.g., when the system noise estimate is higher than the

control noise, we set the control noise to zero.

Illustrative Example - Robustness Analysis. In

order to evaluate the robustness of our approach, we

test different MP approaches under strong perturba-

tion occurring during the execution of the movement,

see Fig. 8. Our control approach demonstrates com-
pliant behavior when the variance of the movement

is high. It allows larger deviations from the demon-

strated distribution and takes more time to “return”

to the distribution. However, it manages to pass accu-

rately through the via-points as this point has small

variance. The DMPs on the other hand, use high feed-

back gains which results in a less compliant movement

which quickly tries to return to the mean trajectory.

Such strategy results in unnecessary high control ac-

tions as DMPs do not have a notion of the importance

of time points.

4.4.5 Relation to Optimal Control

Our controller derivation has strong relations to opti-

mal control (OC). Equation (42) resembles a continuous

time Ricatti equation that is typically used for state es-

timation [51], only the observation noise is missing as it

is not present in our application. It is well known that

state estimation and optimal control are dual problems

16 Alexandros Paraschos et al.

that can be solved in the same framework [51]. Yet, our

usage of the Ricatti equation is quite different from OC

and state estimation. Both approaches use the Ricatti

equation for backwards integration of the value func-

tion, or the covariance, respectively. In contrast, we as-

sume that the covariance and its derivative are already

known. In this case, we can use the Ricatti equation to

obtain the controller gains and no backwards integra-

tion is required. By circumventing the backwards inte-

gration, we can also avoid limitations of many OC algo-

rithms. Almost all OC methods require a linearization

of the model along a nominal mean trajectory. Using

this linearization, an approximately optimal linear con-

troller can be obtained [26,52]. In contrast, our ProMP

controller is non-linear as the linearization of the system

is computed online for the current state. The use of OC

or state estimation would also require that we know

either the reward function or the observation model.

Both quantities are unknown in the imitation learning

scenario.

5 Experiments

We evaluate our approach on simulated and real robot

experiments. Our experimental setups cover several as-

pects of our framework, i.e., stroke-based and rhyth-

mic movements, linear and non-linear systems, sim-

ple trajectory following tasks, coordinated movements,

and complex experiments such as table tennis or robot

hockey.

For the real-robot experiments, i.e., the Astrojax,

the maracas and the hockey task, we gathered demon-

strations by kinesthetic teach-in, whereas for the simu-

lated tasks we specify a cost function for finding the op-

timal time-varying controller. We used the optimal con-

trol algorithm from [52]. For stroke-based movements,

we train our approach as in Sec. 4.2.1 and for peri-

odic tasks we use the EM approach in Sec. 4.2.2. An

overview of the experiments performed and their ob-

jectives is given in Table 3. The open parameters of our

approach where hand-picked and no further tuning was

necessary.

5.1 7-link Reaching Task

In this task, we use a seven link planar robot that has to

reach desired target positions in task-space, at different

time points, with its end-effector. Our goal is to demon-

strate the co-activation of ProMPs to solve a combina-

tion of tasks by combining two different movements. In

addition, the task evaluates the necessity of the cou-

pling between the joints of the robot, which is imple-

mented by the ProMPs. As many joint configurations

can lead to the same end-effector position, the end-

effector of the robot can exhibit high accuracy, whereas

each individual joint can exhibit higher variability. In

this experiment, the end-effector has low variability at

the task-space via-points. In order to successfully re-

produce the demonstrated movements, ProMPs must

correctly capture and reproduce the coupling between

the DoF of the robot.

In the first set of demonstrations, the robot has to

reach the via-point at t1 = 0.25s. The reproduced be-

havior with the ProMPs is illustrated in Fig. 9(top).

We learned the coupling of all seven joints with one

ProMP. The ProMP exactly reproduced the via-points

in task space while exhibiting a large variability for time

steps in between the via-points. Moreover, the ProMP

could also reproduce the coupling of the joints from

the optimal control law which can be seen by the small

variance of the end-effector in comparison to the rather

large variance of the single joints at the via-points. The

ProMP achieved an average cost value of similar quality

as the optimal controller.

In the second set of demonstrations the first via-

point was located at time step t2 = 0.75s. The move-

ment of the robot is illustrated for specific time steps

in Fig. 9(middle). We combined both primitives and

the resulting movement is illustrated in Fig. 9(bottom).

The combination of both MPs accurately reaches both

via-points at t1 = 0.25 and t2 = 0.75, generating a

primitive that satisfies both tasks.

