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Abstract— Many episode-based (or direct) policy search algo-
rithms, maintain a multivariate Gaussian distribution as search
distribution over the parameter space of some objective func-
tion. One class of algorithms, such as episodic REPS, PoWER
or PI2 uses, a weighted maximum likelihood estimate (WMLE)
to update the mean and covariance matrix of this distribution
in each iteration. However, due to high dimensionality of
covariance matrices and limited number of samples, the WMLE
is an unreliable estimator. The use of WMLE leads to over-
fitted covariance estimates, and, hence the variance/entropy
of the search distribution decreases too quickly, which may
cause premature convergence. In order to alleviate this prob-
lem, the estimated covariance matrix can be regularized in
different ways, for example by using a convex combination of
the diagonal covariance estimate and the sample covariance
estimate. In this paper, we propose a new covariance matrix
regularization technique for policy search methods that uses the
convex combination of the sample covariance matrix and the
old covariance matrix used in last iteration. The combination
weighting is determined by specifying the desired entropy of
the new search distribution. With this mechanism, the entropy
of the search distribution can be gradually decreased without
damage from the maximum likelihood estimate.

I. INTRODUCTION

Stochastic search algorithms are gradient-free black-box
optimizers of some objective function Rθ dependent on
a high-dimensional parameter vector θ. Stochastic search
algorithms do not put any assumption on the structure of
the objective function, such as a Markov assumption. In this
paper, we focus on episode-based policy search methods
in robotics which are a special case of stochastic search
methods. Due to its simplicity, episode based policy search is
one of the most successful reinforcement learning approaches
in robotics [1], [2], [3], [4]. Episode-based policy search
methods address the continuous state-action problems in
reinforcement learning by directly optimizing the parameters
θ of a control lower-level policy. Fourier series, splines and
DMPs[5] has been commonly used as control lower-level
policy in robotics. Policy search methods, directly search
over the parameter space of the lower-level policy using
an upper-level policy or search distribution which is typi-
cally implemented as a multivariate Gaussian distribution.
Many state of art methods such as episodic REPS [4],
CMA-PI2 [3] and PoWER [6] estimate the Gaussian upper
level policy (mean and covariance matrix) by a weighted
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maximum likelihood estimate (WMLE), see Equation 4. To
do so, they generate samples from the current upper-level
policy and use the return of the samples to estimate the
quality of the samples. This quality estimate results in a
weight for each sample that can be used to estimate a new
mean and a new covariance matrix for the new Gaussian
upper-level policy by using a WMLE. Yet, due to high
dimensionality of a covariance matrix and limited number
of samples, the WMLE estimate of the covariance matrix is
an unreliable estimator with high variance. This over-fitted
estimation of the covariance makes the upper-level policy
highly biased to a specific region of the parameter space,
which often causes premature convergence [7]. Instead, we
can estimate only a diagonal covariance matrix with fewer
parameters [8], yet, such a solution has a high bias and might
result in a slow learning performance as we neglect the
correlations between the parameters. One other solution is
using regularization techniques for estimating the covariance
matrix. Standard regularization techniques such as covariance
shrinkage [9], [7] are based on a convex combination of
different estimators, e.g., the high variance estimator of the
sample covariance matrix and the high bias estimator of the
diagonal covariance matrix. Yet, policy search algorithms
have a big advantage when estimating the covariance ma-
trix. They have access to the covariance with which the
(unweighted) samples have been generated. Therefore we
propose a new regularization technique that combines the
sample covariance estimate with the covariance matrix of
the generating distribution, i.e., the old upper-level policy,
can be used as a prior in our estimation. Furthermore, we
know that controlling the exploration rate in policy search
is crucial. The variance/entropy of the upper-level policy
should decrease slowly in order to give the algorithm enough
time to converge to a (local) optimal solution. Hence, the
combination factor of the prior (old covariance) and the
sample covariance can be determined by an entropy reduction
criterion. At each iteration, we want the entropy of the upper-
level policy to decrease for a certain amount. We chose
the combination factor between the two matrices such that
the entropy of the resulting distribution is exactly at this
desired level. We name our method Covariance Estimation
with Controlled Entropy Reduction (CECER). Intuitively, our
method can be seen as weighted averaging of covariance
matrix estimates of all iterations, where the influence of
the initial distribution is decreased at each iteration. Similar
combinations of old and new covariance matrices have been
used by other stochastic search algorithms such as CMA-ES
[10]. We compare different covariance estimation techniques



