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Abstract Reward functions are an essential compo-

nent of many robot learning methods. Defining such

functions, however, remains hard in many practical ap-

plications. For tasks such as grasping, there are no reli-

able success measures available. Defining reward func-

tions by hand requires extensive task knowledge and

often leads to undesired emergent behavior. We intro-

duce a framework, wherein the robot simultaneously

learns an action policy and a model of the reward func-

tion by actively querying a human expert for ratings.

We represent the reward model using a Gaussian pro-

cess and evaluate several classical acquisition functions

from the Bayesian optimization literature in this con-

text. Furthermore, we present a novel acquisition func-

tion, expected policy divergence. We demonstrate re-

sults of our method for a robot grasping task and show

that the learned reward function generalizes to a simi-

lar task. Additionally, we evaluate the proposed novel

acquisition function on a real robot pendulum swing-up

task.
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Fig. 1: The Robot-Grasping Task. While grasping is one of
the most researched robotic tasks, finding a good reward func-
tion still proves difficult.
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1 Introduction

An important goal of Reinforcement Learning (RL) is

to yield more autonomous robots. However, RL meth-

ods require reward functions to specify desired be-

havior. While such reward functions are usually hand

coded, defining them for real robot tasks is challenging

even for well-studied problems such as grasping. Thus,

hand coding reward functions is shifting the problem of

requiring an expert to design a hard-coded controller

to requiring a hard-coded reward function.

Despite the variety of grasp stability measures that

have been developed [38], it has been shown that the re-

sulting grasps are outperformed by grasps learned from

kinesthetic teach-in [3]. This example shows that even

experts will often design reward functions that are not

effective in practice, or lead to undesired emergent be-

havior [30], while even non-experts can indicate good

grasps. While it may be difficult to analytically design

a reward function or to give demonstrations, it is often

easy for an expert to rate an agent’s executions of a

task. Thus, a promising alternative is to use the human

not as an expert in performing the task, but as an ex-

pert in evaluating task executions. Unfortunately, as al-

ready shown by Thomaz and Breazeal [39] and by Cak-

mak and Thomaz [5], humans have considerable noise

in their ratings of actions. To deal with imprecise hu-

man ratings, we propose to learn a probabilistic model

of the reward function and use it to guide the learn-

ing process of a RL agent. However, while learning a

complicated task will typically require many rollouts, a

good estimate of the reward model can often by inferred

from less samples. Thus, our goal is to learn a model of
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the human’s intrinsic reward function that generalizes

to similar observations such that the agent can learn

the task from few human-robot interactions.

To avoid specifying reward functions, Inverse RL

(IRL) extracts a reward function from demonstra-

tions [33, 34, 41]. For many tasks, such demonstra-

tions can be obtained by kinesthetic teach-in or tele-

operation. Unfortunately some skills – such as throwing

a basket ball – are hard to demonstrate. Moreover, both

methods require sufficient proficiency of the demonstra-

tor which requires being good at a task and being good

at performing the task on a robot. Following this intu-

ition, preference based algorithms allow the expert to

rank executions and learn a controller based on these

rankings [2, 6]. The commonly used approach in rank-

ing is to let the expert rank the previously best sample

against the current sample. This approach presents an

intriguing idea, as humans are better at giving rela-

tive judgments than absolute judgments. However, this

approach only provides a single bit of information.

The technical term describing how much information

human subjects can transmit for a given input stim-

uli is called channel capacity [27]. The channel capac-

ity is a measure for how many input stimuli subjects

can distinguish between. In a review of several experi-

ments, Miller [27] concludes that humans have a general

channel capacity between 1.6 and 3.9 bits for unidimen-

sional stimuli. Adding more dimensions to the stimuli

can further increase this value. Experiments have also

been performed to find out whether humans can trans-

mit more information when labeling stimuli according

to predescribed categories or when being allowed to rate

on a scale [15]. While there was no significant differ-

ence, subjects performed better when rating on a scale.

Based on these insights, we design our framework such

that the human expert can assign numerical values to

observed demonstrations. Furthermore, numerical re-

wards allow the human to indicate strong preferences

over demonstrations.

In this paper, we take advantage of the Gaussian

Process (GP) regression framework to represent the re-

ward model as well as the Bayesian Optimization (BO)

literature to optimize this model. We show that we can

use standard BO methods to efficiently minimize the

number of expert interactions, which is essential when

designing methods for ‘autonomous’ agents. Further-

more, we introduce a novel acquisition function (AF)

that outperforms traditional AFs in the proposed set-

ting. We evaluate the proposed method on a series of

simulated and real robot tasks. We also show that a

reward function which is learned for one task (grasping

a box) can be reused to learn a similar task (grasping

a pestle).

2 Reward Learning Framework

In this paper, we present an approach that complements

the Reinforcement Learning (RL) framework by replac-

ing the hard-coded reward function by a learned one.

As most RL methods do not make assumptions about

the reward function, the proposed approach does not

replace existing RL methods but can be used to ex-

tend them. We base our discussion on the Policy Search

(PS) framework. While there are many approaches to

RL, PS is especially well suited for real robot tasks. It

does not rely on exhaustive sampling of the state-action

space and, as a result, many recent advances in robot

learning are based on PS [23, 21, 29]. We consider the

contextual episodic PS case with continuous contexts

s ∈ S and continuous control parameters ω ∈ Ω. We

use the term ‘context’ to describe the subset of infor-

mation contained in the initial state that is necessary

to describe the task at hand. Examples could be the

position of an object or desired target locations. The

distribution over contexts is denoted by µπ(·). Whereas

the traditional RL notation uses actions a, we instead

write control parameters ω to clarify that we directly

optimize for the parameters of a controller which can,

for example, be a Movement Primitive as discussed in

Section 5.2. Executing a rollout with control parame-

ters ω in context s results in a trajectory τ ∼ p(τ |s,ω),

where the trajectory encodes both, the robot’s internal

transitions as well as relevant environment transitions

(e.g. joint angles and a ball’s position and speed). The

agent starts with an initial control policy π0(ω|s) in it-

eration 0 and performs a predetermined number of roll-

outs. After each iteration, the agent updates its policy

to maximize the expected reward

Es,ω,τ [R(τ )] =

∫∫∫
R (τ ) p(s,ω, τ ) dτ dsdω, (1)

with p(s,ω, τ ) = p(τ |s,ω)π(ω|s)µπ(s). Parameter-

based PS has been shown to be well suited for com-

plex robot tasks [9], as it abstracts complexity while

retaining sufficient flexibility in combination with suit-

able movement primitive representations.

In the original RL setting, a reward function for

evaluating the agent’s behavior is assumed to be known.

While not always explicitly stated, the reward function

for real robot tasks often depends on features φ(τ ) of

the trajectory. We refer to the result of the feature ex-

traction from trajectories as the outcomes o = φ(τ ).

