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Abstract— Stochastic search algorithms are black-box opti-
mizer of an objective function. They have recently gained a
lot of attention in operations research, machine learning and
policy search of robot motor skills due to their ease of use and
their generality. Yet, many stochastic search algorithms require
relearning if the task or objective function changes slightly to
adapt the solution to the new situation or the new context.
In this paper, we consider the contextual stochastic search
setup. Here, we want to find multiple good parameter vectors
for multiple related tasks, where each task is described by a
continuous context vector. Hence, the objective function might
change slightly for each parameter vector evaluation of a task
or context. Contextual algorithms have been investigated in the
field of policy search, however, the search distribution typically
uses a parametric model that is linear in the some hand-defined
context features. Finding good context features is a challenging
task, and hence, non-parametric methods are often preferred
over their parametric counter-parts. In this paper, we propose
a non-parametric contextual stochastic search algorithm that
can learn a non-parametric search distribution for multiple
tasks simultaneously. In difference to existing methods, our
method can also learn a context dependent covariance matrix
that guides the exploration of the search process. We illustrate
its performance on several non-linear contextual tasks.

I. INTRODUCTION

Stochastic search algorithms are gradient-free black-box
optimizers of some objective function dependent on a high
dimensional parameter vector. These algorithms only make
weak assumption on the structure of underlying objective
function. They only use the objective function values of
the parameters that we want to optimise and don’t require
gradients or higher derivatives of the objective function. For
example, in robotics, we can directly evaluate the objective
function value for a parameter vector of a controller by
executing that parameter vector and using the return of an
episode. Stochastic search algorithms [1], [2], [3] typically
maintain a search distribution over the parameters that we
want to optimise. This search distribution is used to create
samples of the parameter vector. Subsequently, the perfor-
mance of the sampled parameters is evaluated. Using the
samples and their evaluations, a new search distribution is
computed by either computing gradient based updates [2],
[3], evolutionary strategies [1], the cross-entropy method [4],
path integrals [5], or information-theoretic policy updates
[6], [7]. However, many of the mentioned algorithms can
not be applied for multi-task learning. Therefore, if the task
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setup or objective function changes slightly, relearning is
needed to adapt the solution to the new situation or the new
context. For example, consider optimising the parameters of
a humanoid soccer robot controller to kick a ball. Once
the characteristics of the ball, such as weight of ball, or
objective function, such as the desired kick distance changes,
relearning of the desired kicking motion is needed. Therefore
we would like to learn a context-dependent function that
generates optimal parameters for a desired task or context.
Contextual search algorithms such as contextual REPS [6]
have been investigated in the field of policy search. These
algorithms maintain a parametric context-dependent function
as the mean of a Gaussian policy which is linear in the some
hand-defined context features. Firstly finding good context
features to capture the non-linearity of the desired context-
dependent function is a challenging task, and hence, non-
parametric methods are often preferred over their parametric
counter-parts. Secondly only the mean of the Gaussian search
distribution is context-dependent while the covariance matrix
is fixed for all contexts. Hence, these algorithms find a co-
variance matrix that, in average, is good for all the contexts.
However, in order to guide the policy search it is desirable
to have a fully context-dependent search distribution with
optimal mean and covariance matrix for a specific context.
Therefore, we introduce a non-parametric contextual policy
search method that can learn non-linear context-dependent
functions and leverage from a fully context-dependent search
distribution. We name our method local Covariance Estima-
tion with Controlled Entropy Reduction (local CECER). We
will show that local CECER performs favourably.
A. Problem Statement

Given a query context vector s∗ with m dimensions which
defines a task, we want to find a non parametric context-
dependent function m∗(s) : Rm → Rn that generates a
parameter vector θ∗ with n dimensions such that it max-
imizes an objective function R(θ, s) : {Rn,Rm} → R.
The only accessible information on R(θ, s) are evaluations
{R[k]}k=1...N of samples {s[k],θ[k]}k=1...N , where k is
the index of the sample and N is number of samples.
Essentially the goal of local CECER is to generate a dataset
{s[k],θ[k]}k=1...N that contains the optimal parameters for
the corresponding context vectors. With this data set, the
optimal vector θ∗ for a given context s∗ can be found
in a non-parametric fashion using locally weighted linear
regression method.