including covariance shrinkage [9] to our new regularization
technique based on entropy reduction in context of state of art
episode-based policy search methods such as REPS [4] and
an episode-based version of PI2[3]1. The resulting episode-
based policy search algorithms are also compared to the
Natural Evolution Strategy [11] and CMA-ES [10] on two
simulated robotics tasks including a planar arm reaching task
and a planar arm hole reaching task. Our algorithm performs
favorably in our experiments.

II. WEIGHTED MAXIMUM LIKELIHOOD BASED POLICY
SEARCH

We want to maximize an objective function R(θ),

R : Rn → R ,θ 7→ R(θ).

The goal is to find one or more parameter vectors, θ ∈ Rn,
with an objective value, R(θ), as big as possible. The
only accessible information on R(θ), are function values
{R[k]}k=1...N of evaluated parameter vectors {θ[k]}k=1...N ,
where k is the index of the sample and N is number of
samples. Episode-based policy search algorithms [1], [2], [3]
typically maintain an upper-level policy or search distribu-
tion π(θ), over the parameter space θ of a parametrized
lower-level policy. Typically, the upper-level policy π(θ)
is implemented as a multivariate Gaussian distribution, i.e.,
π(θ) = N (θ|µ,Σ). In each iteration, the upper-level policy
π(θ) is used to create samples θ[k] of the parameter vector θ
of the lower-level policy. Subsequently, the return R[k] of θ[k]

is obtained by evaluating the performance of the lower-level
policy with the parameter vector θ[k]. Using the samples and
their returns {θ[k], R[k]}k=1...N , a new upper-level policy is
computed 2 by either computing gradient based updates [2],
[12], covariance matrix adaptation updates [10] or weighted
MLE-based updates [3], [13], [4], [14]. We are particularly
interested in weighted MLE-based policy search methods
which have been shown to be able to outperform gradient-
based methods such as Natural Actor-Critic [15]. WMLE-
based policy search methods use the return R[k] to compute
a weight w[k] for each sample θ[k] such that

∑N
k=1 w

[k] = 1
3 and, subsequently, the mean and covariance matrix of the
upper-level policy π(θ) is updated by a weighted MLE
(Equation 4). The next we will explain how the weights are
computed.

A. Computation of the Weighting

The weight w[k] for sample θ[k] can be estimated by an
exponential transformation of the corresponding return R[k],
i.e.,

w[k] ∝ exp(R[k]/η), (1)

where η specifies the temperature of the exponential trans-
formation, such as applied by the PI2 algorithm [14], [3],
PoWER [13] and REPS [4]. The next we will explain how
different algorithms set the η.

1In the episode-based case, PoWER [6] and PI2 [3] are equivalent.
2The goal is that, the new upper-level policy or new search distribution

spans samples with higher returns than the old upper-level policy
3Each weight is a pseudo-probability for the corresponding sample

a) PoWER and PI2: In the PI2 and PoWER algorithms,
the temperature parameter η is chosen by a heuristic. PI2

chooses
η = λ(max

k
R[k] −min

k
R[k]),

where R[k] is the return of sample θ[k] and λ is typically
set between 5 and 15. For PoWER, η is often hand tuned.
While PoWER and PI2 are actually equivalent if the same
strategy for η is used4, both algorithms are derived from very
different principles.

b) REPS: REPS [16], [4] bounds the Kullback-Leibler
divergence between the old policy q(θ) used for sampling
and the newly estimated policy π(θ). The policy update can
hence be formulated as constrained optimization problem
where we want to maximize the expected return of the new
policy under the KL constraint, i.e.,

