
Deep Spiking Networks for Model-based Planning in Humanoids

Daniel Tanneberg1, Alexandros Paraschos1, Jan Peters1,2 and Elmar Rueckert1

Abstract— We propose a novel bioinspired motion planning
approach based on deep networks. This Deep Spiking Net-
work (DSN) architecture couples task and joint space planning
through bidirectional feedback. We show that the DSN can
learn arbitrary complex functions, encode forward and inverse
models, generate different solutions simultaneously and adapt
dynamically to changing task constraints or environments.
Furthermore, to scale to high-dimensional spaces, we introduce
a factorized population coding in the model. Moreover, we show
that the DSN can be trained efficiently and exclusively from
human demonstrations to learn a task independent and re-
usable planning model. The model is evaluated in simulation
and on two real high-dimensional humanoid robotic systems.

I. INTRODUCTION

Autonomous robots are expected to assemble parts in
industry, assist in critical surgeries, help in households, or
work in environments which are dangerous for humans. A
fundamental skill that is required in almost all robotic tasks
is planning, i.e., the computation of movement trajectories
which accomplish the given task while fulfilling certain
constraints. For example, collision-free arm trajectories for
parts assembly need to be planned. Most planning algorithms
assume known constraints or features and known models
that map these constraints into the configuration space of the
robot [1], [2], [3], [4]. However, in the general case, these
models are unknown and need to be learned from data.

Recent developments in deep learning approaches tack-
led model learning and developed end-to-end learning ap-
proaches to directly learn control policies from sensory input
streams [5], [6], [7], [8], [9]. However, an open question
is how deep networks could re-use parts of the learned
model to generate movement plans to new environments or
tasks without re-learning. Therefore, we propose a recur-
rent spiking neural network (SNN) that is able to learn a
task independent and re-usable planning model from human
demonstrations. By using stochastic spiking neurons in the
network, it is related to neural processes and exploration
is an intrinsic neuronal function that reduces the amount
of required training data. Spiking networks can encode
arbitrary complex distributions [10] and learn temporal se-
quences [11], [12]. We utilize these properties to learn
forward and inverse kinematics as well as to encode multi-
modal trajectory distributions that can represent multiple

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreements #600716 (CoDyCo) and #610967 (TACMAN).

1Intelligent Autonomous Systems, Technische Universität Darmstadt,
64289 Darmstadt, Germany
{tanneberg,paraschos,rueckert}@ias.tu-darmstadt.de
2Robot Learning Group, Max-Planck Institute for Intelligent Systems,

72076 Tübingen, Germany, mail@jan-peters.net

Fig. 1. (left) a KUKA lightweight arm where we used 6 DoFs and (right)
an iCub where we used the right arm with 7 DoFs. The proposed DSN is
able to learn task independent models for both complex systems and to plan
movements in task and joint space simultaneously.

solutions to planning problems. Constraints and task-related
information can be integrated into the model by appropriate
excitatory or inhibitory input resulting in a flexible and
adapting architecture. Multiple different solutions can be
sampled efficiently and in parallel. This is important to avoid
collisions and react to changing environments. Particularly
in a robotic co-worker scenario, this can be used to avoid
dangerous situations for humans.

The proposed bioinspired Deep Spiking Network is based
on a task space planning approach, that was used to model
maze navigation in rats [13]. In this approach, a population
of recurrently connected state neurons was used to encode
a transition model. The activity of these state neurons is
modulated by contextual neurons injecting desired initial and
target state information. Connections between state and con-
textual neurons are learned through a local reward modulated
Hebbian learning rule. To model the operational space, a full
population coding approach was used which does not scale
to more than three dimensions. We propose a Deep Spiking
Network using a factorized population coding to scale to
high-dimensional systems and focus on learning the task-
independent model from human demonstrations gathered
from complex real systems.