B. Related Work
In order to generalize a parameter vector to the other

contexts, for example, kicking the ball for different distances,



typically the parameters are optimized for several target
contexts independently. Subsequently, regression methods
are used to generalize the optimized contexts to a new,
unseen context. Although such approaches have been used
successfully, they are time consuming and inefficient in terms
of the number of needed training samples as optimizing
for different contexts and the generalization between opti-
mized parameters for different contexts are two independent
processes[8]. Hence, it is desirable to learn the selection of
the parameter for multiple tasks at once without restarting
the learning process once we see a new task. This problem
setup is also known as contextual policy search [6], [9].
Such a multi-task learning capability was established for
information-theoretic policy search algorithms [10], such as
the Contextual Relative Entropy Policy Search (CREPS)
algorithm [6]. Contextual REPS was originally applicable
for the problems with linear generalization over contexts
or tasks. In [11], contextual REPS was extended for tasks
with non-linear generalization over contexts, by using radial
basis functions resulting in contextual RBF-REPS. However
due to use of radial basis functions, this method can suffer
from curse of dimensionality and also finding a good settings
for RBFs is a challenging task. Moreover, the update rule
of the search distribution in REPS and RBF-REPS is not
fully context-dependent. In addition, REPS and RBF-REPS
can suffer from premature convergence. In [12] Covariance
Estimation with Controlled Entropy Reduction (CECER)
algorithm was introduced to alleviate the premature conver-
gence problem of REPS. Our new algorithm local CECER
leverage from both nonlinear generalization over contexts
and fully context dependent search distribution update rule
while it also uses CECER algorithm concept[12] to avoid
premature convergence.

II. NON-PARAMETRIC CONTEXTUAL STOCHASTIC
SEARCH

local CECER is a non-parametric policy search ap-
proach. Therefore we always maintain a dataset D =
{s[k],θ[k],Σ[k]}k=1...N with N samples that contains the
contexts, parameters pair {s[k],θ[k]} and its evaluation R[k]

as well as the covariance matrix Σ[k] that has been used
to generate parameters θ[k]. In each iteration, given a new
query context s∗, we first compute a locality (similarity)
weighting w[k] for each sample with respect to the query
context s∗. We use these locality weightings to compute a
weight or pseudo probability d[k] for each sample in the
data set and subsequently, we obtain a local Gaussian search
distribution π∗(θ|s). We use the search distribution π∗(θ|s∗)
to create a sample θ∗ for the query context s∗. Subsequently,
the evaluation R∗ of {s∗,θ∗} is obtained by querying the
objective function R(θ∗, s∗). Afterwards, we update the
dataset with the new sample {s∗,θ∗,Σ∗, R∗} 1. We also
use the locality weightings to update the covariance matrices
of neighboured samples of query context s∗ to improve

1Please note that the way we sample contexts s[k] depends on the task.
Throughout this paper we use a uniform distribution to sample contexts s.

Algorithm 1 local CECER Weights Computation

Input : Data Set D{s[k],θ[k], R[k],Σ[k]}k=1...N , the
query context s∗

Compute the locality weightings w[k] for each sample:

w[k] = exp(−0.5|s[k] − s∗|2/b) , Zw =

N�

k=1

w[k].

Compute the weights d[k] for each sample:
1- Optimize the dual function g for η and w

g(η,w) =η�+ φ̂
T
w

+ η log

�
N�

K=1

w[k]

Zw
exp

�
R[k] − φ(s[k])Tw

η

��

φ̂ =
N�

k=1

w[k]

Zw
φ(s[k]).

2- Compute weights

d[k] =

w[k] exp

�
R[k] − φ(s[k])Tw

η

�

Z
, Z =

N�

k=1

d[k].

the estimate of their local covariance matrix. This process
will run iteratively until a stopping criteria is met. We start
by explaining how the weights or pseudo probabilities d[k]

are computed and, after that, we explain the local Gaussian
search distribution update rules.

A. Weight Computation

Given query context s∗, local CECER first computes a
locality weighting w[k] for each sample. We use a normalized
squared exponential kernel i.e.,

w(s) =
k(s, s∗)�
k(s, s∗)ds

, k(s, s∗) = exp(−0.5|s− s∗|2/b).

Now we use this locality weightings to obtain a pseudo
probability or a weight for each sample in our data set. To do
so we find the joint probabilities p∗(s, θ) = π∗(θ|s)µ∗(s)
by optimizing the following performance criteria[6] for each
new query context s∗, i.e.,

max
p∗

��
p∗(s, θ)Rsθdsdθ

s.t. � ≥ KL(p∗(s, θ)||µ∗(s)q(θ|s)),

φ̂ =

��
p∗(s, θ)φ(s)dsdθ, (1)

1 =

��
p∗(s, θ)dsdθ.

