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Abstract

Stochastic search algorithms are general black-box optimizers. Due to their ease
of use and their generality, they have recently also gained a lot of attention in oper-
ations research, machine learning and policy search. Yet, these algorithms require
a lot of evaluations of the objective, scale poorly with the problem dimension, are
affected by highly noisy objective functions and may converge prematurely. To
alleviate these problems, we introduce a new surrogate-based stochastic search
approach. We learn simple, quadratic surrogate models of the objective function.
As the quality of such a quadratic approximation is limited, we do not greedily ex-
ploit the learned models. The algorithm can be misled by an inaccurate optimum
introduced by the surrogate. Instead, we use information theoretic constraints to
bound the ‘distance’ between the new and old data distribution while maximizing
the objective function. Additionally the new method is able to sustain the explo-
ration of the search distribution to avoid premature convergence. We compare our
method with state of art black-box optimization methods on standard uni-modal
and multi-modal optimization functions, on simulated planar robot tasks and a
complex robot ball throwing task. The proposed method considerably outper-
forms the existing approaches.

1 Introduction

Stochastic search algorithms [1, 2, 3, 4] are black box optimizers of an objective function that is
either unknown or too complex to be modeled explicitly. These algorithms only make weak assump-
tion on the structure of underlying objective function. They only use the objective values and don’t
require gradients or higher derivatives of the objective function. Therefore, they are well suited
for black box optimization problems. Stochastic search algorithms typically maintain a stochas-
tic search distribution over parameters of the objective function, which is typically a multivariate
Gaussian distribution [1, 2, 3]. This policy is used to create samples from the objective function.
Subsequently, a new stochastic search distribution is computed by either computing gradient based
updates [2, 4, 5], evolutionary strategies [1], the cross-entropy method [7], path integrals [3, 8], or
information-theoretic policy updates [9]. Information-theoretic policy updates [10, 9, 2] bound the
relative entropy (also called Kullback Leibler or KL divergence) between two subsequent policies.
Using a KL-bound for the update of the search distribution is a common approach in the stochastic
search. However, such information theoretic bounds could so far only be approximately applied
either by using Taylor-expansions of the KL-divergence resulting in natural evolutionary strate-
gies (NES) [2, 11], or sample-based approximations, resulting in the relative entropy policy search
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(REPS) [9] algorithm. In this paper, we present a novel stochastic search algorithm which is called
MOdel-based Relative-Entropy stochastic search (MORE). For the first time, our algorithm bounds
the KL divergence of the new and old search distribution in closed form without approximations.
We show that this exact bound performs considerably better than approximated KL bounds.

In order to do so, we locally learn a simple, quadratic surrogate of the objective function. The
quadratic surrogate allows us to compute the new search distribution analytically where the KL
divergence of the new and old distribution is bounded. Therefore, we only exploit the surrogate
model locally which prevents the algorithm to be misled by inaccurate optima introduced by an
inaccurate surrogate model.

However, learning quadratic reward models directly in parameter space comes with the burden of
quadratically many parameters that need to be estimated. We therefore investigate new methods that
rely on dimensionality reduction for learning such surrogate models. In order to avoid over-fitting,
we use a supervised Bayesian dimensionality reduction approach. This dimensionality reduction
technique avoids over fitting, which makes the algorithm applicable also to high dimensional prob-
lems. In addition to solving the search distribution update in closed form, we also upper-bound the
entropy of the new search distribution to ensure that exploration is sustained in the search distribu-
tion throughout the learning progress, and, hence, premature convergence is avoided. We will show
that this method is more effective than commonly used heuristics that also enforce exploration, for
example, adding a small diagonal matrix to the estimated covariance matrix [3].

We provide a comparison of stochastic search algorithms on standard objective functions used for
benchmarking and in simulated robotics tasks. The results show that MORE considerably outper-
forms state-of-the-art methods.

1.1 Problem Statement

We want to maximize an objective function R(θ) : Rn → R. The goal is to find one or more
parameter vectors θ ∈ Rn which have the highest possible objective value. We maintain a search
distribution π(θ) over the parameter space θ of the objective function R(θ). The search distribu-
tion π(θ) is implemented as a multivariate Gaussian distribution, i.e., π(θ) = N (θ|µ,Σ). In each
iteration, the search distribution π(θ) is used to create samples θ[k] of the parameter vector θ. Sub-
sequently, the (possibly noisy) evaluationR[k] of θ[k] is obtained by querying the objective function.
The samples {θ[k], R[k]}k=1...N are subsequently used to compute a new search distribution. This
process will run iteratively until the algorithm converges to a solution.

