Model-Free Preference-based Reinforcement Learning

Christian Wirth and Johannes Fiirnkranz and Gerhard Neumann
Technische Universitit Darmstadt, Germany

Abstract

Specifying a numeric reward function for reinforcement
learning typically requires a lot of hand-tuning from a human
expert. In contrast, preference-based reinforcement learning
(PBRL) utilizes only pairwise comparisons between trajecto-
ries as a feedback signal, which are often more intuitive to
specify. Currently available approaches to PBRL for control
problems with continuous state/action spaces require a known
or estimated model, which is often not available and hard to
learn. In this paper, we integrate preference-based estimation
of the reward function into a model-free reinforcement learn-
ing (RL) algorithm, resulting in a model-free PBRL algo-
rithm. Our new algorithm is based on Relative Entropy Policy
Search (REPS), enabling us to utilize stochastic policies and
to directly control the greediness of the policy update. REPS
decreases exploration of the policy slowly by limiting the rel-
ative entropy of the policy update, which ensures that the al-
gorithm is provided with a versatile set of trajectories, and
consequently with informative preferences. The preference-
based estimation is computed using a sample-based Bayesian
method, which can also estimate the uncertainty of the utility.
Additionally, we also compare to a linear solvable approxi-
mation, based on inverse RL. We show that both approaches
perform favourably to the current state-of-the-art. The overall
result is an algorithm that can learn non-parametric continu-
ous action policies from a small number of preferences.

Introduction

One major limitation of reinforcement learning is that a nu-
meric reward function needs to be specified by the user.
This is particularly true for complex control tasks as they
occur in robotics where the reward function often consists
of several hand-tuned terms. Hence, in recent years, the
community has worked on rendering reinforcement learn-
ing algorithms more applicable by avoiding a hand-coded
definition of the reward function. One of these approaches
is preference-based reinforcement learning (PBRL). PBRL
uses only pairwise preferences over policies, trajectories,
states or actions (Akrour, Schoenauer, and Sebag 2012;
Wirth and Frnkranz 2013b; Wilson, Fern, and Tadepalli
2012). Many PBRL approaches rely on a model of the sys-
tem dynamics (Akrour et al. 2014), but often, accurate mod-
els are not available and are also hard to learn. Hence, a

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model-free approach is desirable. Additionally, directed ex-
ploration of the utility function is used often, which is hard
to perform if the model is unknown or the state-action space
is continuous and possibly high-dimensional.

In this paper, we show an algorithm for learning a continu-
ous action policy without requiring knowledge of the model
or maintaining an explicit approximation of it. The prefer-
ences are used to estimate the expert’s utility function. In
contrast to traditional PBRL methods, our method is able to
use data from interactions with the environment in an online
fashion to improve the policy as well as the estimate of the
utility function. It can, nevertheless, achieve better perfor-
mance. The utility function is learned using a Bayesian ap-
proach, estimating the uncertainty. An approach that could
be used for exploration. Additionally, we compare with a
computationally less expensive linear approximation based
on ideas of Ng and Russell (2000).

Preliminaries

MDP\R. Abbeel and Ng (2004) have introduced the
notion of Markov decision processes without rewards
(MDP\R). A MDP\R is defined by a quadruple (S, A4, §, 7).
We are given states S C RPs and actions A C RP4, rep-
resented by feature vectors ¢(s) € RP# and ¢(s,a) €
RPe(.) . The state transition function §(s'|s, a) is assumed
to be probabilistic. The parameter v € [0,1) is the dis-
count factor. A policy m(a|s) is a distribution that assigns
probabilities to actions choices based on the current state.
A trajectory is an alternating sequence of states and actions
T = {80,00,51,01, -, 8n—1,0n—1, Sy} - In the following,
we assume that all trajectories start in the same start state
so. Multiple start states can be included by using a single,
virtual sy with a null-action that has probabilistic transitions
to the true start states.

Feature Expectations. A feature expectation is the (dis-
counted) sum of features, expected to be realized by a certain
policy or trajectory (Puterman 2005; Abbeel and Ng 2004).
The feature averages of a trajectory 7; are

|73

Y(ri) =D ' b(s0),)
t=0

with ¢ as the time-step. The feature expectations

IT|

Y(m) =E > v'ols) |, ©)
t=0

for a policy are then the features of the trajectories, expected
to be realized by the policy.