π∗ =argmaxπ

∫
π(θ)R(θ)dθ (2)

s.t. KL(π(θ)||q(θ)) ≤ ε,
∫
π(θ)dθ = 1

The main intuition behind this bound is that we can directly
control the exploration-exploitation trade-off with the ε pa-
rameter. For a large ε (exploitation), the entropy/variance
of the new upper level policy will shrink quickly such
that, it will always choose the sample with highest return
in our dataset while for a small ε (exploration), the new
search policy and the old search policy would be almost
identical. While this optimization problem can not be solved
analytically as Rθ is unknown, it can be solved for our
samples {θ[k], R[k]}k=1...N . The solution for the sample
based problem results in a weight w[k] ∝ exp(R[k]/η) for
each sample, where the temperature parameter η can be
found by optimizing the dual function

g(η) = ηε+ η log

(
N∑
k=1

1

N
exp

(
R[k]

η

))
(3)

of the optimization problem. The optimal value for η can
be obtained by minimizing the dual function g(η) such that
η > 0, see [4], [17]. The next, we will explain how the
weightings can be used to update the upper-level policy.

B. Weighted ML Policy Updates

In each iteration, after computing the weightings w[k]
k=1...N ,

the new upper level policy is computed by using the samples
and their weightings {θ[k], w[k]}k=1...N . PI2 , PoWER and
REPS directly use an unbiased weighted maximum likeli-
hood estimate [1] for estimating µ and the sample covariance
S of a Gaussian upper level policy which is given by

µ =

N∑
i=1

w[k]θ[k], S =

∑N
i=1w

[k](θ[k] − µ)T (θ[k] − µ)

1−
∑N
i=1

(
w[k]

)2 .

(4)

4This is true at least for the episode-based version that neglects the time
steps.
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Fig. 1. The performance comparison for reaching task using a 5 link planar robot. The results show that CECER outperforms the other covariance update
methods for the both REPS and PI2. In (c) we see that, CECER-REPS has faster learning rate than the other algorithms.

Here, the sample covariance matrix of a p dimensional
parameter space has n = p+p2

2 free parameters to estimate.
Typically, the number of samples used for the estimate
is much smaller than this number of free parameters. In
this case, it has been shown that the sample covariance
matrix from Equation 4 is not a good estimate of the true
covariance matrix [9] and biases the search distribution
towards a specific region of the search space. Due to this
effect, the search distribution uncontrollably looses its ex-
ploration/entropy along many dimensions of the parameter
space and will therefore causes premature convergence. That
is a highly unwanted effect in policy search. Alternatively,
instead of estimating a full covariance matrix, we could
estimate a diagonal covariance matrix which has fewer
parameters to estimate and, hence, will not suffer so severely
from over-fitting. However, using a diagonal covariance ma-
trix neglects the correlations between the parameters, which
might again lead to a slow learning progress [18], [8].

III. COVARIANCES REGULARIZATION FOR ML BASED
POLICY SEARCH

One way to achieve a more accurate covariance estimate
is to use regularization techniques that combine the sample
estimate of the covariance matrix with a target estimate of the
covariance matrix [9]. Different target covariance estimate
can be used such as the diagonal covariance matrix or even
an identity matrix that is multiplied with some factor [9].
In policy search, we also have the possibility to use the old
covariance matrix as target covariance estimate, as we know
that the unweighted samples have been generated using it.
There are different ways to determine the interpolation factor
between the sample covariance and the target covariance
estimate. We will discuss first a standard algorithm for deter-
mining this interpolation factor and subsequently present our
new method based on a controlled reduction of the entropy
of the resulting policy.