1.2 Related Work

Recent information-theoretic (IT) policy search algorithms [9] are based on the relative entropy pol-
icy search (REPS) algorithm which was proposed in [10] as a step-based policy search algorithm.
However, in [9] an episode-based version of REPS that is equivalent to stochastic search was pre-
sented. The key idea behind episode-based REPS is to control the exploration-exploitation trade-off
by bounding the relative entropy between the old ‘data’ distribution q(θ) and the newly estimated
search distribution π(θ) by a factor ε. Due to the relative entropy bound, the algorithm achieves a
smooth and stable learning process. However, the episodic REPS algorithm uses a sample based
approximation of the KL-bound, which needs a lot of samples in order to be accurate. Moreover, a
typical problem of REPS is that the entropy of the search distribution decreases too quickly, resulting
in premature convergence.

Taylor approximations of the KL-divergence have also been used very successfully in the area of
stochastic search, resulting in natural evolutionary strategies (NES). NES uses the natural gradient to
optimize the objective [2]. The natural gradient has been shown to outperform the standard gradient
in many applications in machine learning [12]. The intuition of the natural gradient is that we want
to obtain an update direction of the parameters of the search distribution that is most similar to the
standard gradient while the KL-divergence between new and old search distributions is bounded.
To obtain this update direction, a second order approximation of the KL, which is equivalent to the
Fisher information matrix, is used.
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Surrogate based stochastic search algorithms [6][13] have been shown to be more sample efficient
than direct stochastic search methods and can also smooth out the noise of the objective function. For
example, an individual optimization method is used on the surrogate that is stopped whenever the
KL-divergence between the new and the old distribution exceeds a certain bound [6]. For the first
time, our algorithm uses the surrogate model to compute the new search distribution analytically,
which bounds the KL divergence of the new and old search distribution, in closed form.

Quadratic models have been used successfully in trust region methods for local surrogate approxi-
mation [14, 15]. These methods do not maintain a stochastic search distribution but a point estimate
and a trust region around this point. They update the point estimate by optimizing the surrogate and
staying in the trusted region. Subsequently, heuristics are used to increase or decrease the trusted
region. In the MORE algorithm, the trusted region is defined implicitly by the KL-bound.

The Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) is considered as the state of
the art in stochastic search optimization. CMA-ES also maintains a Gaussian distribution over the
problem parameter vector and uses well-defined heuristics to update the search distribution.

2 Model-Based Relative Entropy Stochastic Search

Similar to information theoretic policy search algorithms [9], we want to control the exploration-
exploitation trade-off by bounding the relative entropy of two subsequent search distribution. How-
ever, by bounding the KL, the algorithm can adapt the mean and the variance of the algorithm. In
order to maximize the objective for the immediate iteration, the shrinkage in the variance typically
dominates the contribution to the KL-divergence, which often leads to a premature convergence of
these algorithms. Hence, in addition to control the KL-divergence of the update, we also need to
control the shrinkage of the covariance matrix. Such a control mechanism can be implemented by
lower-bounding the entropy of the new distribution. In this paper, we will set the bound always
to a certain percentage of the entropy of the old search distribution such that MORE converges
asymptotically to a point estimate.

2.1 The MORE framework

Similar as in [9], we can formulate an optimization problem to obtain a new search distribution
that maximizes the expected objective value while upper-bounding the KL-divergence and lower-
bounding the entropy of the distribution

max
π

∫
π(θ)Rθdθ, s.t. KL

(
π(θ)||q(θ)

)
≤ ε, H(π) ≥ β, 1 =

∫
π(θ)dθ, (1)

where Rθ denotes the expected objective1 when evaluating parameter vector θ. The term H(π) =
−
∫
π(θ) log π(θ)dθ denotes the entropy of the distribution π and q(θ) is the old distribution. The

parameters ε and β are user-specified parameters to control the exploration-exploitation trade-off of
the algorithm.