The contribution of this work is a bioinspired hierarchical
neural network architecture and corresponding learning rules
to train the model efficiently and exclusively from data.
We added a layer of factorized joint space populations to
a recent two-dimensional task space model to construct
the proposed Deep Spiking Network that scales to high
dimensions. The DSN couples the task and joint space of
the robot via bidirectional feedback and generates smooth
task and joint space trajectories simultaneously. In [14] it
was shown, that such interchanging feedback supports the
generation of smooth trajectories. No kinematic and state
transition models are required as we show that the non-linear

forward and inverse kinematics are learned together with the
state transition models. The learned model is evaluated in
simulation and on real robotic systems showing its abilities
to dynamically adapt to changing environments, producing
smooth high-dimensional trajectories and finding multiple
solutions at once.

II. MOVEMENT PLANNING WITH SPIKING NEURAL
NETWORKS

We build our Deep Spiking Network on top of the two-
dimensional task space model from [13]. To scale to higher-
dimensional joint space, we introduce a three-layered net-
work and derive novel efficient learning rules to train the
model from spatio-temporal human demonstrations.

A. Two-dimensional task space model

The model consists of two different kinds of neuron
populations, one of K state neurons and one of N context
neurons. State neurons encode the operational space and
context neurons encode the task, e.g., desired goals or
obstacles. Each constraint or any task-related information
is modeled by a population of context neurons. While the
state neurons are uniformly spaced within the modeled
state space, the context neurons are Gaussian distributed
around the corresponding location they encode. There are
no lateral connections between context neurons, but each
context neuron j ∈ N connects to all state neurons k ∈ K
by a synaptic weight θj,k. The state neuron population is
fully connected by synaptic weights wi,k, connecting state
neuron i to state neuron k.

We denote the activity of the state neurons by vt =
(vt,1, .., vt,K), where vt,k = 1 if state neuron k spiked at time
t and vt,k = 0 otherwise. The activity of the context neurons
is denoted the same way by yt. The synaptic weights wi,k

encode the state transition model T (vt|vt−1) that encodes
how likely the state transitions are. All neurons have a pre-
ferred position in a Cartesian coordinate system and encode
binary random variables (spike/no spike). Thus, the solution
to a planning problem is the spike train of the state neurons,
i.e., a sequence of binary activity vectors vt. To get a
movement trajectory, the spike train needs to be decoded into
a sequence of continuous spatial locations. This decoding
of the state xt (e.g., position in task or joint space) from
neural activity is done by a simple decoding scheme [15],
[16], xt = 1

|v̂t|
∑K

k=1 v̂t,kpk with |v̂t| =
∑K

k=1 v̂t,k ,
where pk denotes the preferred position of neuron k and v̂t,k
is its Gaussian window filtered neural activity at time t. With
this decoding, continuous states can be encoded by binary
activity patterns.

The state neurons can be seen as an abstract and simplified
version of place cells and encode a cognitive map of the
environment. They are modeled by stochastic neurons which
build up a membrane potential based on the weighted neural
input. Context neurons have no afferent connections and
spike with a fixed time-dependent probability. Operating in
discrete time and using a fixed refractory period τ that
decays linearly, the neurons spike in each time step with

a probability based on their membrane potential. All spikes
from presynaptic neurons get weighted by the corresponding
synaptic weight and are integrated to an overall postsynaptic
potential (PSP). Assuming linear dendritic dynamics, the
membrane potential of the state neurons is given by

ut,k =

K∑
i=1

wi,kṽi(t) +

N∑
j=1

θj,kỹj(t) , (1)

where ut,k denotes the membrane potential for neuron k at
time t, ṽi(t) and ỹj(t) denote the effects of PSPs from state
neuron i and context neuron j respectively. Thus, Equation
(1) defines a simple stochastic version of the spike response
model [17]. Using this membrane potential, the probability to
spike for the state neurons can be defined by ρt,k = p(vt,k =
1) = f(ut,k), where f(·) denotes the activation function,
that is required to be differentiable. Now the probability for
generating a state sequence v1:T of length T starting from
a given initial state v0 is defined by the model distribution

q(v1:T |θ) = p(v0)

T∏
t=1

K∏
k=1

ρ
vt,k
t,k (1− ρt,k)1−vt,k

= p(v0)