We assume that the reward depends only on the fea-

tures of the trajectories. Such outcomes could, for ex-

ample, describe the minimal distance to goal positions

or the accumulative energy consumption.

As the problem of specifying good features φ(τ ) is

beyond the scope of this paper, we assume the features
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Rewards R = f(o)
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Fig. 2: Sketch of the elements of different possible approaches. The left column shows the ‘vanilla’ RL where a reward
function is assumed. The middle column shows the proposed active reward learning approach, which shares the policy learning
component with vanilla RL but models a probabilistic reward model that gets updated by asking for expert ratings sometimes.
The right column shows the BO approach, where actions are chosen that maximize the utility function (for example one of
the acquisition functions presented in 3 and requires an expert rating for each of the chosen actions).

to be known, as is usually assumed when designing re-

ward functions. The results in Section 6 show that the

proposed method learns complicated tasks using simple

features. This is possible because we base the estimation

of our probabilistic reward model on kernel functions

with automatic relevance determination, such that the

importance of individual features can be estimated from

data [32].

As outcomes are of much lower dimensionality than

trajectories, we can use outcomes to efficiently model

the reward function R̂(o) from a training set D =

{o1:n,R1:n} using regression. Using the feature rep-

resentation, the term R(τ ) in Eq. (1) is replaced by

R (o=φ(τ )) to become

Es,ω,τ [R(o)]=

∫∫∫
R (o=φ(τ )) p(s,ω, τ ) dτ dsdω.

(2)

Obviously, it is not sufficient to build the reward func-

tion model solely on samples from the initial policy

π0(ω|s), as the agent is likely to exhibit poor perfor-

mance in the early stages of learning and the reward

learner would not observe good samples. Therefore, we

need to couple the process of learning a good policy

π(ω|s) with learning a good reward function R̂(o), such

that they are developed interdependently. However, in

such a coupled active learning process, we need to know

which samples to query from our expert to minimize ex-

pert interaction.

Modeling a probabilistic reward model p(R|o,D),

instead of a deterministic reward function R(o), allows

us to leverage the information about the certainty of

our estimate to control the amount of human inter-

action required, as we only need to interact with the

human expert if our model of the reward is not suffi-

ciently certain. We describe the details of this process

in Section 2.1.

When using a probabilistic model of the reward, we

have to replace the reward term in Eq. (1) with

R(o) = Ep(R|o)[R] =

∫
p(R|o) R dR,

as most PS methods work on the expectation of the re-

ward. Using the probabilistic model of the reward func-

tion, the PS method continuously learns how to achieve

high reward outcomes, while the reward model learner

adapts the accuracy of its model.

2.1 Active Reward Learning

The proposed approach is independent of and comple-

mentary to the RL method used. The RL method aims

to find the optimal policy π∗(ω|s) and is agnostic as to

how the rewards are computed. Similarly, Active Re-

ward Learning (ARL) is agnostic as to how the set of

available samples are created. Hence, the method for

actively learning the reward can be combined with any

RL method. It follows that while RL methods are in-

herently active, and often aim to represent a reward-

related function such as the value function internally,

the proposed approach solves a distinct learning prob-

lem and has to be categorized separately. ARL aims to

maximize its relevant information about the human’s

intrinsic reward model in a sample efficient manner.

Thus, rather than annotating all samples, we aim to

find a method that actively selects informative samples

to query. Hence, learning the human’s intrinsic reward

function is an active learning process.

Our goal is to find a model p(R|o,D) that predicts

the reward R given an observed outcome o and training

data D, obtained from an expert. When modeling the
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Input: Information loss tolerance ε, improvement
threshold λ, acquisition function u
Initialize π using a single Gaussian with random
mean. GP with zero mean prior.
while not converged

Set sample policy:
q(ω|s) = πold(ω|s)

Sample: collect samples from the sample policy
{si ∼ p(s),ωi ∼ q(ω|si), oi}, i ∈ {1, . . . , N}

Define Bellman Error Function
δ(s,ω) = R(o)− V (s)

Minimize the dual function
[α∗, η∗] = arg min[α,η] g (α, η)

Determine base line
V (s) = αT∗φ(s)

Policy update:
Calculate weighting

p(si,ωi) ∝ q(si,ωi) exp
(

1
η∗ δ

∗(si,ωi)
)

Estimate distribution π(ω|s) by
weighted maximum likelihood estimates

Reward model update:
FindNominee = true
while FindNominee

Nominate outcome:
o+ = arg maxu(o)
if

(
o+ /∈ D

)
∧
(
σ(o+)/β > λ

)
Demonstrate corresponding trajec-

tory τ+

Query Expert Reward R+

D = D ∪ {o+, R+}
else

FindNominee = false

Update reward model p(R|o,D)
Optimize GP-hyper parameters θ

Output: Policy π(ω|s), reward model p(R|o,D)

Table 1: We show the algorithmic form of active reward
learning with REPS. We specify the information loss toler-
ance ε as well as an initial sampling policy and an improve-
ment threshold λ. In each iteration, the algorithm first sam-
ples from the sampling policy, minimizes the dual function
to find values for αT∗ and η∗ and then computes the next
policy. After each policy search iteration, the reward func-
tion learner chooses whether to demonstrate samples to the
expert according to the acquisition function. The parame-
ters α and η are parameters of the dual function problem of
REPS and can be optimized through standard optimization
algorithms [9].

reward, we have to take into account that the expert can

only give noisy samples of their implicit reward function

and we also have to model this observation noise. Thus,

we need to solve the regression problem

R̃(o) = R(o) + η, η ∼ N (0, β) ,

where we assume zero mean Gaussian noise. Such a re-

gression problem can, for example, be solved with Gaus-

sian Process (GP) regression

R(o) ∼ GP (m(o), k(o,o′)) ,

where m(o) is the mean function and k(o,o′) is the

covariance function of the GP. For the remainder of

this paper, we use the standard squared exponential

covariance function

k(o,o′) = θ20 exp

(
−||o− o

′||2

2θ21

)
.

The hyper parameters θ = {θ0,θ1, β} are found

through optimization of the model’s log likelihood [32].

Given a training set D = {o1:n,R1:n}, we can write

down the covariance matrix between previously ob-

served rewards and outcomes

K =

 k(o1,o1) . . . k(o1,on)
...

. . .
...

k(on,o1) . . . k(on,on)

+ βI.

Assuming a mean zero prior, the joint Gaussian prob-

ability of the training samples in D and the reward

prediction R+ of a new unrated observation is given by[
R1:n

R+

]
∼ N

(
0,

[
K k̂

k̄ k(o+,o+)

])
,

with k̂ = [k(o1,o
+) . . . k(on,o

+)]T and k̄ =

[k(o+,o1) . . . k(o+,on)]. The predictive posterior re-

ward p(R+|o,D) of a new outcome o+ is then given

by a Gaussian

p(R+|o,D) ∼ N
(
µ(o+), σ2(o+)

)
,

with mean and variance

µ(o+) = kTK−1R1:n,

σ2(o+) = k(o+,o+)− kTK−1k + β,

by conditioning the GP on the observed outcome o+.