Moreover, we evaluated the reproduction cost our

approach to the number of training demonstrations in

Fig. 10. The comparison was performed on the first set

of demonstrations, i.e. top row of Fig. 9. With only two

training demonstrations, our approach depends heav-

ily on the regularization coefficients for the estima-

tion of the covariance matrix and, on average, produces

higher actions compared to using more demonstrations

for training. In Fig. 10, we show that the performance

of our approach does not significantly improve using

more than 20 demonstrations for training. Additionally,

we evaluated the performance of the inverse covariance

controller [5] and the DMPs [17]. The cost for every

experiment is averaged over 200 reproductions. Addi-

tionally, we average over 10 trials, where for each trial,

we randomly randomly regenerated the demonstrations

using an optimal control law.

5.2 Double Pendulum

In this experiment we evaluate our control approach

on a system with non-linear dynamics. We use a simu-

lated double-pendulum with unit link lengths and unit

Using Probabilistic Movement Primitives in Robotics 17

Table 3 Overview of the experimental evaluation of ProMPs

Experiment Real robot #DoF Basis Type #Demos #Basis Evaluation Objectives

7-link Reach. Sim. 7 Gaussian 200 20 movement coordination, via-points, combination
Double Pend. Sim. 2 Gaussian 100 36 non-linear system, change in the dynamics
Astrojax X 7 Von-Mises 7 periods 30 periodic movements, movement coordination
Maracas X 7 Von-Mises 5 periods 10 periodic movements, temporal modulation, blending
Hockey X 7 Gaussian 10+10 10 union, combination, conditioning, context
Table Tennis Sim. 7 Gaussian 20 15 generalization in a complex noisy environment

−2 0 2 4 6

0

2

4

6

−2 0 2 4 6 −2 0 2 4 6
x−axis [m]

−2 0 2 4 6 −2 0 2 4 6

0

2

4

6

y−
ax

is
 [m

]

0

2

4

6

t = 0s t = 0.25s t = 0.5s t = 0.75s t = 1.0s

Fig. 9 A 7-link planar robot has to reach a target position
at T = 1.0s with its end-effector while passing a via-point
at t1 = 0.25s (top) or t2 = 0.75s (middle). The plot shows
the mean posture of the robot at different time steps in black
and samples generated by the ProMP in gray. The ProMP
approach was able to exactly reproduce the demonstration
which have been generated by an optimal control law. The
combination of both learned ProMPs is shown in the bottom.
The resulting movement reached both via-points with high
accuracy.

101 102
106

107

2

Demonstrations

C
os
t

Fig. 10 Evaluation of the reproduction cost versus the num-
ber of demonstrations provided for training on the 7-link task-
space via-point task. We present the results using ProMPs
(blue), the Inv. Cov. Ctl. (red) [5], and DMPs (green) [17].
The cost is averaged over 200 reproductions for every ap-
proach and over 10 trials.

masses. Non-linearities are induced due to gravity, cen-

tripetal and Coriolis forces. During the execution of our

controller we compute a linearization of the system dy-

namics at every time step at the state yt to obtain

{At,Bt, ct}.

In this experiment, we also evaluate the robustness

of the controller to changes in the system dynamics.

To this end, we generated demonstrations on a lin-

ear double-link system, i.e. without gravity, centripetal,

and Coriolis forces taken into account, using the opti-

mal controller. Subsequently, we executed the learned

trajectory distribution on the non-linear dynamical sys-

tem using the ProMP controller that uses the lineariza-

tion of the real dynamics. The linearization is per-

formed in an online manner at the current state of the

system for each of the reproductions, resulting in state-

dependent gains and a non-linear control architecture.

Our results are presented in Fig. 11. The reproduced

trajectory distribution matches the demonstrations, de-

spite the drastic change in the dynamics of the system.

Additionally, we compare to the ProMP controller if

we use a pre-linearization of the system dynamics along

the mean trajectory, which is given in Fig. 11 (second

row). Linearizing at the mean trajectory results in a

linear feedback controller with state-independent gains

and, hence, the resulting controller can not reproduce

the demonstrated trajectory distribution. Moreover, we

evaluated the reproduction a learned linear Gaussian

controller per time-step which is learned from data ob-

tained from the ProMP controller. We used the ProMP

reproductions as our classical optimal control method

[52] failed to find a solution that was minimizing the

given cost function. This approach is a linearized ver-

sion of the non-linear ProMP controller. Our results in

Fig. 11 show that the tracking performance reduces sig-

nificantly, which proofs that the non-linearities of the

ProMP controller are essential for accurate distribution

tracking in non-linear systems.