The Preference Case. Instead of using rewards as evalu-
ative feedback, we assume to have access to trajectory pref-
erences in the form 7; > 7; where we define as the set of
all observed preferences. The preferred and dominated tra-
jectories of the k-th preference are also denoted as 77 and
7=k, We want to find the policy that maximizes the real-
ization probability for the set of undominated trajectories.
As it is difficult to determine if a trajectory is dominated,
without knowledge of all possible preferences, a reasonable
approach is to compute a policy maximizing the probabil-
ity for the currently dominating trajectories. Therefore, we
want to find a policy

argmaxz PT(17%) — P™(17%), 3)
T k

with P™(7) as the probability that policy 7 will realize tra-
jectory 7. However, our policy also needs to generate new
trajectories that are possibly dominating the currently un-
dominated trajectories. Hence, our policy needs to explore
new, significantly different trajectories that can be used to
create informative preferences.

Online Preference-Based
Reinforcement Learning

Our approach for solving the given problem is a four-step
cycle:

1. approximation of the expert’s utility function,
2. policy improvement

3. collection of new trajectories and

4. requesting new preferences.

The first step can be solved by viewing the preferences as
constraints over the space of possible reward or utility func-
tions. It is termed a utility function, because it is subject to
drift induced by the changing set of observed preferences,
but it is not used to model risk or threshold effects. Based
on the given utility, we can use RL methods to compute a
new sampling policy that improves on the expected return.
The new policy is then used to compute new trajectories for
requesting new preferences as additional transition samples
for the reinforcement learning step. By comparing trajecto-
ries from this new policy with our current set of undomi-
nated trajectories, we gain access to new preferences, possi-
bly improving the utility function estimate in the next itera-
tion of the loop.

For determining the expert’s utility function (step 1),
we use preference-based inverse reinforcement learning
(PBIRL), an approach derived from the ideas of (Akrour,

Schoenauer, and Sebag 2012; Akrour et al. 2014), because
they are among the most efficient PBRL algorithms cur-
rently known. Our approach differs in the definition of the
optimization problem as well as how the utility function is
used. The PBIRL algorithm can be directly used within a
RL algorithm: PBIRL is used to estimate the utility function
while the RL algorithm is used to perform a policy improve-
ment step.

For step 2, we propose a new algorithm called actor critic
relative entropy policy search (AC-REPS), which allows us
to directly control the exploration-exploitation trade-off by
bounding the relative entropy between the old and the new
policy. Traditional exploration approaches such as SoftMax
or e-greedy action selection can control this trade-off only
indirectly and are therefore much harder to tune. Bounding
the relative entropy is a well-known strategy in policy search
(Peters, Miilling, and Altun 2010).

Following the new stochastic policy, we can now sample
a new set of trajectories that is potentially superior to the
current set of undominated trajectories (step 3) and request
new preference (step 4).

Details of this procedure and how we realise the elements
of this cycle are given in the following sections.

Step 1: Preference-based Inverse Reinforcement
Learning (PBIRL)

The problem of approximating the utility function (step 1)
from preferences is closely related to inverse reinforcement
learning (IRL). Both settings have access to predefined tra-
jectories. In the IRL case, the trajectories are given by the ex-
pert and usually assumed to be near optimal, i.e. the shown
trajectories are implicitly preferred over most unseen trajec-
tories, defining implicit preferences. In the PBIRL case, the
trajectories are generated by the algorithm itself with pair-
wise preferences requested from a human expert, i.e. both
trajectories of a preference pair are explicitly known. Hence,
both approaches can be formalized by similar algorithms
that use the available preferences as constraints for the utility
function that we want to estimate. We will first formulate a
Bayesian version of the PBIRL problem, that is able to cap-
ture the uncertainty of the utility estimate. Subsequently, we
also introduce a linear approximation, that is computational
less demanding.

From IRL to PBIRL. Ng and Russell (2000) presented
the first algorithm for IRL. It is based on the idea that the
value of the demonstrated policy V™ should be higher than
for any other policy V™. They assume that the reward func-
tion 7(s) = w? ¢(s) is linear in a given feature space. Due
to this linearity, the resulting value V'™ is also linear in the
feature expectations (), i.e.,

VT =wly(r), 4)

where () is defined in Eq. (2). The constraints V7™ >
V™ now translate into linear constraints on w, i.e,
wl(r*) > wTep(m).