Using the GP, we can represent both our expected re-

ward µ(o+), which is provided to the policy learner,

and the variance of the reward σ2(o+) which is essen-

tial to the reward learner. The reward variance σ2(o+)

depends on the distance of the outcome o+ to all out-

comes in the training set D and the observation noise

β, which is a hyper parameter that we optimize for. Us-

ing the predictive variance, we can employ one of many

readily available BO methods to find the maximum of

the reward function.

3 Bayesian Optimization for Active Reward

Learning

In this section, we first describe how to adapt arbitrary

acquisition to the presented framework. Subsequently,

we present a novel acquisition function which is op-

timized for active reward learning. The goal of BO
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is to optimize a function under uncertainty. Acquisi-

tion functions (AFs) are utility functions whose func-

tion value is maximized at locations of the input space

which are likely to be maxima of the original problem.

AFs usually encode an exploration-exploitation trade-

off, such that they not only query samples in known

high value regions but also in regions that have not

been sufficiently explored before. While using GPs to

model the reward function allows us to employ BO, we

deviate from the general BO approach in two points.

First, as our GP models a relationship of outcomes

to rewards instead of context-actions to rewards, we

cannot sample arbitrary outcomes ô to improve our es-

timate, as the robot does not know how to produce

these actions. To do so, we would require access to

p(τ |s,ω) such that we can request the agent to per-

form actions that result in trajectories τ̂ which yield

the outcome ô = φ(τ̂ ). Additionally, we would need

to guarantee that the outcomes requested by the AF

are physically possible. However, this transition model

is unknown and, thus, we are restricted to the set of

previously observed outcomes that have been generated

during the agent’s learning process so far. Alternatively

we could aim to learn p(τ |s,ω). However, learning the

transition model would usually require far more sam-

ples in the considered setting. Second, we need to bal-

ance the improvement of our current estimate of the

reward function and the number of queries that we re-

quest from the expert, i.e., we want to find a trade-off

between finding a good reward function and learning

the task with minimal human input.

While restricting the set of outcomes that can be

queried to previously generated outcomes is straight-

forward, balancing the number of queries requires ad-

ditional constraints in the case of arbitrary AFs. In the

following section we will introduce several techniques

to optimize this trade-off.

3.1 Sample Efficiency

The traditional BO framework aims to find a global

maximum. Sampling of the objective function can be

terminated when the improvement of the function value

is marginal, for example when the predicted variance

around the optimum is very low. In the proposed sce-

nario where a policy π(ω|s) and a reward model p(R|o)

are learned simultaneously and obtaining training sam-

ples of the reward model is very expensive, the problem

of deciding when to improve the reward model becomes

crucial.

The reward model relies on the policy π(ω|s) to pro-

vide outcomes in interesting, i.e., high reward regions,

and the policy relies on the reward model p(R|o) to

guide its exploration towards such regions of interest.

Thus, the reward model needs sufficient training data

to approximately predict the reward function in early

stages and a higher density of training points once the

agents policy starts to converge to a solution. At the

same time, we want to minimize the number of queries

to the expert over the learning process.

In order to balance this trade-off, we propose an

acquisition algorithm which, in accordance with the

selected acquisition function u(o), first samples the

best observed sample outcome from the history of the

agent’s outcomes on+1 = arg maxo u(o|D). In this sam-

ple based search, we additionally include all outcomes

that have been rated by the expert. If the acquisition

function is maximized by a previously rated outcome,

we stop and do not query any samples in this iteration.

Maximizing the AF by an already observed out-

come is unique to the sample based case. As for the

continuous case, a point around an observed outcome

would usually have higher variance and, thus, maximize

the AF. With our approach, we achieve a sparse sam-

pling behavior that requires fewer expert interactions.

If, however, the outcome that maximizes u has not yet

been rated by the expert, we need to decide whether

querying the outcome is beneficial.

For example, we may have already converged to a

good estimate of the reward function, and new out-

comes improve on the mean reward solely due to the

observation noise. In this case we do not want to query

the expert. Thus, we decide whether to query an out-

come by thresholding the ratio of predictive variance

and estimated observation noise σ(o)/
√
β > λ, where

λ is a tuning parameter which allows us to trade off

the accuracy of the final solution with the query fre-

quency by adapting the available AFs to explicitly take

the estimated observation noise into account. While this

adaptation of the AFs introduces a new parameter to be

tuned, our experiments show that the use of this tech-

nique results in fewer human interactions while main-

taining a high performance and tuning of the parameter

becomes straightforward.

If the robot decides to query the sample’s reward

value, it updates the GP and searches for the new maxi-

mum of the acquisition function. Otherwise it stops and

does not update the GP further in this iteration. Ad-

ditionally, we can limit the history of samples the AF

can access. Limiting the history can be useful when us-

ing local search methods (e.g., policy search methods).

When outcomes that were produced earlier in the learn-

ing process no longer have relevance under the current

policy (the policy does not have probability mass in

these regions). Adding information about these regions

cannot affect the learning process. Since general AFs
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are not designed to evaluate the effect on the resulting

policy they might propose samples that are informative

for the reward model but not the policy learner.

4 Expected Policy Divergence

The tuning strategies (sampling threshold, sparse sam-

pling, limiting the history of samples and not re-

querying known samples) detailed above allow us to

use arbitrary acquisition functions in our framework.

In order to follow a more principled approach without

these heuristics, we introduce a novel acquisition func-

tion which is specialized to our use case. The proposed

AF, Expected Policy Divergence (EPD) is based on the

insight that, as opposed to the traditional BO case,

we are not mainly interested in the modeled reward

function itself, but rather in the policy which the robot

learns through the reward model. Thus, we should not

evaluate the improvement in the reward model but in-

stead quantify the potential change of the policy given

additional information in the form of expert ratings.

Generally, starting from the current policy π(ω) the

robot can update this policy under the current reward

model p(R|o,D) to get a new policy π̃(ω). Alterna-

tively, the robot can first update its reward model to

become p∗(R|o,D∗) and then update the policy to get

the policy π∗(ω|D∗) under the updated reward model.

In this setting the difference between π(ω) and any suc-

cessive policy (e.g., π̃(ω) or π∗(ω|D∗)) will often be

controlled through some form of step size. However, the

difference between π̃(ω) and π∗(ω|D∗) is only explained

by the additional information gained by updating the

reward model. In EPD, we aim to maximize the differ-

ence between π̃(ω) and π∗(ω|D∗). Thus, if an additional

sample would improve the reward model, but not affect

the policy update, the human will not be queried.