T∏
t=1

T (vt|vt−1)φt(vt;θ) , (2)

where φ(·) denotes the task-specific input. The chosen ac-
tivation function is an exponential with f(·) = exp(·). In
this work we aim to learn a task-independent model, i.e.,
we are only interested in the recurrent connections of the
state neurons. Thus, in contrast to [13] where the synaptic
weights θj,k between context and state neurons are learned
through reinforcement learning, we use handcrafted weights.
The weights are set automatically for each task using the
Euclidean distance between the modeled constraint and the
preferred location of the neuron. The neural activity yt of
the context neurons is determined by a probability depending
on the kind of constraints they encode. As the context
neurons encode task-related information, they are designed
and activated for solving a particular task. The transition
model is task-independent and used in the unconstrained
stochastic process that defines a freely moving agent as
defined in Equation (2) without φt. Sampling from this
distribution can be implemented by a recurrent SNN [11],
[12], [18], which generates random walk trajectories of
length T . Injected task-related input modulates these ran-
dom walk trajectories towards goal-directed and constraint-
fulfilling movement plans.

B. Context neurons for (online) task adaption

In typical planning problems, the planner has to consider
a number of constraints that may even change dynamically.
The architecture of the SNN implements a simple task
adaption mechanism. Context neurons with proper synaptic
weights and activity patterns have to be added or changed,
i.e., choosing θ and yt, to adapt to changes. Targets are
modeled by context neurons with excitatory connections to
the state neurons and an activity pattern depending on the

time the target should be reached. Obstacles are modeled
by context neurons with inhibitory connections. Therefore,
neurons covered by an obstacle are deactivated and no
sampled movement can cross this area. By adapting the
synaptic connections or the activity patterns online, dynamic
changes in the environment or the task occurring during
planning can be taken into account.

C. Deep Spiking Network model for coupling the dimensions

As envisioned in the beginning, we want to get joint space
planning, where the joint space of robots is usually high-
dimensional such that the full population code from [13] will
not work in practice. Thus, to scale to higher dimensions, we
propose a factorized population code approximation using F
independent one-dimensional models. Each factorized model
is built in the aforementioned fashion and encodes one joint.
Using this factorized approximation makes SNNs feasible
for planning in higher dimensional spaces in general. How-
ever, as the factorized models are independent and cannot
exchange information during planning, they cannot deal with
complex scenarios, e.g., like obstacles in the environment.

A possible solution to overcome the missing ability of
the factorized independent models to deal with obstacles,
is to combine a lower dimensional model for planning in
task space, that can deal with obstacles, with F independent
joint space models. These consist of Mf state neurons each,
that encode the higher dimensional joint space and the
bidirectional mapping. In robotics this mapping is known as
the kinematics and defines a mapping from positions in task
space (e.g. Cartesian x, y coordinates of an endeffector) to an
appropriate joint configuration (inverse kinematics) or vice
versa (forward kinematics). Therefore, we propose a Deep
Spiking Network (Figure 2(A)) that is built by combining
the two-dimensional task space planner with factorized joint
space and kinematics models. This model can solve planning
problems in task space and transforms the movement into
joint angle trajectories simultaneously. The state neurons
of the factorized models encode the joint space and the
state neurons of the task space model span the operational
space of the robot. State neurons in each space are fully
connected and project to all state neurons in the other space
through symmetric weights ψ. These connections enable the
model to project feedback from task to joint space and vice
versa. It has been shown that such links facilitate smooth
trajectories [14].