A. Combining Diagonal and Full Covariance Matrix Esti-
mates by Covariance Shrinkage

In covariance shrinkage estimation [9], we shrink a
high-dimensional estimated covariance S towards a lower-

dimensional covariance G with fewer parameters (e.g. diag-
onal matrix) by a weighted average, i.e.,

Σ = λG+ (1− λ)S (5)

where λ ∈ [0, 1] is the shrinkage intensity. It has been
shown In [9], that the combination of covariance estimators
with high bias(e.g. diagonal covariance) and high variance
(sample covariance) in Equation 5 gives us a regularized
estimate that outperforms each of those two estimators in
terms of estimation error. In the case of our policy update, the
matrix G is a diagonal covariance matrix(with p parameters)
and S is a sample covariance matrix (with p+p2

2 parameters)
estimated by the samples {θ[k], w[k]}k=1...N . Intuitively, in
this method, we want to shrink the overestimated correlations
between parameters in matrix S towards zero to get a better
conditioned covariance matrix. And the diagonal elements
will stay unchanged. To do so, we parametrize our desired
covariance matrix for the policy update in terms of variances
and correlations, i.e.,

Σij =

{
Sij if i = j,

R∗ij
√
SiiSjj if i 6= j,

(6)

where R∗ij is the element of the shrunk correlation matrix,
i.e,

R∗ij =

{
1 if i = j,

Rij min(1,max(σ, 1− λ∗)) if i 6= j.
(7)

where λ∗ is the optimum shrinkage intensity. The min-max
term in Equation 7 is used for limiting λ∗ between 0 and
1 − σ. Typically, σ = 0 is used. Yet, we empirically found
that policy search algorithms performed slightly better if we
set σ to

σ = min

(
φeff

p2
, 1

)
, φeff =

1∑N
k=1(w[k])2

, (8)

where φeff is the number of effective samples which is
computed as in [10] and p is the number of dimensions of the
parameter vector θ. The reason is that, covariance matrices
that need to be estimated for our policy search methods are
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(c) Planar Reaching Task

Fig. 2. The performance comparison for high dimensional reaching task using a 20-link planar robot. The results show that CECER clearly outperforms
the other covariance update methods for REPS policy update and CECER-REPS has better performance than NES and CMA-ES (c) The planar hole
reaching task used for our comparisons. A 5-link planar robot has to reach the bottom of a hole centring at point [2 0] in task space while avoiding any
collision. The hole is indicated by the red lines. The postures of the resulting motion are shown as overlay, where darker postures indicate a posture which
is close in time to the via-point.

high dimensional considering the small amount of data that
we want to use. As a consequence, matrix shrinkage algo-
rithms will, in many cases, just decide to take the estimator
with less variance (which is the diagonal covariance matrix)
with a factor of 100%. With this rule we force the shrinkage
algorithm to always take a small part from the full sample
covariance matrix therefore the algorithm always exploits
the correlations between parameters. Typically, σ has a very
small value close to 0. Next we will explain how the value
of λ∗ is computed.

Computing the Shrinkage Intensity: We can find the
optimum λ∗ efficiently in closed form using the method
given in [9]. This results in an optimal lambda value of

λ∗ =

∑
i6=j V̂ar(Rij)∑

i 6=j R
2
ij

. (9)

The term V̂ar(Rij) denotes the variance of the elements of
the matrix R which can be estimated from the samples and
their weightings {θ[k], w[k]}k=1...N by

V̂ar(Rij) =

∑N
k=1(w[k])2

(1−
∑N
k=1(w[k])2)3

N∑
k=1

w[k](C
[k]
ij − Cij)

2,

(10)

C
[k]
ij =

(θ
[k]
i − µi)(θ

[k]
j − µj)√

SiiSjj
, Cij =

N∑
k=1

w[k]C
[k]
ij ,

where µi =
∑N
k=1 w

[k]θ
[k]
i is the mean of ith element of

the parameter vector θ. For more details how to compute
V̂ar(Rij) from samples, we refer to the appendix of [9].