We can obtain a closed form solution for π(θ) by optimizing the Lagrangian for the optimization
problem given above. This solution is given as

π(θ) ∝ q(θ)η/(η+ω) exp
(
Rθ

η + ω

)
, (2)

where η and ω are the Lagrangian multipliers. As we can see, the new distribution is now a geo-
metric average between the old sampling distribution q(θ) and the exponential transformation of the
objective function. Note that, by setting ω = 0, we obtain the standard episodic REPS formulation
[9]. The optimal value for η and ω can be obtained by minimizing the dual function g(η, ω) such
that η > 0 and ω > 0, see [16]. The dual function g(η, ω) is given by

g(η, ω) = ηε− ωβ + (η + ω) log

(∫
q(θ)

η
η+ω exp

(
Rθ

η + ω

)
dθ

)
. (3)

1Note that we are typically not able to obtain the expected reward but only a noisy estimate of the underlying
reward distribution.
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As we are dealing with continuous distributions, the entropy can also be negative. We specify β
such that the relative difference of H(π) to a minimum exploration policy H(π0) is decreased for a
certain percentage, i.e., we change the entropy constraint to

H(π)−H(π0) ≥ γ(H(q)−H(π0))⇒ β = γ(H(q)−H(π0)) +H(π0).

Throughout all our experiments, we use the same γ value of 0.99 and we set minimum entropy
H(π0) of search distribution to a small enough value like −75. We will show that using the addi-
tional entropy bound considerably alleviates the premature convergence problem.

2.2 Analytic Solution of the Dual-Function and the Policy

Using a quadratic surrogate model of the objective function, we can compute the integrals in the
dual function analytically, and, hence, we can satisfy the introduced bounds exactly in the MORE
framework. At the same time, we take advantage of surrogate models such as a smoothed estimate
in the case of noisy objective functions and a decrease in the sample complexity2.

We will for now assume that we are given a quadratic surrogate model

Rθ ≈ θTRθ + θTr + r0

of the objective function Rθ which we will learn from data in Section 3. Moreover, the search
distribution is Gaussian, i.e., q(θ) = N (θ|b,Q). In this case the integrals in the dual function given
in Equation 3 can be solved in closed form. The integral inside the log-term in Equation (3) now
represents an integral over an un-normalized Gaussian distribution. Hence, the integral evaluates to
the inverse of the normalization factor of the corresponding Gaussian. After rearranging terms, the
dual can be written as

g(η, ω) = ηε− βω +
1

2

(
fTFf − ηbTQ−1b− η log |2πQ|+ (η + ω) log |2π(η + ω)F |

)
(4)

with F = (ηQ−1−2R)−1 and f = ηQ−1b+r. Hence, the dual function g(η, ω) can be efficiently
evaluated by matrix inversions and matrix products. Note that, for a large enough value of η, the
matrix F will be positive definite and hence invertible even if R is not. In our optimization, we
always restrict the η values such that F stays positive definite3.

Nevertheless, we could always find the η value with the correct KL-divergence. In contrast to
MORE, Episodic REPS relies on a sample based approximation of the integrals in the dual function
in Equation (3). It uses the sampled rewardsRθ of the parameters θ to approximate this integral.

We can also obtain the update rule for the new policy π(θ). From Equation (2), we know that the new
policy is the geometric average of the Gaussian sampling distribution q(θ) and a squared exponential
given by the exponentially transformed surrogate. After re-arranging terms and completing the
square, the new policy can be written as

π(θ) = N (θ|Ff ,F (η + ω)) , (5)

where F , f are given in the previous section.

3 Learning Approximate Quadratic Models

In this section, we show how to learn a quadratic surrogate. Note that we use the quadratic surrogate
in each iteration to locally approximate the objective function and not globally. As the search dis-
tribution will shrink in each iteration, the model error will also vanish asymptotically. A quadratic
surrogate is also a natural choice if a Gaussian distribution is used, cause the exponent of the Gaus-
sian is also quadratic in the parameters. Hence, even using a more complex surrogate, it can not
be exploited by a Gaussian distribution. A local quadratic surrogate model provides similar second-
order information as the Hessian in standard gradient updates. However, a quadratic surrogate model
also has quadratically many parameters which we have to estimate from a (ideally) very small data

2The regression performed for learning the quadratic surrogate model estimates the expectation of the ob-
jective function from the observed samples.