The synaptic weights ψ encode forward and inverse kine-
matics at once. Adding feedback from joint to task space dur-
ing planning alters the membrane potential in Equation (1)
of the task space state neurons to

ut,k =

K∑
i=1

wi,kṽi(t) +

N∑
j=1

θj,kỹj(t) +

M∑
l=1

ψl,kz̃l(t) , (3)

where ψl,k denotes the synaptic weight between joint space
neuron l and task space neuron k, z̃l(t) denotes the PSPs
from joint space state neuron l and M =

∑F
f=1Mf is the

total number of joint space state neurons. The membrane po-
tential of the joint space state neurons is defined analogously

ot,k =

M∑
j=1

δj,kz̃j(t) +

K∑
i=1

ψk,iṽi(t) , (4)

where ot,k is the potential of neuron k at time t and δj,k is
its afferent connection with neuron j. Adding the factorized
models and the bidirectional feedback, the model distribution
from Eq. (2) expands to

q(v1:T , z1:T |θ) = p(v0)p(z0)

T∏
t=1

ς(t) with (5)

ς(t) = T (vt|vt−1, zt−1)TK(zt|vt−1, zt−1)φt(vt;θ) ,

where z denotes the binary activity vector of
the joint space state neurons defined like vt and
TK(zt|vt−1, zt−1) =

∏F
f=1 TKf

(zt,f |vt−1, zt−1,f) is the
factorized transition model of the joint space taking
feedback from task space into account. Figure 2(B) shows
the graphical model representation of the proposed Deep
Spiking Network, highlighting the bidirectional feedback
and time dependencies.

D. Learning of the Deep Spiking Network

For learning the transition models from human demon-
strations, we use maximum likelihood learning from single
spike samples. In particular, we use contrastive divergence
(CD) [19] which approximates the maximum likelihood
gradient by drawing samples from a proposed distribution.
In [19] it was suggested that only a few Markov chain
Monte Carlo (MCMC) cycles are required to obtain useful
approximations of the expectations in practice and that even
a single MCMC cycle has sufficient information to let
the learning process converge to the maximum-likelihood
solution. Thus, the CD update equation for parameter Θ of
function f(x; Θ) is given by

∆Θ =

〈
∂ log f(x; Θ)

∂Θ

〉
X0

−
〈
∂ log f(x; Θ)

∂Θ

〉
X1

, (6)

where X0 and X1 denote the state of the Markov chain after
0 and 1 cycles respectively. We chose CD as it fits to our
online learning scenario of replaying human demonstrations,
takes samples from the current model into account and
provides efficient learning rules.

We want to learn the transition models encoded in the
synaptic weights between the state neurons using human
demonstrations recorded from the robot through kinesthetic
teaching to get a task-independent model according to the
area covered by the robot. Therefore, we derive a spike
dependent version of contrastive divergence to learn these
synaptic weights, similar to results in [20]. The transition
model of our DSN model is given from Equation (5) without
task input, i.e., no φt(vt; θ), and consists of the two parts

Fig. 2. (A) Sketch of the proposed DSN, showing the two-dimensional task space model (w) on the left, the F independent joint space models (δ) on
the right and the kinematics models (ψ) between. Not all synaptic connections are shown to keep the sketch clear. The blue and the red dot indicate two
task space constraints (e.g., initial and target position) encoded by the corresponding context neurons. (B) Graphical model representation of the proposed
DSN , where vt and zt are sampled separately in each time step t, indicated by the colored connections. During learning there is no task layer yt.

T (vt|vt−1, zt−1) and TK(zt|vt−1, zt−1) that are given by

exp

(
K∑

k=1

wk,ivt−1,kvt,i +

M∑
m=1

ψm,izt−1,mvt,i

)
and

exp

Mf∑
k=1

δk,mzt−1,f,kzt,f,m +

K∑
i=1

ψm,ivt−1,izt,f,m

respectively and f indicates the dimension. Here we con-
sider a resetting rectangular PSP kernel of one time step
(vt−1,k). Using a PSP kernel of τ time steps (ṽk(t)) follows
the same derivation and is used in the experiments to be
more realistic and to take information provided by spikes
from multiple previous time steps into account. We start
by differentiating the logarithm of the task space transition
model (log T (vt,i|vt−1, zt−1)) w.r.t. wk,i, leading to

∂ log T (vt,i|vt−1, zt−1)

∂wk,i
= vt−1,kvt,i.