5.3 Playing Astrojax

‘Astrojax’ is a toy consisting of three balls on a string.

Two balls are fixed at either end of the string, while

one ball is free to slide along the string. Roughly,

‘Astrojax’ is a game between ‘YoYo’ and juggling. In

order to successfully play ‘Astrojax’, the bottom two

balls should orbit each other and not get in touch.

We use the ‘Astrojax’ experiment to demonstrate that

18 Alexandros Paraschos et al.

−0.5

0

0.5

q
(r
a
d
)

0 0.25 0.5 0.75 1

−0.5

0

0.5

time (s)

q
(r
a
d
)

(a) First Joint

0 0.25 0.5 0.75 1

time (s)

(b) Second Joint

Fig. 11 Double pendulum, non-linear system. In red we de-
pict the demonstrated trajectory distribution. (first row) In
this experiment, we use the optimal controller to generate
demonstrations on a linear system. Subsequently, we executed
our controller on a non-linear double-pendulum system. The
reproduced trajectory distribution(blue) match the demon-
strations (red) despite the changed dynamics. The ProMP
controller is using the linearization at the current state to
compute the control gains. (second row) We illustrate the
performance of our approach by using non state-independent
gains(blue) where the linearization is performed offline along
the mean state trajectory. As can be seen, ProMPs with state-
independent gains are not capable of reproducing the demon-
strated trajectory distribution. In green, we evaluate the per-
formance of a linearized version of the non-linear ProMP con-
troller which has been learned by fitting a linear model to the
data produced by the ProMP controller. Also the linearized
ProMP controller fails at tracking the distribution, showing
that the state-dependent gains of the ProMP controller that
cause the non-linearity are essential for accurate tracking in
non-linear systems.

ProMPs can successfully learn and reproduce periodic

movements. The real-robot setup is shown in in Fig. 1

and Fig. 12. The hand performs a stable grasp and is

not controlled by ProMPs. We demonstrate a rhythmic

movement to the robot which created a “basic orbit”

pattern. We subsequently use the ProMPs to learn the

movement with thirty Von-Mises basis functions for

each joint. The robot could reproduce the behavior and

recreated the same pattern, as illustrated in Fig. 12.

The demonstrations exhibit a lot of variability and the

robot generate periodic movements which show the

same type of variability. During the demonstrations,

we were capable of sustaining a successful orbit of

the ‘Astrojax’ for a mean duration of tdemo = 8.2(s).

During the reproduction, we achieved a mean orbiting

of treprod. = 15.2(s). In contrast, the DMP approach

would repeat always exactly the same movement,

rendering the behavior different than the demonstrated

one. DMPs are neither capable of reproducing variabil-

ity, be compliant, or generate coordinated movements.

GMR approaches, to our knowledge, have not yet

investigated the application in periodic movements. A

video with the robot playing ‘Astrojax’ can be found

at http://www.ausy.tu-darmstadt.de/uploads/

Team/AlexandrosParaschos/Astrojax.mp4.

5.4 Robot Maracas

The maracas is a musical instrument containing grains.

Shaking the maracas produces sounds. We used the

KUKA lightweight arm for the experiments and the

DLR hand to grasp the instrument. The hand was only

used for holding the maracas and was not controlled by

the ProMPs. Our setup is shown in Fig. 1.

As demonstrating fast movements with kinesthetic

teach-in can be difficult on the real robot arm due to the

inertia, friction, and model discrepancies, we demon-

strate a slower movement of ten periods. We used this

slow demonstration for learning the primitive but mod-

ulated the speed of the phase during reproduction. The

faster movement achieved a shaking movement of ap-

propriate speed that generates the desired sound of the

instrument.

We learned the rhythmic movement using N = 10

Von-Misses basis functions per dimension. The ProMP

was trained all seven DoF of the robot. We optimized

the parameters of ProMPs using the Expectation Max-

imization algorithm. To do so, we split the demonstra-

tion in M = 400 segments and assigned the appropriate

phase signal. We executed our controller after training

and we measured that the generated trajectories stay

on average 94.4% of the total time within two standard

deviations of demonstrated distribution. After learning

the ProMP model from the demonstration, we progres-

sively increase the speed of the movement by modulat-

ing the phase, such that the robot successfully plays the

instrument.

The speed of the motion can be changed during exe-

cution to achieve different sound patterns. We show an

example movement of the robot in Fig. 14(a). The de-

sired trajectory distribution of the demonstrated rhyth-

mic movement and the resulting distribution generated

from the feedback controller again match.