IRL can be easily extended to the PBIRL case. First, we
do not compare policies but trajectories, i.e. instead of using

feature expectations over policies we use feature averages
over trajectories (7). Note that feature averages over tra-
jectories do not require knowledge of the MDP dynamics,
unlike the feature expectations of IRL.

We also don’t have access to optimal trajectories 7™ , but
only to pairwise feedback 77+ > 7=k, Therefore, we have
to rewrite the objective of the constraints as w4 (77*) >
w?ap(T=*). For ease of notation, we use

d(w, k() =w" ((r7) —p(r7)),)
as the preference difference function from here on. We can
now define an optimization problem, based on the men-
tioned constraints. Because of the binary feedback, we want

to minimize the 0-1 loss

I<I

mm Z I(d

(w, k,¢) <0). (6)

The result of the optimization is a new realization of w that
specifies the reward r(s) = w? ¢(s) .

However, this formulation is subject to three problems:
(i) it must be possible to approximate the utility with a lin-
ear function, (ii) the value difference of a preference can be-
come arbitrary small, and (iii) the problem can have multi-
ple solutions. For overcoming the first problem, we utilize a
tabular model for the feature space in discrete domains. In
this case, the linear function is not an approximation, but an
exact representation (Geramifard et al. 2013). In continuous
domains, our feature space consists of radial basis functions.
To ensure a selection of basis functions that is able to cap-
ture the properties of the sampled parts of the feature space,
we use a subset of observed state/action samples as centers.

Bayesian PBIRL. As mentioned, minimizing the 0-1 loss
is not sufficient for determining a solution to the preference
problem. To prevent arbitrary small differences and deter-
mine a single, best solution, we follow the approach of Ng
and Russell (2000), also utilized in (Akrour, Schoenauer,
and Sebag 2012; Akrour et al. 2014) and most other PBRL
approaches. Besides minimizing the 0-1 loss, we also try to
maximize the utility difference of the observed preferences.
The optimization of 0-1 loss is computationally difficult, but
can be performed with Bayesian approaches. This has the
additional advantage of encapsuling uncertainty in the opti-
mization problem, enabling handling of noisy preferences,
as analysed by Akrour et al. (2014). We consider the prob-
lem of computing the weight vector w via the given prefer-
ences (, which can be solved by the Bayesian formulation:

Pr(w|C) o Pr(w) Pr(Clw).)
For w, we utilize a multivariate, Gaussian prior

N(w|0,02I). To reduce the amount of free parame-
ters, we fixed the covariance matrix to a uniformly scaled

identity matrix. Our likelihood function

I<

Pr(¢lw) = H (|<||<| Lo1(Clw, k)

k=0
1
+mLsig(<‘wa k))) (8)

:H(d(w,k’,C) > O),
1
1+ exp(—m - d(w, k,())’

Lo1 (¢lw, k)
ﬁlg(dw k) =

is a combination of the 0-1 loss Lo; (¢|w, k), rephrased as a
maximization problem, and a sigmoid function Ly, (¢|w, k).
The shape factor m defines the steepness of the sigmoid
function.

The scaled sum guarantees that the 0-1 loss always dom-
inates the sigmoidal distance term, hence it is always more
beneficial to fulfill another preference than to increase the
margins. Increasing the influence of the sigmoidal term
would introduce a tradeoff between margin maximization
and preference fulfillment. The proposed formulation is
difficult to solve analytically, because of the multivariate,
Gaussian prior and the indicator function required for the
0-1 loss. However, it is possible to employ elliptic slice sam-
pling! (Murray, Adams, and MacKay 2010) for sampling
from the posterior distribution.

For determining the utility functions weight vector, we
consider a maximum likelihood and a posterior approach.
As we only have access to samples, it is reasonable to utilize
the most likely sample (maximum likelihood). Additionally,
considering r(s) = [Pr(w|{)w” ¢(s) = pul ¢(s), we also
compare to the sample based mean of Pr(w|¢)w”

Linear PBIRL. The formulation above is computation-
ally expensive and subject to tuning the shape factor as well
as the prior. Hence, we also present a computationally less
demanding version, which can be solved via linear program-
ming. To that end, we adapt the classic IRL algorithm (Ng
and Russell 2000) to utilize preferences over trajectories.
This comes at the cost of not being able to optimize the 0-1
loss, but only an approximation. The original version uses
boundary constraints for each element of the linear weight
vector w and turns the value constraints into soft constraints
with a penalty function c:

k
maXZc(wT (7*) — w(m))),
=1
sitlw;| <1,i=1,...d,)
ifx >0

x
o(z) = {2:5 else

The function c() can also be phrased as an linear program,
due to its similarity to the absolute value problem. For intro-
ducing the trajectory based preferences, we have to rewrite

'http://homepages.inf.ed.ac.uk/imurray2/pub/10ess/

the objective of the IRL problem given in Equation (9) as
1<

maxz (4w, k.Q))- (10)

The result is again a realisation of w, specifying the utility
function.