3To optimize g, any constrained nonlinear optimization method can be used[13].
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Figure 1: Comparison of stochastic search methods for optimizing the uni-modal Rosenbrock (a) and the
multi modal (b) Rastrigin function. (c) Comparison for a noisy objective function. All results show that MORE
clearly outperforms other methods.

set. Therefore, already learning a simple local quadratic surrogate is a challenging task. In order
to learn the local quadratic surrogate, we can use linear regression to fit a function of the form
f(θ) = φ(θ)β, where φ(θ) is a feature function that returns a bias term, all linear and all quadratic
terms of θ. Hence, the dimensionality of φ(θ) is D = 1 + d + d(d + 1)/2, where d is the di-
mensionality of the parameter space. To reduce the dimensionality of the regression problem, we
project θ in a lower dimensional space lp×1 = Wθ and solve the linear regression problem in this
reduced space4. The quadratic form of the objective function can then be computed from β and
W . Still, the question remains how to choose the projection matrix W . We did not achieve good
performance with standard PCA [17] as PCA is unsupervised. Yet, the W matrix is typically quite
high dimensional such that it is hard to obtain the matrix by supervised learning and simultaneously
avoid over-fitting. Inspired by [18], where supervised Bayesian dimensionality reduction are used
for classification, we also use a supervised Bayesian approach where we integrate out the projection
matrixW .

3.1 Bayesian Dimensionality Reduction for Quadratic Functions

In order to integrate out the parameters W , we use the following probabilistic dimensionality re-
duction model

p(r∗|θ∗,D) =

∫
p(r∗|θ∗,W )p(W |D)dW , (6)

where r∗ is prediction of the objective at query point θ∗, D is the training data set consisting of
parameters θ[k] and their objective evaluations R[k]. The posterior for W is given by Bayes rule,
i.e., p(W |D) = p(D|W )p(W )/p(D). The likelihood function p(D|W ) is given by

p(D|W ) =

∫
p(D|W ,β)p(β)dβ, (7)

where p(D|W ,β) is the likelihood of the linear model β and p(β) its prior. For the likelihood
of the linear model we use a multiplicative noise model, i.e., the higher the absolute value of the
objective, the higher the variance. The intuition behind this choice is that we are mainly interested
in minimizing the relative error instead of the absolute error5. Our likelihood and prior is therefore
given by

p(D|W ,β) =

N∏
k=1

N (R[k]|φ(Wθ[k])β, σ2|R[k]|), p(β) = N (β|0, τ2I), (8)

4W (p×d) is a projection matrix that projects a vector from a d dimension manifold to a p dimension mani-
fold.

5We observed empirically that such relative error performs better if we have non-smooth objective functions
with a large difference in the objective values. For example, an error of 10 has a huge influence for an objective
value of −1, while for a value of −10000, such an error is negligible.
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Equation 7 is a weighted Bayesian linear regression model in β where the weight of each sample
is scaled by the absolute value of |R[k]|−1. Therefore, p(D|W ) can be obtained efficiently in
closed form. However, due to the feature transformation, the output R[k] depends non-linearly on
the projection W . Therefore, the posterior p(W |D) cannot be obtained in closed form any more.
We use a simple sample-based approach in order to approximate the posterior p(W |D). We use K
samples from the prior p(W ) to approximate the integrals in Equation (6) and in p(D). In this case,
the predictive model is given by

p(r∗|θ∗,D) ≈ 1

K

∑
i

p(r∗|θ∗,W i)
p(D|W i)

p(D)
, (9)

where p(D) ≈ 1/K
∑
i p(D|W i). The prediction for a single W i can again be obtained by a

standard Bayesian linear regression. Our algorithm is only interested in the expectationRθ = E[r|θ]
in the form of a quadratic model. Given a certainW i, we can obtain a single quadratic model from
φ(W iθ)µβ , where µβ is the mean of the posterior distribution p(β|W ,D) obtained by Bayesian
linear regression. The expected quadratic model is then obtained by a weighted average over all K
quadratic models with weight p(D|W i)/p(D). Note that with a higher number of projection matrix
samples(K), the better the posterior can be approximated. Generating these samples is typically
inexpensive as it just requires computation time but no evaluation of the objective function. We
also investigated using more sophisticated sampling techniques such as elliptical slice sampling
[19] which achieved a similar performance but considerably increased computation time. Further
optimization of the sampling technique is part of future work.