Additionally, we demonstrated a second type of

rhythmic shaking movement and use it to contin-

uously blend between both movements to produce

different sounds. One such transition between the

two ProMPs is shown for one joint in Fig. 14(b)

and (c). We measured the trajectory reproduction

accuracy from our controller against the desired

blended distributions and found that the trajectories

are within two standard deviations for 92.7%, and

http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Astrojax.mp4
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Astrojax.mp4

Using Probabilistic Movement Primitives in Robotics 19

Fig. 12 The KUKA light-weight arm playing “Astrojax”. The robot holds one of the balls in his fingers and starts with
releasing the ball that is connected to the other end of the string. It subsequently reproduces the demonstrated rhythmic
movement showing the same human-like variability in its movement pattern.

Fig. 13 The simulated table tennis setup. (left) Shown are
the robot arm mounted on linear axis, the ball position, the
hitting plane in which the robot will try to hit the ball, and
the hitting point prediction. Due to the induced noise in our
simulation the desired and actual hitting points may differ.
On the opponent’s side, we can see the robot’s target for this
simulation. In our experiments, we use 15 different combina-
tions of initial ball positions and targets covering most of the
table.

93.4% of the total execution time, respectively. A

video showing the demonstration phase, reproduction

with time modulation, and blending two primitives

can be found at http://www.ausy.tu-darmstadt.de/

uploads/Team/AlexandrosParaschos/Maracas.mp4

5.5 Robot Hockey

In the hockey task, the robot has to shoot a hockey

puck in different directions and for different distances.

The task setup is depicted in Fig. 15(a). We used the

KUKA lightweight arm for this experiment and con-

trolled the accelerations of the arm with the ProMPs

using an inverse dynamics controller. The control pa-

rameters of the robot tk∈1...K are the desired position

vector qt ∈ R7 and the desired acceleration q̈t ∈ R7 of

each joint. The ProMPs provide at every time point the

desired acceleration q̈t, while the desired position qt is

obtained from second-order Euler integration of the ac-

celeration. The duration of the control step is dt = 1ms.

A hockey stick is mounted as an end-effector for hitting

the puck.

We again used two sets of demonstrations. The first

set contained M1 = 10 demonstrations where the robot

shot the puck straight at varying distances. The demon-

strations were provided by a human tutor, using kines-

thetic teaching. The second set also contained M2 = 10

demonstrations where the demonstrator shot the puck

at varying angles, while trying to keep the variance

of the distance relatively small. For both demonstra-

tion sets, we trained two ProMPs using N = 10 Gaus-

sian basis functions per dimension, which resulted in

a weight vector w ∈ R70. By reproducing the learned

primitives, we obtain behaviors illustrated in Fig. 15(b)

and Fig. (c) respectively. The shots exhibit the demon-

strated variability in either angle or distance. We gener-

ated the images in Fig. 15 by taking the picture of the

robot’s configuration after the execution of the prim-

itive and the puck has stopped. The figures show an

overlay of the images from multiple executions of each

primitive. By training a primitive on the union of the

two datasets, the robot is able to shoot the puck at a va-

riety of angles and distances, as illustrated in Fig. 15(d).

Additionally, we co-activated the two individual prim-

itives and the resulting MP shoots only in the center

at medium distance, i.e., the intersection of both MPs,

as illustrated in Fig. 15(e). This experiment again illus-

trates the achievement of a combination of tasks, where

the first task was to shoot at a desired angle and the

second, to shoot at a desired distance.

Finally, we learned a conditional distribution over

the trajectories conditioned on the angle of the final

puck position as described in Sec. 4.3.2. The result-

ing primitive was able to shoot at the desired angle as

illustrated in Fig. 15(f). All the operations are com-

puted in closed form, no re-estimation of the primitive

parameters is needed to compute the generalization or

the combination of the primitives.

