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Abstract— Swarm robotics investigates how a large popu-
lation of robots with simple actuation and limited sensors
can collectively solve complex tasks. One particular interesting
application with robot swarms is autonomous object assembly.
Such tasks have been solved successfully with robot swarms
that are controlled by a human operator using a light source.
In this paper, we present a method to solve such assembly
tasks autonomously based on policy search methods. We split
the assembly process in two subtasks: generating a high-level
assembly plan and learning a low-level object movement policy.
The assembly policy plans the trajectories for each object and
the object movement policy controls the trajectory execution.
Learning the object movement policy is challenging as it
depends on the complex state of the swarm which consists of
an individual state for each agent. To approach this problem,
we introduce a representation of the swarm which is based on
Hilbert space embeddings of distributions. This representation
is invariant to the number of agents in the swarm as well
as to the allocation of an agent to its position in the swarm.
These invariances make the learned policy robust to changes
in the swarm and also reduce the search space for the policy
search method significantly. We show that the resulting system
is able to solve assembly tasks with varying object shapes in
multiple simulation scenarios and evaluate the robustness of our
representation to changes in the swarm size. Furthermore, we
demonstrate that the policies learned in simulation are robust
enough to be transferred to real robots.

I. INTRODUCTION
Nature provides us with a multitude of examples that

show how swarms of simple agents are much richer in their
abilities than a single individual. This synergy effect is also
called superadditivity, which means that “the entire team
should be able to achieve much more than individual robots
working alone” [1]. Termites, for example, are insects with
a body size in the low millimeter range and with simple
sensors for their local environment. Still, termite colonies,
which consist of up to millions of individual insects, are able
to build mounds exceeding the physical properties of a single
termite by several orders of magnitude. These synergy effects
of swarms are a main principle that swarm robotics aims to
exploit. In contrast to traditional robotics, which usually is
based on robust machines with sufficient sensory equipment,
swarm robots are often simple agents with limited actuation
and sensors. Instead, robotic swarms leverage from the
redundancy and the distributed nature of their hardware.
Because state-of-the-art learning algorithms usually rely on
computational powerful machines, their application to learn
a behavior directly on swarm robots is limited. However,
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Fig. 1. Kilobots pushing an object in an assembly task. The robots have a
diameter of 3.3cm, the object in the background is a square of 15cm width.

learning a policy that guides a swarm with simple control
rules by an external signal to achieve a complex behavior is
a feasible way to overcome this limitation.

In this paper, we will consider autonomous object assem-
bly with a large robot swarm. Recently, large affordable robot
swarms such as the Kilobots [2] have become available,
which allows for new interesting applications. The Kilo-
bots can sense the ambient light and—using the phototaxis
algorithm—they can follow the gradient of the intensity
towards a light source. A swarm of Kilobots has been used in
an object assembly experiment [3], where a human operator
controls multiple stationary light sources to guide the swarm.
Formulating this task with control rules to automate the
assembly process is, however, a hard task.

Motivated by this application, we present an approach
based on policy learning to find a control strategy for the
light source. We split the assembly process in two subtasks:
generating a top-level assembly plan using simple planning
strategies, and learning a low-level object movement policy.
The assembly plan encodes waypoints for each object while
the object movement policy controls the trajectory execution
by guiding the Kilobots with the light source. In this study
we treat the assembly plan as given and only learn object
movement policies through policy search.

Learning to push an object is a complex task as we
have to coordinate a large number of agents, which results
in many state variables. While we need information about
the configuration of the swarm (e.g., the positions of the
agents) in our state representation, it is of no importance
which individuals of the swarm are at which positions.
Furthermore, our policy should be independent of the number
of agents participating in pushing the object. Hence, instead
of representing the state by the positions of every agent, we
represent it as a distribution over the agent locations which



we embed into a reproducing kernel Hilbert space [4]. This
allows us to compare the swarm configurations independently
of the number of individuals and of their specific locations.
Our reinforcement learning algorithm is based on the recently
introduced actor-critic relative entropy policy search (AC-
REPS) algorithm [5] and learns a non-parametric Gaussian
Process (GP) policy for controlling the light source. We
evaluate our approach in simulation on different assembly
tasks with different object shapes. Additionally, we demon-
strate that the learned policies can be transferred to the real
Kilobots which shows that the learning process is robust
enough to allow a direct transfer from simulation to the real
world. A short overview over this method has been presented
previously by the authors in [6].

II. RELATED WORK

While swarm robotics have been studied over the last
three to four decades, using machine learning techniques to
control robot swarms is a very recent field of research. In
contrast to our approach, related work often directly learns
the policies of the agents instead of a policy for a common
control signal. For example, [7], [8] both learn actor and
critic functions based on feature mappings using fuzzy-nets.
The authors assume that the state is fully observable to the
critic and the actor. In contrast, [9] proposes a multi-agent
learning approach based on deep Q-learning in which only
the critic has access to the full information about the state,
while the actor has local observations. In [10], a method for
multi-robot learning based on particle swarm optimization
is presented. Each robot acts as a particle that rolls out a
certain set of controller parameters. After each iteration the
best performing parameters are shared with the robots in the
neighborhood. The particle swarm approach is furthermore
compared to genetic algorithms in [11]. However, this ap-
proach requires that each agent is able to asses the quality
of the action it has performed and communicate the result
with its neighbors.