Analogously we differentiate log T (vt,i|vt−1, zt−1) and
log TKf

(zt,f,m|vt−1, zt−1) for ψm,i and δk,m. Inserting those
derivatives into Equation (6) leads to the following update
rule for wk,i

∆wk,i = 〈vt−1,kvt,i〉X0 − 〈vt−1,kvt,i〉X1 , (7)

and analogous to similar update rules for ψm,i and δk,m.
Learning is done by replaying the human demonstrations as
spike trains to the model while updating the synaptic weights.
The demonstrations include arbitrary movements covering
the operational space of the robot and were recorded using
kinesthetic teaching. At each time step t there is only one
training sample for each synaptic weight in form of activity
pairs (ṽt−1,k, ṽt,i). The training spike pattern, denoted by ṽ,
is compared with the sample drawn from the current model,
denoted by v, using the presynaptic training data as input.
Using a single sample for each space in each time step, this
leads to the final synaptic update rules

∆wk,i = ṽt−1,kṽt,i − ṽt−1,kvt,i and (8)
∆ψm,i = z̃t−1,mṽt,i − z̃t−1,mvt,i (9)

for the task space transition model and the forward kinematic
models and to

∆δk,m = z̃t−1,kz̃t,m − z̃t−1,kzt,m and (10)
∆ψm,i = ṽt−1,iz̃t,m − ṽt−1,izt,m (11)

for the joint space transition models and the inverse kine-
matic models. In each time step the samples vt,i and zt,m are
drawn alternatively with the presynaptic input vt−1 and zt−1
as depicted in Figure 2(B) without task input yt−1, as there
is no particular task during learning. As long as the samples
drawn from the current model do not match the training data,
the model keeps updating its synaptic weights.

Equations (8)-(11) imply that state neurons which spike
successively will increase their synaptic weights and those
that do not will decrease their synaptic weights. Using this
learning scheme, we can learn the state transition models
in task space (Eq. (8)) and in joint space (Eq. (9)), as well
as the forward (Eq. (10)) and inverse (Eq. (11)) kinematics
mappings simultaneously, resulting in an efficient way for
learning the proposed DSN from demonstrations.

III. RESULTS

In the experiments, we learned models from human
demonstrations from the robotic systems shown in Figure 1
and solved obstacle avoidance tasks with these models.
For a statistical comparison, we defined a two-dimensional
obstacle avoidance setup with changing initial and target
positions and compared our model to the model from [13]
in simulation. Additionally, we evaluated the model’s ability
to adapt to changes in the environment during planning by
adding a simulated dynamic obstacle, i.e., an obstacle that
moves with unknown dynamics during planning.

A. Learning of the DSN

Using kinesthetic teaching, we recorded 15 minutes of ar-
bitrary movements sampled at 1 ms covering the operational
space of the KUKA arm. Joint angle trajectories of the six
joints and the x, y position of the endeffector were recorded.
Task space and joint space trajectories were transformed
into spike trains using Gaussian basis functions centered at
the state neurons and inhomogeneous Poisson processes. All

synaptic weights were initialized as inhibitory connections.
In total learning of the complete DSN took 58 minutes on
a standard desktop computer using MATLAB. More details
on the network can be found in the Appendix.

TABLE I
EVALUATION OF THE MODELS ON OBSTACLE AVOIDANCE TASKS WITHIN

70× 70CM ON THE KUKA ARM IN SIMULATION.

2D model [13] DSN (T) DSN (J)
Acceptance rate 0.97 0.95 0.56
Comp. time (ms) 300± 25 954± 176 954± 176
Avg. jerk (cm/s3) 0.88± 0.17 0.92± 0.16 0.91± 0.17
Target error (cm) 1.64± 1.39 1.56± 1.18 3.59± 1.90