4 Experiments

We compare MORE with state of the art methods in stochastic search and policy search such as
CMA-ES [1], NES [2], PoWER [20] and episodic REPS [9]. In our first experiments, we use
standard optimization test functions [21], such as the the Rosenbrock (uni modal) and the Rastrigin
(multi modal) functions. We use a 15 dimensional version of these functions.

Furthermore, we use a 5-link planar robot that has to reach a given point in task space as a toy task
for the comparisons. The resulting policy has 25 parameters, but we also test the algorithms in high-
dimensional parameter spaces by scaling the robot up to 30 links (150 parameters). We subsequently
made the task more difficult by introducing hard obstacles, which results in a discontinuous objective
function. We denote this task hole-reaching task. Finally, we evaluate our algorithm on a physical
simulation of a robot playing beer pong. The used parameters of the algorithms and a detailed
evaluation of the parameters of MORE can be found in the supplement.

4.1 Standard Optimization Test Functions

We chose one uni-modal functions f(x) =
∑n−1
i=1 [100(xi+1 − x2i )2 + (1 − xi)2], also known as

Rosenbrock function and a multi-modal function which is known as the Rastgirin function f(x) =
10n +

∑n
i=1[x

2
i − 10 cos(2πxi)]. All these functions have a global minimum equal f(x) = 0. In

our experiments, the mean of the initial distributions has been chosen randomly.

Algorithmic Comparison. We compared our algorithm against CMA-ES, NES, PoWER and REPS.
In each iteration, we generated 15 new samples 6. For MORE, REPS and PoWER, we always keep
the last L = 150 samples, while for NES and CMA-ES only the 15 current samples are kept7. As
we can see in the Figure 1, MORE outperforms all the other methods in terms of learning speed and
final performance in all test functions. However, in terms of the computation time, MORE was 5
times slower than the other algorithms. Yet, MORE was sufficiently fast as one policy update took
less than 1s.

Performance on a Noisy Function. We also conducted an experiment on optimizing the Sphere
function where we add multiplicative noise to the reward samples, i.e., y = f(x) + ε|f(x)|, where
ε ∼ N (0, 1.0) and f(x) = xMx with a randomly chosenM matrix.

6We use the heuristics introduced in [1, 2] for CMA-ES and NES
7NES and CMA-ES algorithms typically only use the new samples and discard the old samples. We also

tried keeping old samples or getting more new samples which decreased the performance considerably.
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(b) High-D Reaching Task
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Figure 2: (a) Algorithmic comparison for a planar task (5 joints, 25 parameters). MORE outperforms all the
other methods considerably.(b) Algorithmic comparison for a high-dimensional task (30 joints, 150 parame-
ters). The performance of NES degraded while MORE could still outperform CMA-ES. (c) Evaluation of the
entropy bound γ. For a low γ, the entropy bound is not active and the algorithm converges prematurely. If γ is
close to one, the entropy is reduced too slowly and convergence takes long.

Figure 1(c) shows that MORE successfully smooths out the noise and converges, while other meth-
ods diverge. The result shows that MORE can learn highly noisy reward functions.

4.2 Planar Reaching and Hole Reaching

We used a 5-link planar robot with DMPs [22] as the underlying control policy. Each link had a
length of 1m. The robot is modeled as a decoupled linear dynamical system. The end-effector of
the robot has to reach a via-point v50 = [1, 1] at time step 50 and at the final time step T = 100
the point v100 = [5, 0] with its end effector. The reward was given by a quadratic cost term for the
two via-points as well as quadratic costs for high accelerations. Note that this objective function
is highly non-quadratic in the parameters as the via-points are defined in end effector space. We
used 5 basis functions per degree of freedom for the DMPs while the goal attractor for reaching the
final state was assumed to be known. Hence, our parameter vector had 25 dimensions. The setup,
including the learned policy is shown in the supplement.

Algorithmic Comparison. We generated 40 new samples. For MORE, REPS, we always keep
the last L = 200 samples, while for NES and CMA-ES only the 40 current samples are kept. We
empirically optimized the open parameters of the algorithms by manually testing 50 parameter sets
for each algorithm. The results shown in Figure 2(a) clearly show that MORE outperforms all other
methods in terms of speed and the final performance.