The key idea behind this optimization program is to ensure
a smooth and stable learning process by bounding the
Kullback-Leibler divergence between the old local search
distribution and the newly estimated local search distribution
while maximising the expected return for the given context
s∗. Where Rsθ denotes the expected performance when
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(a) Contextual CECER
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(b) Contextual RBF-CECER
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(c) Local CECER

Fig. 1. The learned policy by CECER, RBF-CECER and local CECER for sin task. Darker blue shows the mean of the search distribution for each
context. While the shaded area with lighter blue shows the variance of the search distribution around the mean for each context. The results show that
Local CECER and RBf-CECER can learn non-linear policies. Moreover local CECER is able to learn a search distribution that both the mean and variance
of the distribution is context dependent which is a desirable feature. As you can see in CECER and RBF-CECER the variance of the search distribution
for all the contexts is fixed.
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Fig. 2. The performance comparison of stochastic search methods for optimising contextual version of standard functions (a)Sphere, (b)Rosenbrock and
(c)Cigar, The results show that local CECER outperforms both CECER and RBF-CECER.

evaluating parameter vector θ in context s, q is the old
sample distribution. While µ(s) is the context distribution,
µ∗(s) denotes the local context distribution with respect
to context s∗ which can be obtained using the locality
weighting function w(s) i.e.,

µ∗(s) =
w(s)µ(s)�
µ(s)w(s)ds

.

In addition φ̂ =
�
s
µ∗(s)φ(s)ds is the expected feature

vector for the local context distribution µ∗(s), a given query
context s∗ and a given feature space φ. This optimization
problem can be solved efficiently by the method of La-
grangian multipliers [13]. The solution for p∗(s, θ) is now
given by

p∗(s, θ) ∝ q(θ|s)µ∗(s) exp ((Rsθ − V (s))/η) ,

where V (s) = φ(s)Tw is a context dependent baseline
which is subtracted from the return Rsθ . The parameters
w and η are Lagrangian multipliers that can be obtained by
optimizing the dual function, given as

g(η,w) =η�+ φ̂
T
w (2)

+ η log

���
µ∗(s)q(θ|s) exp

�Rsθ − φ(s)Tw

η

�
dθds

�
.

This policy update results in a weight or pseudo probability

d[k] = w[k] exp
�
(R[k] − V (s[k]))/η

�

for each sample [s[k],θ[k]] given a query context s∗ where

w[k] =
k(s, s∗)
Zw

, Zw =
N�

k=1

w[k].

See Algorithm 1 for a compact representation of the weight
computation of local CECER algorithm. In the next section
we show how we can use these pseudo probabilities to esti-
mate a local Gaussian search distribution π∗(θ|s) exclusively
for the query context s∗.

B. Search Distribution Update Rule

Given dataset {s[k],θ[k], w[k],Σ[k], d[k]}k=1...N and a
query context s∗, we want to find a local linear Gaussian
search distribution

π∗(θ|s) = N
�
θ|mπ∗(s) = AT

π∗ϕ(s),Σπ∗

�
,

by finding Aπ∗ and Σπ∗ . Where ϕ(s) is an arbitrary feature
function of context s, AT

π∗ is the gain matrix and Σπ∗ is
the covariance matrix. Throughout this paper ϕ(s) = [1 s],
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(a) 1 dim context

Iterations

Av
er

ag
e 

Re
tu

rn

-10y

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-7.5

-7

-6.5

-6

-5.5

-5

-4.5

Contextual CECER
Contextual RBF-CECER
Local CECER

(b) 2 dim contexts
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(c) 3 dim contexts

Fig. 3. Performance evaluation on hole reaching task up to 3 dim contextual setup. The results show that local CECER outperforms other algorithms and
can learn the task while the other algorithms can not learn the task. Please also see figure 4 and figure 5

which results in linear generalization over contexts. There-
fore we need update rules for updating the mean function
mπ∗ and for updating the covariance matrix Σπ∗ .

1) Context-Dependent Mean-Function: In order to find
mπ∗ , the parameters Aπ∗ can be obtained by the weighted
linear ridge regression

Aπ∗ = (ΦTDΦ+ λI)
−1

ΦTDU , (3)

where ΦT = [ϕ[1], ...,ϕ[N ]] contains the feature vector for
all samples, UT = [θ[1], ..., θ[N ]] contains all the sample
parameters, D is the diagonal weighting matrix containing
the weightings d[k] and λI is a regularization term.