B. Model comparison

To evaluate the learned model, we defined an obstacle
avoidance setup with 10 different combinations of initial
and target positions and evaluated 100 trajectories for each
setup and model. Note that the model does not need to be
retrained for the different tasks, i.e., the model can adapt
to changing tasks like different via-points or obstacles. The
computational time is measured as the time required to
sample and decode a movement trajectory in task and joint
space. The average jerk of the trajectories is calculated in
time steps of 20 ms and serves as a smoothness criteria. The
target error denotes the smallest Euclidean distance of the
trajectories to the desired target averaged with a Gaussian
window filter using a time window of 20 ms. An error of
1 cm within the modeled area of 70 × 70 cm corresponds
to a relative error of about 1%. The acceptance rate is
calculated as the ratio of accepted samples to total samples
generated. Samples are rejected if their target error > 5
cm, their average jerk > 0.12 cm/s3 or if they collide
with an obstacle. As the Deep Spiking Network generates
a movement trajectory in task space (T) and simultaneously
the corresponding trajectories in joint space (J), we evaluated
both results. However, the DSN does not need kinematic
models neither for learning nor for executing the joint space
trajectories. Only for calculating the criteria of the joint angle
trajectories, forward kinematics were used for mapping into
task space. Table I shows the results of the two-dimensional
task space model and our DSN on obstacle avoidance tasks in
simulation. Hyperparameters of both models were optimized
using stochastic search [21] with acceptance rate as objective.

The task space trajectories of the two-dimensional task
space model and of the DSN achieve equally good results on
the target error (around 1.60 cm) and acceptance rate (around
96%). The joint space trajectories of the DSN achieve a
target error of 3.59 cm and have a lower acceptance rate of
56%. This may reflect inaccuracies in the learned kinematic
models and the only task-related information in joint space is
provided through the feedback from this mapping. Although
the acceptance rate of the joint angle trajectories is lower, the
accepted trajectories are equally smooth and achieve a similar
precision. Thus, the proposed Deep Spiking Network can
solve a task space planning problem and as additional result
provides joint angle trajectories that can be executed on the
robot without post processing and the need of a task space

Fig. 3. The activity of the task space neurons of two different sampled
solutions shown as heatmaps and the decoded movement trajectories on top.

controller or the inverse kinematics of the robot. We validated
that by executing trajectories sampled from the DSN for an
execution time of 4 s on the real robot. Figure 3 shows the
model’s ability to simultaneously encode multiple solutions
to a given task as both solutions can be sampled from the
model in parallel.

C. Adapting to moving obstacles

To test the model’s ability to dynamically adapt to changes
in the environment or task during planning, we added a
dynamic obstacle in addition to a static obstacle. The obstacle
movement was initialized after 300 ms and moved 40 cm
within 300 ms. The proposed model was able to generate suc-
cessful trajectories of equal quality. Multiple solutions were
found, covering different strategies of avoiding that simulated
dynamic obstacle, e.g., walking around it or waiting until
the obstacle has passed by. Figure 4(A-B) shows a sampled
solution of the task with a static and a dynamic obstacle.

D. Movement planning on a humanoid robot

To evaluate the proposed model on an additional complex
system, we gathered training data of the right arm of the
iCub robot in the same way as described before. In total we
recorded 15 minutes of data sampled at 10 ms from the seven
joints and the hand as endeffector covering an operational
space of 15×30 cm. After learning the model, we evaluated
it on a set of obstacle avoidance tasks in simulation and
executed sampled joint angle trajectories on the Gazebo iCub
simulation. The obtained results match the results on the
KUKA arm shown in Table I. Namely, acceptance rates of
0.93 and 0.79, average jerks of 0.0019± 0.0004 cm/s3 and
0.0030± 0.0006 cm/s3 and target errors of 0.0071± 0.0040
cm and 0.0105 ± 0.0057 cm for the task and joint space
trajectories respectively. Note that the covered operational
area of the iCub is much smaller and the movements are
more constrained compared to the KUKA experiments.