Entropy Bound. We also evaluated the entropy bound in Figure 2(c). We can see that the entropy
constraint is a crucial component of the algorithm to avoid the premature convergence.

High-Dimensional Parameter Spaces. We also evaluated the same task with a 30-link planar robot,
resulting in a 150 dimensional parameter space. We compared MORE, CMA, REPS and NES. While
NES considerably degraded in performance, CMA and MORE performed well, where MORE found
considerably better policies (average reward of -6571 versus -15460 of CMA-ES), see Figure 2(b).
The setup with the learned policy from MORE is depicted in the supplement.

We use the same robot setup as in the planar reaching task for hole reaching task. For completing
the hole reaching task, the robot’s end effector has to reach the bottom of a hole (35cm wide and 1
m deep) centering at [2, 0] without any collision with the ground or the walls, see Figure 3(c). The
reward was given by a quadratic cost term for the desired final point, quadratic costs for high accel-
erations and additional punishment for collisions with the walls. Note that this objective function is
discontinuous due to the costs for collisions. The goal attractor of the DMP for reaching the final
state in this task is unknown and is also learned. Hence, our parameter vector had 30 dimensions.

Algorithmic Comparison. We used the same learning parameters as for the planar reaching task.
The results shown in Figure 3(a) show that MORE clearly outperforms all other methods. In this
task, NES could not find any reasonable solution while Power, REPS and CMA-ES could only learn
sub-optimal solutions. MORE could also achieve the same learning speed as REPS and CMA-ES,
but would then also converge to a sub-optimal solution.

7



Episodes

Av
er

ag
e 

Re
tu

rn

-10y

0 0.5 1 1.5 2 2.5 3 3.5 4
7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

× 104

REPS
PoWER
MORE
xNES
CMA-ES

(a) Hole Reaching Task
Episodes

Av
er

ag
e 

Re
tu

rn

-10y

0 50 100 150
1.50

1.00

0.50

-0.00

-0.50

-1.00

-1.50
REPS
PoWER
MORE
CMA-ES

(b) Beer Pong Task
x-axis [m]

y-
ax

is
 [m

]

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

0

1

2

3

4

5

(c) Hole Reaching Task Posture

Figure 3: (a) Algorithmic comparison for the hole reaching task. MORE could find policies of much higher
quality. (b) Algorithmic comparison for the beer pong task. Only MORE could reliably learn high-quality
policies while for the other methods, even if some trials found good solutions, other trials got stuck prematurely.

4.3 Beer Pong

(a) Beer Pong Task

Figure 4: The Beer Pong Task. The
robot has to throw a ball such that it
bounces of the table and ends up in the
cup.

In this task, a seven DoF simulated barrett WaM robot arm
had to play beer-pong, i.e., it had to throw a ball such that
it bounces once on the table and falls into a cup. The ball
was placed in a container mounted on the end-effector. The
ball could leave the container by a strong deceleration of the
robot’s end-effector. We again used a DMP as underlying pol-
icy representation, where we used the shape parameters (five
per DoF) and the goal attractor (one per DoF) as parameters.
The mean of our search distribution was initialized with imita-
tion learning. The cup was placed at a distance of 2.2m from
the robot and it had a height of 7cm. As reward function, we
computed the point of the ball trajectory after the bounce on
the table, where the ball is passing the plane of the entry of the
cup. The reward was set to be 20 times the negative squared
distance of that point to the center of the cup while punishing the acceleration of the joints. We
evaluated MORE, CMA, PoWER and REPS on this task. The setup is shown in Figure 4 and the
learning curve is shown in Figure 3(b). MORE was able to accurately hit the ball into the cup while
the other algorithms couldn’t find a robust policy.

5 Conclusion

Using KL-bounds to limit the update of the search distribution is a wide-spread idea in the stochas-
tic search community but typically requires approximations. In this paper, we presented a new
model-based stochastic search algorithm that computes the KL-bound analytically. By relying on a
Gaussian search distribution and on locally learned quadratic models of the objective function, we
can obtain a closed form of the information theoretic policy update. We also introduced an addi-
tional entropy term in the formulation that is needed to avoid premature shrinkage of the variance of
the search distribution. Our algorithm considerably outperforms competing methods in all the con-
sidered scenarios. The main disadvantage of MORE is the number of parameters. However based
on our experiments, these parameters are not problem specific.
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