Similarly to traditional AFs, we evaluate the set

of possible sample locations o ∈ O to find the most

informative sample location. Given a sample o, we

assign a reward R according to our current reward

model R ∼ p(R|o,D) and add this pair to our data

set D∗ = D ∪ {(o, R)}. This additional information

will affect the reward model to become p∗(R|o,D∗),
such that the expected reward of all other outcomes is

changed. Hence, we have to use the new reward model

p∗(R|o,D∗) to evaluate the policy update

π∗(ω|D∗) = f(π(ω), p∗(R|o,D∗)),

where f(·) is any policy update function and π(ω) is

the stochastic policy.

Finally, we can compare the new policy π∗(ω|D∗) to

the baseline policy π̃(ω) to quantify how much querying

o influenced the policy update. The KL divergence,

KL (π∗(ω|D∗) || π̃(ω)) =

∫
π∗(ω|D∗) log

π∗(ω|D∗)
π̃(ω)

dω,

is a natural choice to quantify the difference between

two policies. When working with a deterministic pol-

icy, the KL can be computed on the policy’s mean.

The proposed AF maximizes the expected KL diver-

gence between the new policy π∗(ω|D∗) and the base-

line π̃(ω),

EPD(o) = Ep(R|o,D) [KL (π∗(ω|D∗) || π̃(ω))] (3)

=

∫∫
π∗(ω|D∗) log

π∗(ω|D∗)
π̃(ω)

p(R|o,D)dωdR,

where the baseline π̃(ω) is defined to be the pol-

icy obtained through the policy update π̃(ω) =

f(π(ω), p(R|o,D)). Similar to the the sampling trade-

off variable λ that we introduced for the traditional

AFs, EPD also needs a sampling threshold. EPD will

query a sample if

Ep(R|o,D) [KL (π∗(ω|D∗) || π̃(ω))] ≥ κ, (4)

where κ is user specified. However, EPD does not rely

on the additional tuning strategies used for generic AFs.

4.1 Practical Considerations

After presenting the theoretical foundations of EPD, we

will now investigate some of the implementation details.

Expected Policy. Unfortunately, the EPD depends on

the possibly nonlinear policy update and cannot gener-

ally be solved in closed form. Instead, we have to resort

to sample-based methods. However, both the update of

the reward model p(R|o,D) as well as the policy up-

date are expensive operations and Monte-Carlo sam-

pling should be avoided. Instead, we propose alterna-

tives that are evaluated in the experimental section.

A promising alternative to extensive sampling is the

unscented transform [19]. The unscented transform is

a method of selecting samples from an original distri-

bution s ∼ p(·) such that the target distribution p̃(·)
obtained through a nonlinear transformation p̃(·) =

f (p(·)) can be approximated by fitting a distribution

to the transformed samples s̃ = f(s). The samples s

are selected according to sigma points. In the presented

case, the distribution p(R|o,D) is only one dimensional

and we obtain the sigma points [µo, µo + σo, µo − σo].

However, the policy update only depends on the ex-

pected value of the reward model, which is independent

from additional data points on the current predictive

mean. Thus, we can remove µo from the set of sigma
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points without introducing additional error to the esti-

mate of Ep(R|o,D)[π
∗(ω|D∗)].

Even more sample efficient than using sigma points

would be to emulate the Upper Confidence Bound AF,

which considers an optimistic estimate of the reward.

To follow this intuition, we always assign R = µo + σo
and, thus, require only one evaluation per sample loca-

tion. We also evaluate the analogous Lower Confidence

Bound.

Numerical Stability. The computation of the KL be-

tween π∗(ω|D∗) and π̃(ω) can be done either in closed

form in case of Gaussian policies, or numerically in the

general case. Computing the sample based approxima-

tion of the KL requires importance sampling with re-

spect to the policy that the samples ωi were drawn

from, i.e.,

KL (π∗(ω|D∗) || π̃(ω)) ≈ (5)

1

N

N∑
i=1

π∗(ωi|D∗)
π(ωi)

log
π∗(ωi|D∗)
π̃(ωi)

.

Unfortunately, both the sample based approximation as

well as the closed form solution can become numerically

unstable for high dimensional parameter spaces (e.g.

greater than 20).

For high dimensional policies, we can employ a third

alternative, if the policy learning method represents the

policy update by assigning weights γi to the policy sam-

ples ωi. In that case numerical instabilities can be alle-

viated by computing the KL directly in the one dimen-

sional weight space.

The weights γi are determined using the policy up-

date function. For a Gaussian policy for example, the

updated policy π̃(ω) can then be computed through a

weighted Maximum-Likelihood estimate. However, we

can avoid first fitting π̃(ω) to γ̃ and π∗(ω|D∗) to γ∗

by computing the KL divergence of the weight vectors

them self.

If we denote the weight vector that would gen-

erate π̃(ω) as γ̃i = f(ωi, p(R|o,D)) and the weight

vector obtained through the updated reward model

γ∗i = f(ωi, p
∗(R|o,D∗)), then we can compute

KL (π∗(ω|D∗) || π̃(ω)) ≈
N∑
i=1

γ∗i log
γ∗i
γ̃i

, (6)

and avoid numerical instabilities. When computing the

KL in weight space, the importance sampling is implicit

as γi ≡ 1.

Incorporating Human Error. In Section 2.1 we intro-

duced the additionally hyper parameter β, which mod-

els the human’s imprecision. We can take advantage of

the estimate of the human uncertainty by not including

it in our prediction of the reward for EPD. The sam-

ple rewards for example in the Sigma point case then

become [µo + (σo −
√
β), µo − (σo −

√
β)].

4.2 Information Flow

The general information flow of our method is as fol-

lows. We start with an uninformed, i.e., zero mean GP

for p(R|o,D) and we initialize the PS method with an

initial policy π0(ω|s). The PS learner then starts per-

forming one iteration of rollouts. After each iteration

of rollouts, rewards for the outcomes of the resulting

trajectories o = φ(τ ) are requested from the reward

learner R ∼ p(R|o,D). The reward learner then de-

cides whether to ask for expert ratings for any of the

outcomes to update its model. In that case, the agent

repeats the corresponding episode to present the out-

come to the expert. Finally, the reward learner returns

the mean estimate of the reward to the PS learner,

which uses the rewards to update its policy and start

the next iteration.

5 Background

In this section we provide compact background infor-

mation on components of the proposed algorithms that

are necessary to give a complete picture of the proposed

approach.

5.1 Relative Entropy Policy Search

We pair our reward learning algorithm with the recently

proposed Relative Entropy Policy Search (REPS) [31].