Step 2: Actor Critic Relative Entropy Policy Search

In order to perform a policy improvement step (step 2), we
have to deal with the following requirements. We do not
want to assume a known (or approximated) model of the
MDP because such an assumption is limiting in many set-
tings. Moreover, we want to be able to use our policy im-
provement step for continuous valued policies with a large,
maybe even infinite number of parameters, such as a Gaus-
sian process (GP; Rasmussen and Williams 2005).

We will resort to random exploration strategies that can
be implemented by a stochastic policy 7(al|s). Therefore, we
developed a new actor critic algorithm that permits the use
of non-parametric policies such as GPs. As our algorithm
is based on the relative entropy policy search (REPS) algo-
rithm (Peters, Miilling, and Altun 2010), we will call our
algorithm actor critic relative entropy policy search (AC-
REPS).

Our algorithm consists of three steps, which are described
in detail in the following sections:

1. Estimate the Q-function using the current estimate of the
utility function.

2. Compute new sample probabilities that maximize the Q-
values while staying close to the old policy, in terms of
Kullback-Leibler(KL) distance. This approach limits the
greediness of the new policy.

3. Fit a new policy to these probabilities.

Estimating the Q-Function. For estimating the Q-
function, we reuse all the observed state transitions
(ss, ai, s;) from the environment. We first compute the new
utility u; = wT ¢(s) for all transitions. Subsequently, we
generate new on-policy actions for all successor states in our
data set, i.e., a; ~ w(-|s). Given these pre-processed tran-
sition data and a feature representation of the Q-function,
ie. Q(s,a) = p(s,a)T0, the parameter vector @ of the Q-
function can be estimated by the LSTD algorithm (Boyan
1999). To increase the robustness of LSTD, we use the reg-
ularization method presented by Hoffman et al. (2012) and
include a bias term.

Actor Critic REPS. The policy update of actor critic
REPS is inspired by the episodic REPS algorithm (Kupc-
sik et al. 2013). We want to find a policy 7(als) that op-
timizes the expected Q-value, but at the same time has
a limited Kullback-Leibler(KL) distance to the old policy
g(als). We optimize over the joint state action distribution
p(s,a) = p(s)m(als) and require that the estimated state
distribution p(s) is the same as the state distribution p(s)

of the current policy, i.e., p(s) = pu(s), Vs. This set of con-
straints is implemented by matching feature averages of the
distributions p(s) and p(s) (Daniel, Neumann, and Peters
2012), ie. [p(s)p(s)ds = ¢, where ¢ is the average fea-
ture vector of all state samples. Summarizing all constraints,
we obtain the following constraint optimization problem

argmax/p(&a)@(s,a) ds da,

p
s.t. KL(p(s, a) || q(s,a)) <¢, (11)

[pe)ots)ds =6, [pis.aydsda=1.

where q(s,a) = u(s)q(als) is the current state action distri-
bution. The constraint optimization problem can be solved
in closed form by the method of Lagrangian multipliers and
has the solution

Q(57 a) -

p<s>w<a|s>o<q<s,a>exp< - ‘“3)), (12)

where V(s) = vT¢(s) is a state dependent baseline. The
parameters 1 and v are Lagrangian multipliers that can be
obtained efficiently by minimizing the dual function g(n, v)
of the primal optimization problem

9(n,v) =en+ vT&>+ (13)

nlogz e (Fen vT¢<si>>

Ui
where we already replaced the integrals with a sum over
samples.

The optimization problem is similar to the one of the con-
textual REPS algorithm presented by Kupcsik et al. (2013),
with the difference that we want to maximize the Q-values
instead of the returns. For details of the derivation of the
given equations, we refer to the above-mentioned papers and
the survey (Deisenroth, Neumann, and Peters 2013).