We provide a cost function evaluation of the two

demonstrated datasets, the “angle” and the “distance”

dataset, and the respective reproduction in Table 4. The

cost function is chosen intuitively to resemble the de-

sired task. By giving the human demonstrator a specific

task, we can assume that he is minimizing a similar

cost function, at least in approximation. Our approach

successfully reproduces the same costs as in the demon-

strations. The cost function of the “distance” dataset

http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Maracas.mp4
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Maracas.mp4

20 Alexandros Paraschos et al.

q
[ra

d]

time [s]
1 2 3 4 5 6 7 8 9 10

1.3

1.4

1.5

1.6

1.7

Desired
Feedback Controller

q
[ra

d]

time [s]
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Demonstration 1
Demonstration 2
Combination

q
[ra

d]

time [s]
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Demonstration 1
Demonstration 2
Combination

Fig. 14 (a) The trajectory distribution of the fourth joint when playing maracas. The speed of the movement is adapted by
modulating the speed of the phase signal zt.The desired distribution is shown in blue and the generated distribution from the
feedback controller in green. Both distributions match. (b,c) Blending between two rhythmic movements (blue and red areas).
The green area is produced by continuously switching from the blue to the red movement.

contains demonstrations that shoot the puck at differ-

ent distances, but aiming at the same angle. Therefore,

it only penalizes deviations from the desired angle. Sim-

ilarly, in the “angle” dataset, the cost function penalizes

deviations from the desired distance. Since, shooting

the puck at a specific distance is quite hard due to dif-

ferent environment variables, i.e, friction between the

puck surface and the floor, we choose a lower deviation

penalty.

We also evaluated the cost on the combined move-

ment which is supposed to solve both tasks, i.e., shoot

at a specific distance and angle. For this evaluation,

we added the cost functions from the “distance” and

“angle” datasets. In Table 4, we show that the repro-

duction of the combination, which is a newly composed

behavior not present in the demonstrations, achieves

significantly lower costs than both original datasets.

5.6 Simulated Table Tennis

In this experiment, we evaluate the generalization capa-

bilities of the ProMPs for a complex task. As compar-

ison, we use the DMP approach presented in [21]. The

robot, a simulated BioRob 5-DoF arm [20], is mounted

on two linear axis and equipped with and additional

Table 4 Evaluation of the average cost for the Robot Hockey
experiment. We present the average cost of the human demon-
strations for both demonstrated datasets. The robot repro-
duction results in similar cost as the demonstrations. The
“Combination” cost is specified as the sum of both cost func-
tions. The robot produces a novel composed behavior that
performs significantly better than both demonstrated sets.

Dataset Average Cost

Demonstrations Distance 1.20 ± 1.18
Angle 2.21 ± 2.95

Reproduction Distance 1.24 ± 1.24
Angle 2.07 ± 3.16
Combination 2.52 ± 1.59

Evaluation Dist. on Comb. 6.21 ± 8.18
Angle on Comb. 25.97±21.54

shoulder joint. The setup is shown in Fig. 13. We con-

trol the robot with inverse dynamics control. We used

an imperfect inverse dynamics model to render the sim-

ulation more realistic. As a result, the desired and ac-

tual trajectories do not match exactly and, thus, make

the robot more sensitive to jerky movements as jerky

movements are harder to track. At the beginning of each

experiment, the ball is set to different pre-specified po-

sitions and initial velocities.

The robot has to return the ball to a specific tar-

get area at the opponents field. For this experiment, we

gathered trajectories for 15 different combinations of

initial ball configurations and robot targets, generated

from an analytical player [30]. We trained the ProMP

approach with the whole data-set and created a single

primitive. In our experiment, the ball state is set at the

beginning of a trial and the ProMP is conditioned to the

predicted hitting position and velocity in joint space,

obtained from the analytical player. A delay before the

start of the execution of the primitive is provided by the

simulation. In order to make the task more realistic, we

assume that the ball state is estimated, instead of being

directly observed, with zero-mean i.i.d. Gaussian noise.

The noise on the ball position increases the task diffi-

culty significantly as it also affects the estimated time

until the ball reaches the hitting plane. We evaluate the

ProMPs and the DMPs on each of the 15 task setups by

computing the average distance to the target and the

average success rate. We display our results on Fig. 16.

The DMP was trained with only one demonstration,

while the goal position and velocity were modified ac-

cording to predicted hitting point using the approach

presented in [21]. The DMP had inferior performance

as it significantly deforms the trajectories, which makes

the resulting trajectory harder to track as the feedback

controller saturates in torque limits due the deforma-

tion. This saturation has the effect that the robot does

not reach the specified hitting point with the specified

velocity.

Using Probabilistic Movement Primitives in Robotics 21

a

Setup

b

Distance

c

Angle

d

Union

e

Combination

f

Conditioning

Fig. 15 Robot Hockey. The robot shoots a hockey puck. The figure shows overlaid images of the real-robot setup that is set
on the flour, taken from above. We demonstrate ten straight shots with varying distances and ten shots with varying angles.
The pictures show samples from the ProMP model for straight shots (b) and shots with different angles (c). Learning from the
union of the two data sets yields a model that represents variance in both distance and angle (d). Co-activating the individual
MPs leads to a combined MP that reproduces shots where both models had probability mass, i.e., in the center at medium
distance (e). The last picture shows the effect of conditioning on the angle of the shoot (f).