REPS is a natural choice for a PS method to be com-

bined with an active learning component as it has been

shown to work well on real robot problems [9] and is de-

signed to ‘stay close to the data’. Thus, previous expert

queries will remain informative. A distinctive feature

of Relative Entropy Policy Search (REPS), is that its

successive policies vary smoothly and do not jump in

the parameter space or the context space. This behav-

ior is a beneficial characteristic to increase compliance

with our proposed reward learning approach, as we are

only able to predict correct rewards within observed re-

gions of the parameter space. To constrain the change

in the policy, REPS limits the Kullback-Leibler diver-

gence between a sample distribution q(s,ω) and the
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next distribution π(ω|s)µπ(s)

ε ≥
∑
s,ω

µπ(s)π(ω|s) log
µπ(s)π(ω|s)
q(s,ω)

. (7)

For the complete optimization problem and its solution

we refer to the original work [31].

5.2 Dynamic Movement Primitives

A popular use case for PS methods is to learn param-

eters of trajectory generators such as Dynamic Move-

ment Primitives (DMPs) [17]. The resulting desired tra-

jectories can then be tracked by a linear feedback con-

troller. DMPs model trajectories using an exponen-

tially decreasing phase function and a nonlinear forcing

function. The forcing function excites a spring damper

system that depends on the phase and is guaranteed to

reach a desired goal position, which is one of the pa-

rameters of a DMP. The forcing function is modeled

through a set of weighted basis functions ωΨ. Using

the weights ω of the basis functions Ψ as parameters,

we can learn parametrized joint trajectories, and an

increasing number of basis functions results in an in-

creased flexibility of the trajectory. We use DMPs for

our simulated robot experiments.

5.3 Bayesian Optimization for RL

An alternative approach to learning control parame-

ters ω using PS methods is to model p(R|s,ω) directly

and to use Bayesian Optimization (BO) instead of the

PS learner. However, the approach proposed in this pa-

per introduces a layer of abstraction which allows us to

learn a mapping of only a low-dimensional input space

to the reward, as we only have to map from outcomes to

reward as opposed to mapping state-action to reward.

As BO methods are global methods, they are more sus-

ceptible to the curse of dimensionality than PS meth-

ods which are local methods. As a result, the mapping

p(R|s,ω) which the standard BO solution uses is con-

siderably more difficult to learn than the mapping of

the modular approach that we are proposing.

The BO approach would also require expert ratings

for every sample, while the proposed approach requires

only occasional human feedback.

5.4 Acquisition Functions

In the following we present four Acquisition Function

(AF) schemes taken from Hoffman et al. [16] that we

used to optimize the model of the reward function.

Probability of Improvement The Probability of Im-

provement (PI) [25] in its original formulation greedily

searches for the optimal value of the input parameter

that maximizes the function. An adapted version of PI

balances the greedy optimization with an exploration-

exploitation trade-off parameter ξ. The adapted version

is given by

PI(o) = Φ

(
µ(o)− f(o∗)− ξ

σ(o)

)
,

where o∗ is the best sample in the training set D and

Φ(·) is the normal cumulative density function. The

exploration-exploitation trade-off parameter ξ has to

be chosen manually.

Expected Improvement Instead of finding a point that

maximizes the PI, the Expected Improvement (EI) [28],

tries to find a point that maximizes the magnitude of

improvement. Thus, it does not only try to improve

local maxima but also considers maxima in different

regions and is less greedy in the search of an optimal

reward R.

EI(o) = (µ(o)− f(o∗)− ξ)) Φ (M) + σ(o)ρ (M) ,

if σ(o) > 0 and zero otherwise, where ρ(·) is the normal

probability density function. M is given by

M =
µ(o)− f(o∗)− ξ

σ(o)
.

The EI acquisition function shares the tuning factor ξ

for the exploitation-exploration trade-off with the PI,

where a suggested value is ξ = 0.01 [16].

Upper Confidence Bound The Upper Confidence

Bound directly uses the mean and standard deviation

of the reward function at the sample location to de-

fine the acquisition function. An adapted version of the

UCB function [37] is given by

GP-UCB(o) = µ(o) +
√
vγnσ(o),

where recommended values v = 1 and γn =

2 log(nd/2+2π2/3δ) with d = dim(o) and δ ∈ (0, 1) are

given by Srinivas et al. [37].

GP Hedge As each of the above acquisition functions

lead to a characteristic and distinct sampling behavior,

it is often not clear which acquisition function should

be used. Portfolio methods, such as the GP-Hedge [16],

evaluate several acquisition functions before deciding

for a sample location. Given a portfolio with J differ-

ent acquisition functions, the probability of selecting
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Fig. 3: Examples of different grasps and their categorization. Grasps count as failed if the object is either not picked up at all
or if small perturbations would make the object drop. Grasps that are stable but do not keep the original orientation of the
object count as OK but not successful grasps. Grasps that are both stable and keep the original orientation count as successful
grasps. From Left to right: Pestle and paper box (filled with metal bars); Failed grasp, not robust against perturbations;
Mediocre grasp, stable but incorrect orientation; Good grasp, stable with intended orientation.

acquisition function j for the sample n + 1 is given by

the softmax

p(j) =
exp(ηgjn)∑J
i=1 exp(ηgjn)

,

where η > 0 is the temperature of the soft-max distribu-

tion. The gains vector g is initialized to zero, g1:J0 = 0,

before taking the first sample, and is then updated with

the cumulative reward gained by the selected acquisi-

tion function, i.e., gjn+1 = gjn + µ(ojn+1), where ojn+1

is the sample point nominated by acquisition function

j. For all other gains the value does not change, i.e.,

gi 6=jn+1 = gin.

6 Evaluations

In this section we show evaluations of the proposed ac-

tive reward learning approach. For all simulation ex-

periments, unless stated otherwise, we tested each set-

ting ten times. We first evaluate a set of traditional

AFs against each other and then proceed to compare

the best traditional AF to EPD. While on some of the

simulated tasks we use a noisy oracle as stand-in for

a human expert, all real robot experiments where per-

formed with a human expert. The human experts were

the authors of the paper.

6.1 Five Link Reaching Task

To allow extensive evaluation of the proposed meth-

ods, we implemented a simulated reaching task. On this

task an analytical reward function is readily available

such that we can compare a learned reward function

against the hard coded one. Additionally, this allows us

to use a noisy version of the hard coded reward function

as a stand-in for human experimenters and, thus, per-

form far more repetitions of the experiments. A planar

robot consisting of five links connected by rotary joints

was controlled in joint space using Dynamic Movement

Primitives (DMP) [17], as described in Section 5.2. If

not stated otherwise, we used 20 basis functions per

joint, resulting in a total of 100 parameters that had

to be learned. The hand coded reward function was

given by R(pr) = 1000 − 100||pr − pg||, where pr was

the position of the robot’s end effector and pg was the

desired target position. However, we increased the dif-

ficulty of the task for the reward learning component

by not supplying the outcome features in task space,

but rather in joint space, i.e., the GP had to model the

forward kinematics to predict the reward, making the

problem both non-convex and high-dimensional (five di-

mensional mapping).