2) Context-Dependent Covariance Matrix: Similar to
Standard Contextual REPS we can directly use the weighted
sample covariance matrix S∗ as local covariance estimate
Σπ∗ which is obtained by

S∗ =

�N
k=1 d

[k]
�
θ[k] −AT

π∗ϕ(s
[k])

��
θ[k] −AT

π∗ϕ(s
[k])

�T

Z
,

(4)

Z =
(
�N

k=1 d
[k])2 −�N

k=1(d
[k])2

�N
k=1(d

[k])
.

However it has been shown that the sample covariance matrix
from Equation 4 can cause premature convergence [12]. In
order to alleviate this problem, similar to CECER [12] we
combine the local old covariance matrix and the local sample
covariance matrix from Equation 4, i.e.,

Σπ∗ = (λ)S∗ + (1− λ)Σq∗ .

In local CECER, the local old covariance matrix also depends
on context query s∗. Therefore we estimate the local old
covariance Σq∗ by a weighted average of covariance matrices
Σ[k] in the dataset. We use the locality weightings w[k] as
weights, i.e.,

Σq∗ =
N�

k=1

w[k]

Zw
Σ[k].

There are different ways to determine the interpolation factor
λ ∈ [0, 1] between the sample covariance matrix S∗ and
the old covariance matrix Σq∗ . For example, see the rank-µ

update in CMA-ES algorithm [1]. Similar to CECER, the
factor λ ∈ [0, 1] is chosen in such a way that the entropy of
the new search distribution is reduced by a certain amount
ΔH . The entropy of a Gaussian distribution only depends
on its covariance Σπ∗ and is given by

H(Σπ∗) = 0.5
�
n+ n log(2π) + log |Σπ∗ |

�
.

Therefore, λ is chosen such that a desired entropy reduction
is achieved, i.e.,

H(Σq∗)−H(λΣq∗ + (1− λ)S∗) = ΔH.

The parameter ΔH is a user-defined parameter to tune the
algorithm. After obtaining Σπ∗ we update all the covariance
matrices in the dataset using locality weightings i.e.,

Σ[k] = βΣπ∗ + (1− β)Σ[k],β =
w[k]

Zw
.

We subsequently use the policy π∗(θ|s∗) to generate a new
parameter θ∗ for the context query s∗ and add the new
sample {s∗,θ∗, R∗,Σπ∗} to our dataset. In this paper given
that we always want to keep N samples in our dataset, we
replace the new sample with the oldest sample if number of
samples exceeds N . However other dataset update strategies
based on context density could be implemented.

III. EXPERIMENTS

In this section we compare our algorithm local CECER
with contextual CECER and contextual RBF-CECER [12]
which are improved versions of standard contextual REPS
and RBF-REPS[11] respectively. Contextual RBF-CECER is
similar to contextual CECER with the difference that RBF-
CECER use radial basis functions for non-linear generaliza-
tion over contexts[11]. We chose three different contextual
toy tasks. We use a simple standard sin function with one
parameter to show that local CECER can learn non-linear
policies with context-dependent covariance matrix. In the
second series, we use standard optimization test functions
[14], such as the Sphere, the Rosenbrock and the Cigar
function. We extend these functions to be applicable for con-
textual setting with non-linear generalization over contexts.
The task is to find the optimum 15 dimensional parameter
vector θ for a given 2 dimensional context s. Furthermore
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(f) Local CECER

Fig. 4. A 5-link robot has to reach the bottom of a hole (20 cm wide and 1 m deep) at time step 100 centering at a point varying from 0.5 to 2.5
without any collision with the ground or the hole wall. The red lines show the ground and the hole. The postures of the resulting motion are shown as
overlay, where darker postures indicate a posture which is close in time to the bottom of the hole. In the title of each figure, you can see the given context
value and gained reward by each algorithm. In this task while local CECER successfully complete the task for both contexts, the other algorithms fail to
complete the tasks .(Please see the resulting rewards in the title of the figures)
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(a) Local CECER-3 dim contexts

x-axis [m]

y-
ax

is
 [m

]

HolePosition : 0.6,HoleRadius: 0.08,HoleDepth: 1.3,REWARD: -1174.42

-1 -0.5 0 0.5 1 1.5 2 2.5

-1

0

1

2

3

4

5

(b) Local CECER-3 dim contexts

x-axis [m]

y-
ax

is
 [m

]

HolePosition : 1.2,HoleRadius: 0.05,HoleDepth: 0.5,REWARD: -681.173

-1 -0.5 0 0.5 1 1.5 2 2.5

-1

0

1

2

3

4

5

(c) Local CECER-3 dim contexts

Fig. 5. The learned policy by local CECER for 3 dimension contextual hole reaching task. As you can see local CECER could learn the task for 3 dim
context while the other algorithms didn’t learn a reasonable policy that we could show. You can see the value of query contexts as well as obtained reward
in the title of figures.