0

0.05

0.1

0.15

0.2

D
is

ta
nc

e
to

 ta
rg

et
 (m

)

DMPs
ProMPs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

Fig. 16 The distance between the impact position of the ball
on the opponents field and the actual targeted point in me-
ters, for the DMP and the ProMP approaches. We tested 15
different configurations of ball initial states and robot’s tar-
gets. We average the results over 20 samples where Gaussian
observation noise was added to the initial ball position. The
bars denote the mean error and the error-bars one standard
deviation. (bottom) Shows the success rate for each combi-
nation. If the distance between the landed position and the
target position is less than 0.4 meters it is counted as a suc-
cess. The performance of ProMPs is superior in all the exper-
iments leading generally to smaller errors with an increased
success rate.

6 Discussion and Conclusion

Probabilistic movement primitives are a promising ap-

proach for learning, modulating, and re-using move-

ments in a modular control architecture. To effectively

take advantage of such a control architecture, ProMPs

support simultaneous activation, match the quality of

the encoded behavior from the demonstrations, are

able to adapt to different desired target positions, and

can be efficiently learned by imitation. In ProMPs we

parametrize the desired trajectory distribution of the

primitive by a hierarchical Bayesian model with Gaus-

sian distributions. The trajectory distribution can be

easily obtained from demonstrations and simultane-

ously defines a feedback controller which is used for

movement execution. Our probabilistic formulation in-

troduces new operations for movement primitives, such

us conditioning and combination of primitives. These

all these mechanisms do not exist for alternative repre-

sentations and, with ProMPs, we provide a single math-

ematical framework to describe them. Future work will

focus on using the ProMPs in a modular control ar-

chitecture and improving upon imitation learning by

reinforcement learning.

The advanced flexibility of ProMPs comes to a cost

of requiring multiple demonstrations in order to accu-

rately encode the distribution over the trajectories. The

number of demonstrations required depend on the com-

plexity of the task and, from our experience, ∼ 10− 20

suffice for simple tasks. Prior knowledge about the task

can be incorporate by using prior distributions and

regularization techniques. Furthermore, our approach

is appropriate for tasks that have a strong coupling

to time. For tasks loosely coupled with time, other

approached might produce better results. Finally, it

should be noted that our approach can not capture mul-

tiple modes since we only use a single Gaussian compo-

nent to encode the trajectory distribution.

Acknowledgements The research leading to these
results has received funding from the European Com-
munity’s Framework Programme CoDyCo (FP7-ICT-
2011-9 Grant.No.600716), CompLACS (FP7-ICT-
2009-6 Grant.No.270327), and GeRT (FP7-ICT-2009-4
Grant.No.248273).

22 Alexandros Paraschos et al.

References

1. Bruno, D., Calinon, S., Malekzadeh, M.S., Caldwell,
D.G.: Learning the stiffness of a continuous soft manipu-
lator from multiple demonstrations. Intelligent Robotics
and Applications, pp. 185–195. Springer (2015)

2. Buchli, J., Stulp, F., Theodorou, E., Schaal, S.: Learn-
ing variable impedance control. International Journal of
Robotics Research 30(7), 820–833 (2011)

3. Calinon, S.: A tutorial on task-parameterized movement
learning and retrieval. Intelligent Service Robotics 9(1),
pp. 1–29 (2016)

4. Calinon, S., D’halluin, F., Sauser, E.L., Caldwell, D.G.,
Billard, A.G.: Learning and reproduction of gestures by
imitation. IEEE Robotics and Automation Magazine 17,
pp. 44–54 (2010)

5. Calinon, S., Sardellitti, I., Caldwell, D.G.: Learning-
based control strategy for safe human-robot interaction
exploiting task and robot redundancies. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 249–254 (2010)

6. Daniel, C., Neumann, G., Peters, J.: Learning Concur-
rent Motor Skills in Versatile Solution Spaces. IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 3591–3597(2012)

7. dAvella, A., Bizzi, E.: Shared and Specific Muscle Syn-
ergies in Natural Motor Behaviors. Proceedings of the
National Academy of Sciences (PNAS) 102(3), pp. 3076–
3081 (2005)

8. Degallier, S., Righetti, L., Gay, S., Ijspeert, A.: Toward
simple control for complex, autonomous robotic applica-
tions: combining discrete and rhythmic motor primitives.
Autonomous robots 31, pp. 155–181 (2011)