To allow extensive and consistent evaluation of all

parameters of the presented approach, we programmed

a noisy expert, which returned the reward with addi-

tive white noise (standard deviation was 20). In Fig.

7 we present results that compare the coded noisy ex-

pert approach to actually querying a human expert and

show that the behavior is comparable. The human ex-

pert could give rewards on a vertical bar through a

graphical interface.

6.1.1 Evaluation of Acquisition Functions

The evaluation of the available AFs given in Fig. 4

shows that even though there was only limited differ-

ence in the asymptotic performance, there was consid-

erable difference in the sample efficiency. Especially the

GP-UCB AF asks for many user queries. While PI had

the lowest asymptotic performance, as it is the most

greedy of the presented AFs, it also required the low-

est number of user queries. This behavior makes it an

interesting candidate when trying to minimize human

interactions.

6.1.2 Evaluation of Uncertainty Threshold

To optimally trade off the number of queries and the

agents performance we need to set the uncertainty
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Fig. 4: We evaluated our approach on a programmed, but
noisy expert to emulate human expert input. Vanilla RL
REPS queries the programmed expert for every sample, while
our approach builds a model of the reward function and only
queries the expert occasionally.
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Fig. 5: We evaluated the impact of the threshold factor λ
that influences when and how often we sample. Lower values
of λ led to better converged performance but required more
user interaction.

threshold trade-off parameter λ < σ(o)/
√
β. This pa-

rameter expresses how certain we require our algorithm

to be that a proposed query is not explained by the es-

timated observation noise. If we choose λ to be greater

than 1, we require our estimate to improve on the ob-

servation noise. Fig. 5 show the effects of adjusting λ.

The performance remained stable up to λ = 1.3 and

started degrading with λ = 2. Changing the order of

magnitude of λ resulted in a failure to learn the task.

While the effects of setting λ = 1.5 on the performance

were moderate, the number of queries were reduced by

about 50% when compared to λ = 1.3.

6.1.3 Evaluation of Sparse Sampling

In order to minimize human interaction, we stop im-

proving the GP in each iteration if the outcome that

maximizes the AF has already been queried before, in-

stead of selecting the next best outcome according to

the AF. The results in Fig. 6 show that sparse sampling

leads to equally good asymptotic performance but re-

quires considerably less expert interactions.

6.1.4 Evaluation of Direct Learning

The premise of this paper is that while BO can be used

to efficiently learn the mapping of outcome to reward,
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Fig. 6: Results of comparing our acquisition algorithm to the
standard acquisition algorithm. Our algorithm collects sparse
user queries and does not ask for any user queries after a PS
iteration if the outcome that maximizes the AF has already
been queried before.
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Fig. 7: We validated our approach of using a noisy pro-
grammed expert as substitute for a human expert on the
simulated tasks. The results show that both experts yielded
similar learning behavior.
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Fig. 8: Comparison of ARL and directly learning the reward
from the control parameter ω using BO. In this figure we
plot the standard error as opposed to the standard deviation.
ARL performs significantly better after 50 queries (p < 0.05).

it would be too sample intensive to directly learn the

mapping from parameter space to outcome. We vali-

dated this premise by comparing our joint approach to

directly learning the reward from the control parame-

ters (i.e., from the basis function weights ω). The re-

sults in Fig. 8 show that BO did not converge to a good

solution within 50 expert queries. Both methods used

PI.

6.1.5 Comparison to Inverse Reinforcement Learning

We compared our algorithm to the Maximum Entropy

IRL approach [41] on a via point task in two differ-

ent scenarios. Trajectories generated by DMPs had to

pass one or two via points, respectively (20 dimensional

action space for each). For this comparison only, we re-
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#UI = 5 #UI = 10 #UI = 20
ARL 1VP 995±2.48 999±0.25 999±0.25
IRL 1VP 983± 3.31 977± 6.33 984± 3.04
ARL 2VPs 970± 13.1 998±1.13 999±0.17
IRL 2VPs 994±1.88 996± 0.476 996± 0.56

Table 2: Comparison of IRL and ARL. We compare the
methods on two via point (VP) tasks with one and two VPs.
The columns show the achieved performance (mean and stan-
dard deviation) after five, ten or 20 user interactions (UIs).
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Fig. 9: Performance of REPS and BPG on a via point task.

laxed our assumption that no demonstrations are avail-

able and provided the IRL approach with (imperfect)

demonstrations that passed close to the via point (at

most 0.1 units away). In Table 2, we show the mean and

standard deviation of the best policy reached for either

five, ten or 20 user interactions (UI). In our approach,

UIs are ratings while in IRL UIs are demonstrations.

The results show that our approach yields competitive

results while not requiring access to demonstrations.

6.1.6 Alternative Policy Learners

While we used REPS for most of our experiments, the

proposed framework is not limited to a specific RL

method. To investigate the compatibility with other

methods, we compared our framework using REPS with

our framework in combination with a Bayesian Policy

Gradient (BPG) method [13] on a via point task with

one via point (20 dimensional action space). BPG mod-

els the gradient of the policy using a GP and uses the

natural gradient in the policy update. The results in

Fig. 9 show that both methods were able to learn the

task in combination with our approach.

6.2 Evaluation of Expected Policy Divergence

The previous results demonstrate the compatibility of

the presented framework with traditional AFs and es-

tablish PI as baseline. In this section, we evaluate and

compare the proposed EPD to the baseline PI. We re-

peat the original experiments on the simulated five link
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Fig. 10: Performance of EPD (κ = 0.02) and PI (λ = 1.1)
on the five link task. EPD and PI show similar reward while
EPD requires less total user inputs. Since PI does not have a
notion of a policy, it keeps optimizing the reward model after
the policy has converged.

task and provide additional evaluations on a simulated

pendulum swing-up task as well as a real robot pendu-

lum swing-up task.

6.2.1 Five Link Task EPD vs PI

To compare Expected Policy Divergence to PI on the

five link task, we repeated the experiment reported

above. We chose the tuning parameter λ = 1.1 for

PI and the KL-threshold κ = 0.02 for EPD such that

the algorithms achieve similar performance and we can

perform a fair comparison of their querying behavior.

Fig. 10 shows that EPD and PI perform equally well

in terms of achieved reward but EPD requires less user

queries. The user query plot also shows that PI keeps re-

questing user input after the policy has reached asymp-

totic performance, while EPD requests more user inputs

in early iterations and stops querying after the policy

has reached convergence (around episode 400). This be-

havior is due to the fact that EPD is not trying to op-

timize the reward model, but instead tries to maximize

the information gain for the policy.

6.2.2 Five Link Task Without Constraints

In the previous five link task experiments, we employed

the sparse sampling strategy described in Section 3.1,

i.e., the AF would stop requesting queries if the cur-

rently best candidate had already been sampled before.