for the comparisons we use a 5-link planar robot that has to
reach the bottom of a given hole without collision with the
walls of the hole in task space. We used dynamic movement
primitives (DMPs) [15] as underlying policy representation
with 30 parameters (five basis functions per dimension and
1 goal position per dimension). For this task, we use three
contexts which are the position of the hole, width and
depth of the hole. We use hole reaching task with one
dimensional context(hole position), two dimensional context
(hole position and hole width) and three dimensional context.
Figure 4 shows the setup. We show the average as well as
two times the standard deviation of the results over 5 trials
for each experiment. Note that the y-axis of all plots is in a
logarithmic scale.

A. Sinus Function Task

In this task, the reward function is given as the distance
to a sin function and the distance punishment varies for the
context variable (i.e. some contexts are harder to achieve)
i.e., Rsθ = −(θ− sin(s))2 × (1+ 5 cos(s))2. Both, context
and parameter to learn, are 1 dimensional. In Figure 1, we
show the mean and variance of the search distribution for
each context. Figure 1 shows that RBF-CECER and local
CECER both can capture the non-linearity of the function,
however only local CECER has different search distribution
variance for each context. This experiment shows that only
local CECER can learn which context is harder to achieve
(less variance) which is easier achieve (high variance).



B. Standard Optimization Test Functions

We chose three standard optimization functions which are
the Sphere function f(s, θ) =

�p
i=1 x

2
i and the Rosenbrock

function f(s, θ) =
�p−1

i=1 [100(xi+1 − x2
i )

2 + (1 − xi)
2]

and also a function which is known as Cigar function
f(s, θ) = x2

1 + 106
�p

i=2 x
2
i . Where x = θ+ sin(As). The

matrix A is a constant matrix that was chosen randomly.
In our case, because the context s is 2 dimensional, A is
a n × 2 dimensional vector. Now, the optimum θ for these
functions is non-linearly dependent on the given context s.
The initial search area of θ for all experiments is restricted
to the hypercube −5 ≤ θi ≤ 5, i = 1, . . . , p and contexts
are samples uniformly from interval 0 ≤ si ≤ 3, i =
1, . . . , z where z is dimension of the context space s. In our
experiments, the mean of the initial distribution to generate
the initial data set have been chosen randomly in the defined
search area.

a) Algorithmic Comparison: We generate 2500 sam-
ples in the first iteration and in each iteration, we generated
1 new samples and we always keep last 2500 samples. The
results in figure 2 shows that local CECER outperforms both
contextual CECER and contextual RBF-CECER.

C. Planar Hole Reaching

In this task, we used a 5-link planar robot with DMPs [15]
as the underlying control policy. Each link had a length of
1m. The robot is modelled as a decoupled linear dynamical
system. For completing the hole reaching task, the robot end
effector has to reach the bottom of a hole with a width
varying from 10cm to 40cm, centering at a point varying
from 0.5m to 2.5m and with a depth varying from 50cm
to 1.5m without any collision with the ground or the hole
wall. The reward was given by a quadratic cost term for
the desired final point, quadratic costs for high accelerations
and quadratic costs for collisions with the environment. Note
that this performance function is discontinuous due to the
cost for collisions. The DMPs goal attractor for reaching
the final state in this task is unknown and need to also be
learned. Hence, our parameter vector had 30 dimensions. The
learning setup is shown in Figure 4.

b) Algorithmic Comparison: For the planar task we
generated 2500 samples in the first iteration and 1 new
samples in each iteration. We always keep last 2500 samples.
We compare all three algorithms in three different contextual
settings up to three dimensional context setting. The results
in Figure 3 shows that local CECER outperforms the other
two algorithms in all three different contextual settings.
Figure 4 and Figure 5 shows the learned policies for 1
dimensional context, which is the hole position, and three
dimensional context which are the hole position, the hole
width and the hole depth. The results show that local CECER
could successfully learn for all the query contexts while the
other algorithms failed to learn this task.

IV. CONCLUSION

Multi task learning is an important feature for a robot
learning algorithm as a robot usually needs to quickly adapt

to new situations. Therefore, in this paper, we investigated
a non-parametric contextual stochastic search method called
local CECER. We showed that local CECER leverages from
a fully context dependent policy update and it is able to
learn non-linear policies. We showed that local CECER
outperforms the other contextual algorithms. For the future
work we investigate the methods to set the bandwidth of the
kernel function automatically.
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