B. Covariance Estimation with Controlled the Entropy Re-
duction

While the covariance shrinkage can already improve the
performance of weighted ML algorithms, it still did not lead
to fully satisfying results. Yet, in policy search, we can use
more information as in standard density estimation. First,
we know a good prior upper level policy from which the

unweighted samples have been generated from. Moreover,
we know that the policy update should not reduce the entropy
of the new upper level policy too quickly which leads to
premature convergence. In our new algorithm, Covariance
Estimation with Controlled Entropy Reduction (CECER), we
combine the sample estimate of the covariance matrix S with
the old covariance matrix Σq that has been used to generate
the data, i.e.,

Σ = λΣq + (1− λ)S.

The factor λ ∈ [0, 1] is chosen in such a way that the entropy
of the new upper level policy is reduced by a certain amount
∆H . The entropy of a Gaussian distribution only depends
on its covariance Σ and is given by

H(Σ) = 0.5(p+ p log(2π) + |Σ|
)
.

Where p is the dimension of the parameter space θ and |.| is
the determinant operator. We choose λ such that we achieve
a desired entropy reduction, i.e.,

H(Σq)−H(λΣq + (1− λ)S) = ∆H.

We scale ∆H = αφeff with the number of effective samples
φeff that have been used to compute the sample covariance S,
i.e., if more samples are available for the sample estimate, the
entropy reduction can be higher. A higher entropy reduction
leads to a smaller λ value as we can rely more on our
sample estimate. In order to find the correct λ value, we
applied a simple exhaustive search and we could always find
the λ with correct entropy reduction Algorithm. Algorithm
1 shows the Covariance Estimation with Controlled the
Entropy Reduction (CECER) .

IV. EXPERIMENTS

We use the full covariance, the diagonal covariance and
the covariance shrinkage algorithm and compare it to the
CECER algorithm. The comparisons are done for the policy
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Fig. 3. The performance comparison for hole reaching task using a 5-link planar robot. The results show that CECER clearly outperforms the other
covariance update methods for REPS and PI2. Moreover CECER-REPS clearly outperforms the other stochastic search algorithms.

Algorithm 1 Covariance Estimation with Controlled the
Entropy Reduction

Input : Data Set D{θ[k], w[k]}k=1...N , the old covariance
matrix Σq and the scaling factor α for entropy reduction
Compute the sample covariance S:

µ =

N∑
i=1

w[k]θ[k], S =

∑N
i=1w

[k](θ[k] − µ)T (θ[k] − µ)

1−
∑N
i=1

(
w[k]

)2 .

Compute the number of effective samples φeff and the
entropy reduction ∆H:

φeff =
1∑N

k=1(w[k])2
, ∆H = αφeff.

Choose the λ such that following equality is satisfied

H(Σq)−H(λΣq + (1− λ)S) = ∆H.

Compute the new covariance matrix Σ:

Σ = λΣq + (1− λ)S.

updates of REPS [4] and PI2 [3]5. Similar to Sep-CMA-
ES [8], we call the algorithms with the diagonal matrix
estimate, Sep-REPS and Sep-PI2. We call the algorithms
with shrinkage update, shrinkage-REPS and shrinkage-PI2

respectively. CECER-REPS and CECER-PI2 use CECER for
policy update. We also compare these algorithms to other
state of the art methods in stochastic search such as CMA-
ES [10] and NES [2]. For our comparisons, we used a multi-
link planar robot with DMPs [5] as underlying lower level
control policy. Each link had a length of 1m. We used 5 basis
functions per degree of freedom for the DMPs. We use a 5-
link planar robot that has to reach a given point in task space.
We call this task reaching task. The resulting lower level
policy has 25 parameters, but we also test the algorithms in
high-dimensional parameter spaces by scaling up the robot to
20 links (100 parameters). This task has a relatively smooth

5The full covariance matrix update is the standard policy update method
for episode version of REPS and PI2

reward function and is therefore easy to learn. We make the
task more difficult by introducing hard obstacles. We use the
same planar robot to reach in a given hole on the ground, see
Figure 2(c). Whenever the robot touches the ground with one
of its links, a large penalty is added to the reward. Due to
this discontinuity in the objective function, the task is much
harder to learn. We call this task hole reaching task. For
the hole reaching task, we used a 5-link and 15-link version
of the robot, resulting in 30 parameters and 90 parameters
lower-level policies to optimise. We compared the REPS and
PI2 algorithms with different policy updates individually and
compared the best variant against CMA-ES and NES. In each
iteration, we generated 40 new samples. For REPS and PI2

we always keep the last L = 400 samples, while for NES
and CMA-ES 40 current samples are kept6. We show the
average as well as the variance of the results over 10 trials
for each experiment.