Additionally, we limited the history of rollouts that can

be queried, to the last iteration. Limiting the history is

beneficial for all AFs that try to optimize the reward

model, since they cannot differentiate between regions

of the outcome space that are relevant to the policy and

regions of the outcome space where the policy has negli-

gible probability mass. However, improving the reward

model in an area of the outcome space without policy

probability mass cannot influence the learning process

and results in inefficient query strategies. EPD, on the
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Fig. 11: Performance of EPD (κ = 0.02) and PI (λ = 1.5)
on the five link tasks without additional constraints. Tradi-
tional AFs require additional constraints to be sample effi-
cient in combination with an underlying learning method.
EPD’s behavior remains almost unaffected from lifting these
constraints.
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Fig. 12: Performance of different EPD sampling strategies.
Sigma point sampling and LCB sampling require the least
amount of user queries while delivering competitive perfor-
mance.

other hand, aims to only improve the reward model

where it has influence on the policy learning process.

The results in Fig. 11 show that lifting the constraints

helps improve the performance for both EPD and PI.

Both methods achieve similar asymptotic performance

with PI reaching the optimum earlier. However, PI re-

quires almost twice as many samples as before while the

querying strategy of EPD remains mostly unaffected.

6.2.3 EPD Sampling Strategies

We evaluated the different sampling strategies dis-

cussed in Section 4. Using a sigma point sampling

scheme (without the mean) gives the best results in

terms of the required user queries while performing well.

In this experiment, LCB performs similarly well while

UCB requires more user queries to achieve the same re-

sult. The results show that random sampling with ten

samples also performs well. However, it is computation-

ally more expensive than the other strategies.

6.2.4 Simulated Pendulum Swing-up

We further evaluated the relative performance of the

proposed EPD to the performance of PI on a simu-
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Fig. 14: Performance of EPD (κ = 0.001) and PI (λ = 1.1) on
the simulated pendulum swing-up task. EPD achieves slightly
better performance while requiring less than half the number
of user queries.

lated pendulum swing-up task. In this simulated task,

a pole of length 0.5m and mass 10kg, distributed equally

along the pendulum length, is initially hanging down,

mounted to a rotational joint. The joint is actuated and

has a friction coefficient of 0.3. The controlled joint can

exert a maximum torque of 30Nm, which is insufficient

to directly swing up the pendulum to an upright posi-

tion. Instead, the robot has to first swing the pendulum

in the opposing direction to build up enough momen-

tum to swing it up completely. The simulated pendulum

swing-up task uses a one dimensional feature, which is

the negative sum of the pole tip position to the upright

position,

φ1(τ ) = −
T∑
t=1

1− cos(θt + π),

where θ is the angle of the controlled joint (θ = 0 in

the suspended position) and T = 250. The programmed

reward expert also used this feature as a reward signal,

with additional white noise.

Fig. 14 shows the comparison of EPD and PI. The

results show that EPD has slightly better performance

and requires less than half the number of user inputs

that PI requires to find the solution. The large vari-

ance in the asymptotic performance is due to the fact

that some solutions overshoot the goal position initially

before achieving the upright position. In the real robot

experiment, we add a second feature to the reward com-

putation which helps mitigating this problem. For this

experiment the KL threshold for EPD was κ = 0.001

and the sampling threshold for PI was λ = 1.1. In each

iteration, ten new rollouts were performed. As the pen-

dulum swing-up task is multi-modal, it was solved using

HiREPS [9], starting with 100 options. Using HiREPS

allowed the agent to learn both swing-ups, clockwise

and counter-clockwise.
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Fig. 13: Picture of the robot performing the swing-up task. The initially suspended pendulum is first counter-clockwise to
build momentum and then swung clockwise to the upright position. The heat map gives an indication of the approximate
trajectory reward if the swing-up would reach up to the indicated position.

6.2.5 Real Robot Pendulum Swing-up

After comparing EPD and PI on the simulated pendu-

lum swing-up task, we evaluated EPD on a real robot

pendulum swing-up task. To learn the reward model

we provided the same feature as in the simulated task,

with an additional feature representing the sum of the

kinetic and potential energy at each time point

φ2(τ ) =

T∑
t=1

1

2
mv2t +m (l − cos(θt + π)) .

such that the joined feature vector was φ(τ ) =

[φ1(τ ), φ2(τ )]T . Adding the energy as feature helps to

differentiate trajectories that exhibit the desired behav-

ior of performing a pre-swing from those that try to

directly swing up the pendulum in the early stages of

learning. While it is difficult to provide a hard-coded

target value for this feature, it is easy to learn the de-

sired value from human ratings. The reported reward

for the real robot experiment is computed only from

the φ1, analogously to the simulated swing-up task. In

the real robot experiments T = 10e4s, the length of the

pole was l = 1m, with a mass of m = 10kg.

Fig. 15 shows the results of three trials on the real

robot task. The results show that the robot learned to

swing up the pendulum in all three trials. In the last

trial, the robot learned a double pre-swing before swing-

ing up the pendulum. For the real robot experiment the

KL threshold for EPD was κ = 0.005. As in simulation,

ten new rollouts were performed per iteration.

6.3 Robot Grasping

We used the results from Section 6.1 to set the param-

eters for the real robot experiment (we use PI and set

λ = 3). We learned the policy π(ω|s) with 15 samples

per iteration for a total of 10 iterations and we repeated

the experiment three times. The control parameters of
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Fig. 15: Performance of Expected Policy Divergence on the
real robot pendulum swing-up task. EPD learns to success-
fully swing up the pendulum on the real robot with an average
of about eight user queries. Results averaged over three trials.

the policy were the 15 joints of the five finger DLR

hand, which is mounted to a 7 DOFs KUKA lightweight

arm as shown in Fig. 1. We considered the task of blind

grasping as described by Dang and Allen [8], where no

object information was available and we did not have

visual feedback, i.e., we did not have information about

the contact points. Instead, we calculated the forces in

the finger tips through the joint torques and and the

hand kinematics. We used the finger tip force magni-

tudes as outcome features which were used by the GP

to model the reward function.

Evaluating the real robot experiments presented the

problem of a success metric. As we did not have a ‘cor-

rect’ reward function that we could evaluate the learned

reward function against, we resorted to introducing

three label categories which were only used for the eval-

uation after finishing the experiments. The scheme pre-

sented in Fig. 3 labels grasps as failures with a reward

of −1, if the object was not lifted at all or slipped when

slightly perturbed. Grasps that were stable but did not

keep the intended orientation were given a reward of

0. Finally, grasps that lifted the object and kept the

orientation of the object were assigned a reward of 1.

These labels and reward values were not used during

the learning of either the policy or the reward model



14 Christian Daniel et al.

but only used to visualize the robot’s learning progress.

During the learning phase, the human expert assigned

grasp ratings in the range of ±1000.