)

Obtaining a new Exploration Policy. Effectively, the op-
timization problem given in the previous paragraph is only
solvable given a finite set of state action pairs s;, a; and their
corresponding Q-values @;. For these samples, we can ob-
tain a desired probability p(s;, a;) = p(s;)m(a;|s;) from Eq.
(12). Our goal is now to generalize this sample-based repre-
sentation to the whole state-action space with a new para-
metric (or non-parametric) policy 7. A standard approach to
obtain a generalizing distribution 7 from samples is to min-
imize the KL between 7 and 7, i.e.,

Es [KL (w(als) || 7(a|s))] = /p(&a) log 253:3 dsda

Z p(si, ai) log 7(a;|s;) + const
Szaaz)

1 () VG iy 501, 14
N;exp(p og f(ails:), (14

where we replaced the integral by samples, which have
been generated by our sampling distribution ¢(s, a). Note

that Eq. (14) is equivalent to the weighted negative log-
likelihood of policy 7 given the state action pairs s; and a;
with weighting

w; = exp (Q(Si’ai;

Hence, minimizing the expected KL is equivalent to a
weighted maximum likelihood (ML) estimate of 7. Note
that, for the AC-REPS algorithm it is sufficient to have ac-
cess to samples from ¢(s, a), which can be obtained by per-
forming rollouts with the current policy. In case of discrete
action spaces, this can be improved by creating samples for
each action for each observed state, regardless of the ob-
served action. These samples have then to be weighted by
a(als).

Weighted ML estimates can be obtained in closed form
for many types of distributions. We will use a Gaussian Pro-
cess (GP) policy. In order to keep the computation tractable,
we adapt the weighted formulation of a GP given by Kober
et al. (2010) to the sparse Gaussian process case (Snelson
and Ghahramani 2006).

V(Si)> .

Steps 3 and 4: Computing Trajectories and
Requesting Preferences

The new, stochastic REPS policy is now used to generate
N new trajectories as additional transition samples (step 3).
For requesting new preferences (step 4), we are interested in
trajectories assumed to dominate the currently maintained
set of undominated trajectories. Considering that we assume
the updated utility estimate to be more accurate, we take M
out of the IV trajectories, with the highest expected utility,
based on the new utility function. Each trajectory is itera-
tively compared with current best ones, replacing them if a
domination preference was encountered.

Experiments

In our experiments, the learner does not have access to the
true reward signal but is given preference feedback based on
the undiscounted sum of rewards. All reported results are av-
eraged over 20 trials, except the Acrobot domain where we
had to reduce to 10. We always collect 10 trajectories per
iteration and use a discount factor of v = 0.98. We request
1 preference per iteration. For the first iteration, we request
2 preferences, because it is required to have a good starting
point but, as we can not yet compute a utility estimate, we
need to sample randomly. We stayed clear of tuning this for
each experiment because it would significantly increase the
workload for the expert in a real world scenario. For the el-
liptic slice sampling, we utilize 100k samples each for burn-
in and evaluation. The LSTD regularization factors, the RBF
bandwith and number of basis function, are only tuned once
per domain, to determine a reasonable setup. The € bound of
AC-REPS, the sigmoid shape parameter m and the variance
of the prior o are manually tuned on the preference-based
tasks. The GPs hyperparameter are automatically tuned, us-
ing a CMA-ES (Hansen and Ostermeier 2001) after each it-
eration. The optimization target was to minimize the training
set error, so that no additional data was required.

Results

In the following graphs, the solid lines define the median
while the shaded areas and the dashed lines show the 25%
and 75% percentile of the policy value.

”LP” are the results obtained by the linear programming
approximation while "Bayes ML” and “Bayes Mean” are
defining the results obtained by the Bayesian approach, via
maximum likelihood and posterior evaluation. ”PF” denotes
the results obtained by Akrour et al. (2014) and "EPMC” are
the results of Wirth and Frnkranz (2013a).

Gridworld. As a first testing domain, we use the Grid-
world defined by Akrour et al. (2014). For allowing a di-
rect comparison to the PF algorithm, a tabular policy is used
instead of the Gaussian process. The environment is not dif-
ficult from an RL point of view, but interesting for a pref-
erence learning scenario as the rewards for different fields
are similar, making it difficult to reconstruct the true reward
function. The dimensionality of ¢(s) is 25 in this domain.

4+ 7
"E I
< /
% !
= 9l —LP
—— Bayes ML
—— Bayes Mean
O | | I B PF
0 5 10 15 20 25

preferences

Figure 1: Gridworld task

The Gridworld results suggest that it is more beneficial to
compute an exact solution for an approximation, than to use
a more powerful but only sampled based Bayesian approach.
Additionally, it can be seen that our approach is outperform-
ing the algorithm by Akrour et al. (2014).