A. Planar Reaching Task

For completing the reaching task the robot has to reach a
via-point v50 = [1, 1] at time step 50 with its end-effector
and at the final time step T = 100 the point v100 = [5, 0].
The reward was given by a quadratic cost term for the two
via-points as well as quadratic costs for high accelerations.
The DMPs goal attractor for reaching the final state was
assumed to be known. Hence, the parameter vector θ for
a 5-link robot with 5 basis function for each degree of
freedom had 25 dimensions. The results in Figure 1 show
that CECER outperforms the other covariance estimation
methods where CECER-REPS reach the average reward -
1714 and shrinkage-REPS achieve an average reward of -
2000. CECER-REPS has a better learning rate compare to
the other methods. Yet, all the algorithms perform good in
this task due to simplicity of the task. We also evaluated
the same task with a 20-link planar robot, resulting in a 100
dimensional parameter space. The results in Figure 2 show

6NES and CMA-ES algorithms typically only use the new samples and
discard the old samples. We also tried keeping old samples which didn’t
lead to a better performance.
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Fig. 4. The performance comparison for high dimensional hole reaching task using a 15-link planar robot. The results show that CECER clearly
outperforms the other covariance update methods for REPS policy update and CECER-REPS outperforms the CMA-ES (c) It shows the performance of
the CECER-REPS for three different entropy reduction scale factor α. The bigger α results in more entropy reduction of the covariance matrix.

that CECER and CECER-REPS clearly outperform the other
methods.

B. Planar Hole Reaching Task

For completing the hole reaching task the robot end
effector has to reach the bottom of a hole (35 cm wide and
1m deep) centred point [2, 0] without any collision with the
ground or the hole wall. The reward was given by a quadratic
cost term for the desired final point, quadratic costs for high
accelerations and quadratic costs for collisions with the en-
vironment. Note that this objective function is discontinuous
due to the quadratic costs for collisions . The goal attractor
for reaching the final state in this task is unknown and need to
be learned. Hence, our lower level policy for a 5-link robot
with 5 basis functions for each degree of freedom had 30
dimensions. The setup, including the learned policy is shown
in Figure 2(c). The results in Figure 3 show that CECER has
the best performance with significant difference. Covariance
shrinkage performed the second best among all covariance
estimation methods. We also see that CECER-REPS con-
siderably outperforms the other methods. We also evaluated
the same task with a 15-link planar robot, resulting in a 90
dimensional parameter space. The results in Figure 4 show
that CECER and CECER-REPS clearly outperform the other
methods with significant difference in performance. Using
this task, we also evaluate the performance of CECER-REPS
for three different α (Figure 4(c) ). It turns out with bigger α
the search distribution shrinks faster, resulting in premature
convergence. For large α values, the algorithm will only use
the full sample covariance matrix, and thus, perform like the
standard REPS algorithm with full covariance estimation.

V. CONCLUSION

In this paper, we compared different methods for es-
timating the covariance matrix of a Gaussian policy for
weighted ML based policy search methods. Weighted ML
estimate of covariance matrices is an unreliable estimator
with a high variance. The use of WMLE leads to over-fitted
covariance estimates, and, hence the variance/entropy of the
policy decreases too quickly, which may cause premature

convergence. We proposed a new algorithm called Covari-
ance Estimation with Controlled the Entropy Reduction. We
showed that using the CECER, we could control the entropy
reduction of the policy and get a better covariance matrix
approximation, which results in an significant improved
performance of the policy search algorithm.
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