6.3.1 Learn to Grasp Unknown Object

The object to be grasped was a cardboard box filled

with metal weights such that the robot cannot grasp

the object with very unstable grasps or by deforming

the paper box. The box, shown in Fig. 3, was of size

7.5cm x 5.5cm x 2cm and filled with two metal bars

with a combined weight of 350g. The results of three

trials presented in Fig. 16 show that the robot learned

to perform a successful grasp of the object in all three

trials, while only requesting six queries in the first and

twelve queries in the second trial. In the last trial, the

robot’s performance first increased quickly but dropped

after 80 episodes (or rollouts), coinciding with a sudden

increase of user queries, such that the final number of

queries in the last trials was 27. The reason for this

unusual behavior was a malfunction of the distal joint

of the thumb, which rendered the grasping scheme dys-

functional. As the learner could not reproduce outcomes

that led to good rewards, it resorted to finding a dif-

ferent grasp strategy. At the same time, since the GP

was presented with new outcome samples in previously

unobserved regions of the outcome space, it requested

new user queries to model the reward function in the

new region of interest.

We compared our learned reward function to a

(naive) hand coded reward function based on the same

features. The hand coded reward function aimed to

reach a total force magnitude over all fingers. Using

the programmed reward, the robot was able to reliably

pick up the object after the first two trials and in ten

out of 15 grasps at the end of the third trial (We ex-

pect the robot would have also learned to pick it up

reliably in the last trial with more iterations). How-

ever, the robot did not pick up the object in a way that

kept the original orientation of the object. Encoding

such behavior through only force features by hand is

challenging. The performance curve of the hand coded

reward function shows a slight dip, which is possible as

we are not plotting the internal reward but the reward

assigned according to the grading scheme introduced in

Fig. 3.

6.3.2 Transfer Learned Reward Function to New

Object

As we based our reward model only on the finger tip

forces, it is modular and can be used for other simi-

lar objects. To test these generalization capabilities, we

Real Robot Results and Queries
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Fig. 16: The real robot successfully learned good grasps in
all of the three trials. The grasp rating scheme is described
in Fig. 3. In the last trial, one joint failed, represented by
a spike in expert queries. The robot successfully adapted the
reward function to recover from the hardware failure. We also
show the average performance of a naive hand coded reward
function.
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Fig. 17: Performance of one trial on the real robot system.
The robot uses the reward function learned in trial one of
the original task to learn to grasp a new, unknown object (a
wooden pestle as shown in Fig. 3). For this trial, we did not
allow any expert queries. The robot successfully learned to
grasp the object.

started a new trial with a different object (a pestle as

shown in Fig. 3) and initialized the GP with the train-

ing data from the first trial of the previous task. For
this experiment we only used ratings from the previous

trial, and did not ask for additional expert ratings. The

pestle that we used for this task was similar in dimen-

sions but different in shape, such that the agent had

to learn different joint configurations to achieve similar

finger forces that optimized the reward function. The

pestle had a length of 18cm, with a 1.5cm radius at the

thin end and a 2.25cm radius at the thick end. The re-

sults in Fig. 17 show that the agent was able to learn to

reliably perform a robust grasp on the pestle, reusing

the reward function learned for the box.

7 Related Work

The term reward shaping describes efforts to adapt

reward to increase learning speed while not affecting

the policy [30, 10, 4, 36] or to accelerate learning of

a new task [22]. Aside from reward shaping, Dorigo

and Colombetti [11] have used the term robot shap-



Active Reward Learning with a Novel Acquisition Function 15

ing to describe efforts of teaching different tasks to

a robotic agent. Derived from this terminology the

TAMER framework [20] uses the term interactive shap-

ing. There, the agent receives reinforcements from a hu-

man, guiding the learning process of the agent without

active component. The Advise framework [14] uses the

term shaping to describe the process of modeling an or-

acle and actively requesting binary labels for an agent’s

action (good or bad). This approach is tailored for dis-

crete settings and the feedback frequency is pre-defined.

In preference learning algorithms, the expert is usu-

ally requested to rank the current best against a new

execution and the reward function is inferred from these

rankings [2, 6, 40]. The method of Akrour et al. [1] can

also deal with noisy rankings. Chu and Ghahramani

[7] introduced the use of GPs for preference rankings.

However, the expert is limited to transmit one bit of in-

formation and cannot express strong preferences. Our

contribution is to show how a rating based approach

with explicit noise model can be used in real robot con-

tinuous state-action space problems taking advantage of

the stronger guidance through strong preferences (large

differences in assigned rewards).

Schoenauer et al. [35] show how a preference based

learning algorithm can be used in the cart-pole balanc-

ing task with continuous states and discrete actions.

However, they require to first build a model of the sys-

tem dynamics through extensive sampling. In our ap-

proach the core idea is that the control of the system

and the reward function should be learned simultane-

ously, which minimizes the total number of rollouts re-

quired on the system. If, on the other hand, the number

of rollouts on the system to build a model is of no im-

portance, different approaches to learning the reward

function are better suited.

The problem of expert noise has also been addressed

in Bayesian RL and IRL. In Bayesian RL, Engel et al.

[12] have proposed to model the value function through

a GP and Ghavamzadeh and Engel [13] have proposed

to model the policy gradient through a GP. Especially

the policy gradient method is also well suited to work

in combination with our approached framework.

Kroemer et al. [24] have used Gaussian Process Re-

gression with a UCB policy to directly predict where

to best grasp an object. If demonstrations are avail-

able, IRL is a viable alternative. Ziebart et al. [41] have

relaxed the assumptions on the optimality of demon-

strations such that a reward function can be extracted

from noisy demonstrations.

In a combination of IRL and preference learn-

ing, Jain et al. [18] have proposed the iterative improve-

ment of trajectories. In their approach, the expert can

choose to rank trajectories or to demonstrate a new tra-

jectory that does not have to be optimal but only to im-

prove on the current trajectory. This approach cannot

directly be used on learning tasks such as grasping, as

a forward model is required. Alternatively, Lopes et al.

[26] propose a framework where IRL is combined with

active learning such that the agent can decide when and

where to ask for demonstrations.

8 Conclusion & Future Work

We presented a general framework for actively learn-

ing the reward function from human experts while si-

multaneously learning the agent’s policy. We propose a

novel acquisition function which evaluates the change of

the policy induced through altering the reward model.

Our experiments showed that the learned reward func-

tion can outperform hand-coded reward functions, gen-

eralizes to similar tasks and that the approach is ro-

bust to sudden changes in the environment, for exam-

ple a mechanical failure. The results also show that the

proposed acquisition function, EPD, outperforms tradi-

tional AFs and works well on simulated and real robot

experiments. In the future we plan to investigate how

different kernel functions affect the learning process and

study how well non-expert users can ‘program’ reward

functions with the presented framework.
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