Bicycle. The second task is the bicycle balance task
(Lagoudakis and Parr 2003), where we use continuous states
and actions with a GP policy, with 400 RBF centers. We
trained on episodes with 50 time-steps for 25 iterations. It
should be noted, this setup is not directly comparable to the
work of Akrour et al. (2014), because we do not require a
generative model and use a Gaussian process policy instead
of a neural network. In this domain (Fig. 2) are the LP and
the Mean nearly on par, as the best approach, showing that
complex Bayesian approaches are probably not required.

SwingUp. The third domain is the inverted pendulum
swing-up task using continuous states and actions with a GP
policy. The dimensionality of ¢(s) is 700. Episodes have 60
time-steps, trained over 40 iterations. In Figure 3, we can
see that LP is the fastest to converge to a plateau of approxi-
mately —1900, which all approaches are struggling to over-
come. Over time, all approaches are converging, with the
ML approach as the quickest. The LP approach is not among

0,

—LP
—c% =20 —— Bayes ML
5 —40 - —— Bayes Mean
—60 -
—80 |-
~100 | | |
0 15 20 25
preferences
Figure 2: Bicycle task, reward evaluation
—1,000 -
=
< . ———_
5—27000 - Bt
—3,000
—— Bayes ML
—4,000 —— Bayes Mean
| | |
0 10 20 30 40

preferences

Figure 3: SwingUp task

the best in this domain, but still outperforms the Mean ap-
proach.

Acrobot. The last domain is the acrobot task (Sutton and
Barto 1998) using continuous states and actions with a GP
policy. The dimensionality of ¢(s) is 300. Preferences are
given by comparing the number of steps required to reach
the terminal as in Wirth and Frnkranz (2013a). Episodes are
created with 500 time-steps, trained over 15 iterations. This
task is particularly difficult from a preference-learning point
of view, because under a random policy only few trajecto-
ries will reach the terminal state within 500 steps. Therefore,
we ensured that all runs encountered a preference within the
first 3 iterations. As shown in Figure 4, we only computed

5 200
= p
s B 4 —LP
2 300 o —— EPMC
—400 - j:::i:;:: ____ —-
—500 E-_ L ,—r’/x | | |
0 2 4 6 8 10 12 14 16

preferences

Figure 4: Acrobot task

the results for the LP approach, because of time constraints.
The median policy value found after 15 iterations is —211.3.
A substantial improvement over the —385.2 achieved by
EPMC under the same setup.

To conclude, the LP approach is performing well in all
domains. The Bayes Mean is able to outperform the LP in

the Bicycle task, but converges worse in the SwingUp task.

Runtime. The Gurobi Solver? solved all linear programs
in less than 0.1 sec. The elliptic slice sampler required 80 —
90 sec. for sampling in the Gridworld domain and 100 —
150 sec. in the three other domain. Even considering that it
is probably possible to reduce the amount of samples with
more tuning, a substantial difference will remain. It should
be noted, the GP calculation dominates the required CPU
time.

Conclusion

We have demonstrated that it is possible to use PBRL in
an online manner, even in a non-parametric, model-free set-
ting with continuous state action spaces. Moreover, our re-
sults show that complex directed exploration might be un-
necessary. Random exploration is sufficient if the explo-
ration/exploitation trade-off can be controlled efficiently.
Our results compare favorably to the state-of-the-art which
requires a generative model or an individual model learning
phase. Future work will focus on coupling the exploration
parameter € with the confidence of the utility estimate to al-
low for more aggressive updates. Furthermore, the Bayesian
PBIRL algorithm will be analysed with noisy preferences.

Acknowledgments

This work was supported by the German Research Foundation
(DFG). This project has received additional funding from the Euro-
pean Unions Horizon 2020 research and innovation programme un-
der grant agreement No #645582 (RoMaNS). We also like to thank
Eyke Hiillermeier and Robert Busa-Fekete for interesting discus-
sions and Riad Akrour for supporting us in the comparison to his
work.

References

Abbeel, P, and Ng, A. Y. 2004. Apprenticeship learning via
inverse reinforcement learning. In Proceedings of the 21st

International Conference on Machine learning (ICML-04).
ACM.