IV. CONCLUSION

In this work, we demonstrated that SNNs are suitable
models to solve robot planning tasks and come with useful
features like learning arbitrary complex functions. In partic-
ular, the proposed DSN learns forward and inverse models
and can adapt dynamically to changing environments and
constraints. We introduced a Deep Spiking Network that uses
factorized population coding to scale to high-dimensional
problems and couples task and joint space during planning

Fig. 4. (A) Spike train of a sampled movement for the dynamic obstacle task. (B) The activity of the task space state neurons (vt) of (A) is shown as
a heatmap with the decoded movement trajectory on top. Grey blocks indicate static obstacles, colored blocks represent the moving obstacle. The color
of the movement trajectory and of the moving obstacle encode time. The colors never match, showing that the sampled movement trajectory successfully
avoids the moving obstacle. (C) Illustration of the experiment setup with two static obstacles and the KUKA arm.

and learning. It can generate multiple plans for a task in
parallel, enabling foresighted robot control by providing
alternatives to choose from. We derived novel contrastive
divergence learning rules for efficient training from human
demonstrations. On two robotic platforms, we showed that it
is feasible to use the proposed DSN on complex real systems.

As we aimed for learning a task-independent model, we
kept the properties of the context neurons fixed. These
can be learned through reinforcement learning but need to
be relearned for every task [13]. Additionally, the current
model only uses feedforward signals, or assumes a low-level
tracking controller. For future work, feedback should alter
the feedforward signals, resulting in model-predictive control
with SNNs and robotic constraints like torque or joint limits
need to be considered during planning.

APPENDIX

Network details: Initial and target positions are modeled
with 10 context neurons each. The timing of their spikes
is defined by the kind of position they encode, i.e., the
population that encodes the initial position is active within
the first 300 ms. This allows the network to initialize at
the given initial position. After this time, these neurons are
deactivated and the neurons encoding the target position
are active until the predefined sample length (T = 1000,
simulating 1 s) is reached. Obstacles can be modeled by
strong inhibition on the covered state neurons, implemented
through an offset term. To model the covered task spaces
of the robots, we use 15 task space state neurons for each
dimension. Each of the factorized models consists of 30 state
neurons to model the joint space. All state neurons were
spaced within the dimension limits [−1,+1] and movements
were mapped accordingly. The refractory period and the PSP
window are set for all neurons to τ = 10 ms.

REFERENCES

[1] S. Lavalle and J. Kuffner, “Rapidly-Exploring Random Trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New
Directions, 2000.

[2] L. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, 1996.

[3] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Int. Conf. Robotics and Automation, 2009.

[4] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Int. Conf. Robotics and Automation, 2011.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” J. Mach. Learn. Res., 2016.

[6] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in Int. Joint Conf. on Neural Networks, 2010.

[7] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, 2015.

[8] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Robotics and
Autonomous Systems, 2014.

[9] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” arXiv, 2015.

[10] L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dynamics as
sampling: A model for stochastic computation in recurrent networks
of spiking neurons,” PLoS Computational Biology, 2011.

[11] J. Brea, W. Senn, and J. Pfister, “Sequence learning with hidden
units in spiking neural networks,” in Advances in Neural Information
Processing Systems, 2011.

[12] D. Kappel, B. Nessler, and W. Maass, “STDP installs in winner-take-
all circuits an online approximation to hidden markov model learning,”
PLoS Comput. Biol, 2014.

[13] E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski, and J. Peters, “Re-
current spiking networks solve planning tasks,” Nature PG: Scientific
Reports, 2016.

[14] M. Toussaint and C. Goerick, “A Bayesian view on motor control and
planning,” in From Motor Learning to Interaction Learning in Robots,
Springer, 2010.

[15] A. Georgopoulos, A. Schwartz, and R. Kettner, “Neuronal population
coding of movement direction,” Science, 1986.

[16] W. Ma, J. Beck, P. Latham, and A. Pouget, “Bayesian inference with
probabilistic population codes,” Nature neuroscience, 2006.

[17] W. Gerstner and W. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[18] Y. Huang and R. Rao, “Neurons as monte carlo samplers: Bayesian
inference and learning in spiking networks,” in Advances in Neural
Information Processing Systems, 2014.

[19] G. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., 2002.

[20] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwen-
berghs, “Event-driven contrastive divergence for spiking neuromorphic
systems,” Frontiers in Neuroscience, 2014.

[21] N. Hansen, S. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary computation, 2003.