9. Dominici, N., Ivanenko, Y.P., Cappellini, G., dAvella, A.,
Mond̀ı, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo,
A., Giannini, C., et al.: Locomotor primitives in newborn
babies and their development. Science 334(6058), pp.
997–999 (2011)

10. Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.:
Encoding of periodic and their transient motions by a
single dynamic movement primitive. IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids),
pp. 57–64 (2012)

11. Ewerton, M., Maeda, G., Peters, J., Neumann, G.: Learn-
ing motor skills from partially observed movements exe-
cuted at different speeds. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
456–463. (2015)

12. Forte, D., Gams, A., Morimoto, J., Ude, A.: On-line
motion synthesis and adaptation using a trajectory
database. Robotics and Autonomous Systems 60, pp.
1327–1339 (2012)

13. Gams, A., Nemec, B., Ijspeert, A.J., Ude, A.: Coupling
movement primitives: Interaction with the environment
and bimanual tasks. IEEE Transactions on Robotics,
30(4), pp. 816–830 (2014)

14. Higham, N.J.: Computing a nearest symmetric positive
semidefinite matrix. Linear Algebra and its Applications
103 (1988)

15. Ijspeert, A.J.: Central pattern generators for locomotion
control in animals and robots: a review. Neural Networks
21(4), pp. 642–653 (2008)

16. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P.,
Schaal, S.: Dynamical movement primitives: learning at-
tractor models for motor behaviors. Neural Computation
25(2), pp. 328–373 (2013)

17. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attrac-
tor landscapes for learning motor primitives. Advances
in Neural Information Processing Systems (NIPS), pp.
1547–1554. MIT Press (2003)

18. Khansari-Zadeh, S.M., Billard, A.: Learning stable non-
linear dynamical systems with Gaussian mixture mod-
els. IEEE Transactions on Robotics 27(5), pp. 943–957
(2011)

19. Khansari-Zadeh, S.M., Kronander, K., Billard, A.: Mod-
eling robot discrete movements with state-varying stiff-
ness and damping: A framework for integrated motion
generation and impedance control. Robotics Science and
Systems (R:SS) (2014)

20. Klug, S., Lens, T., von Stryk, O., Möhl, B., Karguth, A.:
Biologically inspired robot manipulator for new applica-
tions in automation engineering. Proceedings of Robotik
(2008)

21. Kober, J., Muelling, K., Kroemer, O., Lampert, C.H.,
Scholkopf, B., Peters, J.: Movement templates for learn-
ing of hitting and batting. International Conference on
Robotics and Automation (ICRA), pp. 853–858 (2010)

22. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.:
Robot Learning from Demonstration by Constructing
Skill Trees. International Journal of Robotics Research
(IJRR) 31(3), 360–375 (2012)

23. Kormushev, P., Calinon, S., Caldwell, D.G.: Robot motor
skill coordination with EM-based reinforcement learning.
International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 3232–3237 (2010)

24. Kulvicius, T., Ning, K., Tamosiunaite, M., Worgotter, F.:
Joining movement sequences: Modified dynamic move-
ment primitives for robotics applications exemplified on
handwriting. IEEE Transactions on Robotics 28(1), pp.
145–157 (2012)

25. Lazaric, A., Ghavamzadeh, M.: Bayesian Multi-Task Re-
inforcement Learning. International Conference on Ma-
chine Learning (ICML), pp. 599-606 (2010)

26. Li, W., Todorov, E.: Iterative linear quadratic regulator
design for nonlinear biological movement systems.. Inter-
national Conference on Informatics in Control, Automa-
tion and Robotics (ICINCO), pp. 222–229 (2010)

27. Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Pe-
ters, J., Neumann, G.: Learning interaction for collabora-
tive tasks with probabilistic movement primitives. Inter-
national Conference on Humanoid Robots (Humanoids),
pp. 527–534 (2014)

28. Matsubara, T., Hyon, S.H., Morimoto, J.: Learning
parametric dynamic movement primitives from multi-
ple demonstrations. Neural networks 24(5), pp. 493–500
(2011)

29. Moro, F.L., Tsagarakis, N.G., Caldwell, D.G.: On the
kinematic motion primitives (kMPs) - theory and appli-
cation. Frontiers in Neurorobotics 6(10), pp. 1–18 (2012)

30. Muelling, K., Kober, J., Peters, J.: A biomimetic ap-
proach to robot table tennis. Adaptive Behavior Journal
19(5), pp. 359–376 (2011)

31. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning
to select and generalize striking movements in robot table
tennis. Int. J. Rob. Res. 32(3), pp. 263–279 (2013)

32. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal,
S., Kawato, M.: Learning from demonstration and adap-
tation of biped locomotion. Robotics and Autonomous
Systems 47, pp. 79–91 (2004)

33. Neumann, G., Daniel, C., Paraschos, A., Kupcsik, A., Pe-
ters, J.: Learning modular policies for robotics. Frontiers
in Computational Neuroscience 8(62), (2014)

Using Probabilistic Movement Primitives in Robotics 23

34. Neumann, G., Maass, W., Peters, J.: Learning Complex
Motions by Sequencing Simpler Motion Templates. In-
ternational Conference on Machine Learning (ICML), pp.
753–760 (2009)

35. OHagan, A., Forster, J.: Kendalls advanced theory of
statistics: Bayesian inference. 2b (2nd edn.), arnold, new
york, ny. Tech. rep., ISBN 0-340-80752-0 (2004)

36. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Prob-
abilistic movement primitives. Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 2616–2624 (2013)

37. Paraschos, A., Neumann, G., Peters, J.: A probabilistic
approach to robot trajectory generation. International
Conference on Humanoid Robots (Humanoids), pp. 477–
483 (2013)

38. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learn-
ing and generalization of motor skills by learning from
demonstration. International Conference on Robotics
and Automation (ICRA), pp. 763–768 (2009)

39. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: On-
line movement adaptation based on previous sensor ex-
periences. International Conference on Intelligent Robots
and Systems (IROS), pp. 365–371 (2011)

40. Peters, J., Mistry, M., Udwadia, F.E., Nakanishi, J.,
Schaal, S.: A Unifying Methodology for Robot Control
with Redundant DOFs. Autonomous Robots 24 (1), pp.
1–12 (2008)

41. Righetti, L., Ijspeert, A.J.: Programmable central pat-
tern generators: an application to biped locomotion con-
trol. International Conference on Robotics and Automa-
tion, (ICRA), pp. 1585–1590 (2006)

42. Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., Tor-
ras, C.: Learning collaborative impedance-based robot
behaviors. AAAI Conference on Artificial Intelligence,
pp. 1422–1428 (2013)

43. Rückert, E.A., Neumann, G., Toussaint, M., Maass, W.:
Learned graphical models for probabilistic planning pro-
vide a new class of movement primitives. Frontiers in
Computational Neuroscience 6 (97), (2012)

44. Rueckert, E., Mundo, J., Paraschos, A., Peters, J., Neu-
mann, G.: Extracting low-dimensional control variables
for movement primitives. International Conference on
Robotics and Automation (ICRA), pp. 1511–1518 (2015)

45. Schaal, S., Mohajerian, P., Ijspeert, A.: Dynamics sys-
tems vs. optimal control — a unifying view. Compu-
tational Neuroscience: Theoretical Insights into Brain
Function, pp. 425–445 (2007)

46. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Learn-
ing Movement Primitives. International Symposium on
Robotics Research, pp. 561–572 (2005)

47. da Silva, B., Konidaris, G., Barto, A.: Learning Param-
eterized Skills. International Conference on Machine
Learning, pp. 1679–1686 (2012)

48. Stark, H., Woods, J.: Probability and Random Processes
with Applications to Signal Processing, 3 edn. (2001)

49. Stengel, R.F.: Optimal control and estimation. Courier
Corporation (2012)

50. Todorov, E., Jordan, M.: Optimal Feedback Control as a
Theory of Motor Coordination. Nature Neuroscience 5,
pp. 1226–1235 (2002)

51. Todorov, E.: General Duality between Optimal Control
and Estimation. Conference on Decision and Control 5,
pp. 4286-4292 (2008)

52. Toussaint, M.: Robot Trajectory Optimization using Ap-
proximate Inference. International Conference on Ma-
chine Learning (ICML), pp. 1049–1056 (2009)

53. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-
Specific Generalization of Discrete and Periodic Dynamic

Movement Primitives. Transactions in Robotics (5), pp.
800–815 (2010)

54. Williams B.and Toussaint, M., Storkey, A.: Modelling
Motion Primitives and their Timing in Biologically Exe-
cuted Movements. Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 1609–1616 (2007)

	Introduction
	Properties of Movement Primitive Frameworks
	Related Work
	Probabilistic Movement Primitives (ProMPs)
	Experiments
	Discussion and Conclusion