Akrour, R.; Schoenauer, M.; Sebag, M.; and Souplet, J.-
C. 2014. Programming by Feedback. In Proceedings of
the 31Ind International Conference on Machine Learning
(ICML-14), number 32, 1503-1511. JMLR.org.

Akrour, R.; Schoenauer, M.; and Sebag, M. 2012. APRIL:
Active preference learning-based reinforcement learning.
In Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-
PKDD-12), volume 7524 of LNCS, 116-131. Springer.
Boyan, J. 1999. Least-Squares Temporal Difference Learn-
ing. In In Proceedings of the 16-th International Conference
on Machine Learning (ICML-99), 49-56. Morgan Kauf-
mann.

Daniel, C.; Neumann, G.; and Peters, J. 2012. Hierarchi-
cal relative entropy policy search. In Proceedings of the

*http://www.gurobi.com/

15-th International Conference on Artificial Intelligence and
Statistics (AISTATS-12), 273-281. JMLR.org.

Deisenroth, M. P.; Neumann, G.; and Peters, J. 2013. A Sur-
vey on Policy Search for Robotics. Foundations and Trends
in Robotics 388-403.

Geramifard, A.; Walsh, T. J.; Tellex, S.; Roy, N.; and How,
J. P. 2013. A tutorial on linear function approximators for
dynamic programming and reinforcement learning. Founda-
tions and Trends in Machine Learning 6(4):375-451.

Hansen, N., and Ostermeier, A. 2001. Completely deran-
domized self-adaptation in evolution strategies. Evolution-
ary Computation 9(2):159-195.

Hoffman, M.; Lazaric, A.; Ghavamzadeh, M.; and Munos,
R. 2012. Regularized least squares temporal difference
learning with nested 12 and 11 penalization. In Sanner,
S., and Hutter, M., eds., Recent Advances in Reinforcement
Learning, volume 7188 of LNCS. Springer. 102—-114.

Kober, J.; Mulling, K.; Kroemer, O.; Lampert, C. H.;
Schlkopf, B.; and Peters, J. 2010. Movement templates
for learning of hitting and batting. In Proceedings of the
IEEE International Conference on Robotics and Automation

(ICRA-10), 853-858.

Kupcsik, A.; Deisenroth, M.; Peters, J.; and Neumann, G.
2013. Data-Efficient Generalization of Robot Skills with
Contextual Policy Search. In Proceedings of the National
Conference on Artificial Intelligence (AAAI-13).

Lagoudakis, M., and Parr, R. 2003. Least-Squares Policy
Iteration. Journal of Machine Learning Research (JMLR)
4:1107-1149.

Murray, I.; Adams, R. P.; and MacKay, D. J. C. 2010. Ellip-
tical slice sampling. JMLR: W&CP 9:541-548.

Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In Langley, P, ed., Proceedings of
the 17-th International Conference on Machine Learning
(ICML-00), 663—670. Stanford, CA: Morgan Kaufmann.

Peters, J.; Miilling, K.; and Altun, Y. 2010. Relative En-
tropy Policy Search. In Proceedings of the 24th National
Conference on Artificial Intelligence (AAAI). AAAI Press.

Puterman, M. L. 2005. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley, 2nd edition.

Rasmussen, C. E., and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.

Snelson, E., and Ghahramani, Z. 2006. Sparse gaussian pro-
cesses using pseudo-inputs. In Weiss, Y.; Schlkopf, B.; and
Platt, J. C., eds., Advances in Neural Information Processing

Systems 18 (NIPS-06). MIT Press. 1257-1264.
Sutton, R., and Barto, A. 1998. Reinforcement Learning: An
Introduction. Boston, MA: MIT Press.

Wilson, A.; Fern, A.; and Tadepalli, P. 2012. A bayesian
approach for policy learning from trajectory preference
queries. In Advances in Neural Information Processing Sys-
tems 25 (NIPS-12). Curran Associates. 1142—-1150.

Wirth, C., and Frnkranz, J. 2013a. EPMC: Every visit
preference Monte Carlo for reinforcement learning. In Pro-

ceedings of the 5th Asian Conference on Machine Learn-
ing, (ACML-13), volume 29 of JMLR Proceedings, 483—
497. JMLR.org.

Wirth, C., and Frnkranz, J. 2013b. Preference-based rein-
forcement learning: A preliminary survey. In Proceedings of
the ECML/PKDD- 13 Workshop on Reinforcement Learning
from Generalized Feedback: Beyond Numeric Rewards.