The significant difference of our method is that we do
not learn the policies for the individual agents. Instead, we
assume that the same phototaxis behavior runs on each agent
and a desired swarm behavior is achieved by learning the
controller for the light source. This setup—simple policy
on the robots, complex control using an external signal—
allows to use a much simpler hardware for the agents. The
Kilobots, for example, can only sense the ambient light and
communication is limited to robots in the close neighbor-
hood. This makes the evaluation of an executed policy on
the agent or a constant communication between a global
critic and the agents extremely difficult. In [12], a swarm
of flagellated magnetotactic bacteria was used to to build a
pyramid out of building blocks in the micrometer range. The
bacteria have a flagatella-based propulsion motor and their
direction can be controlled by a magnetic field that acts on
nanoparticles in the cellular body. In the pyramid-building
experiment the magnetic lines are controlled according to
a planned trajectory to move the swarm. Similarly, in [13]
a set of PD controllers is presented to control a swarm of

phototactic agents. The paper proposes a set of different
PD controllers for manipulating an object with different goals
(i.e., rotating, or translating the object, or a combination of
both).

III. PRELIMINARIES

In this section, we will briefly introduce the policy search
method we use for learning the low-level object movement
policy. Furthermore, we shortly discuss the embeddings of
distributions which we later use to represent the state of
the swarm. And finally, we will also depict the planning
strategies which we apply to generate trajectories from the
high-level object assembly policy.

A. Actor-Critic Relative Entropy Policy Search

We use actor-critic relative entropy policy search (AC-
REPS) [5] to learn a continuous, non-parametric, probabilis-
tic policy π(a|s) from samples. This model-free reinforce-
ment learning algorithm is based on relative entropy policy
search (REPS) [14] and consists of three steps: First, we
estimate the Q-function using the observed state transitions
with least-squares temporal difference learning (LSTD) [15],
[16]. Second, we improve the policy by maximizing the
expected Q-values for the sampled data using REPS. And
third, we obtain a continuous policy by matching a weighted
Gaussian process [17].

1) Least-Squares Temporal Difference Learning: We want
to estimate the Q-function from a data set of SARS tuples
D = {(st,at, rt, s′t)}Tt=0 sampled from the environment.
These tuples consist of the state st and the action at taken
by the agent at time t which results in a reward rt and
the transition to the next state s′t. Given a feature mapping
φ(s,a) (we will explain in Section IV-A.3 how we design
the feature function), the Q-function can be approximated
as a linear function in the features Q(s,a) = φ(s,a)ᵀθ,
where θ are the parameters of the function. We estimate these
parameters by least-squares temporal difference learning [15]
with L22 penalization [16]:

θ = (XᵀX + β′I)−1Xᵀy, X = C(A+ βI),

C = (Φ(ΦᵀΦ+ βI)−1, y = Cb, (1)
b = ΦᵀR, A = Φᵀ(Φ− γΦ′).

Here, Φ = [φ(s0,a0), . . . ,φ(sT ,aT )]
ᵀ is the feature ma-

trix, R = [r0, . . . , rT ]
ᵀ is the reward vector, and Φ′ denotes

the feature matrix of the next states. Two regularization
coefficients are introduced. The coefficient β′ adds a l2
penalty to the projection step while the coefficient β applies
a regularization to the fixed-point step to avoid over-fitting.
The parameter γ is the discount factor. We found that this
L22-regularized LSTD version could deal better with the
high-dimensional feature spaces that we will use in this
work than standard LSTD due to the improved regularization
method.



2) Policy Improvement: In the policy improvement step,
we want to optimize the policy such that the Q-function
is maximized. However, at the same time large changes in
the policy might lead to loss of information [14]. Inspired
by the episodic REPS algorithm [18], AC-REPS solves
this problem by using information-theoretic constraints. AC-
REPS updates the policy by optimizing the expected Q-
values of the samples with the constraint that the new policy
π(a|s) is close to the old policy q(a|s) in terms of the
Kullback-Leibler divergence (KL).

Given the state distribution µ(s) from the current set of
samples, we want to maximize the expected Q-value

E[Q(s,a)] =

∫
µ(s)

∫
π(a|s)Q(s,a) ds da. (2)

However, as we do not want to solve this optimization prob-
lem for each state independently, we maximize instead over
the joint state-action distribution p(s,a) = p(s)π(a|s). As
the state distribution is not allowed to change, it is required
that the state distribution p(s) =

∫
p(s,a)da is the same

as the state distribution µ(s) that has generated the data.
This constraint is implemented by matching feature averages
of the distributions p(s) and µ(s) as

∫
p(s)φ(s) ds = φ̂

with the average feature vector φ̂ of all state samples. The
resulting constraint optimization problem is now given by

argmax
p

∫∫
p(s,a)Q(s,a) ds da, (3)

s.t. KL [p(s,a)||q(s,a)] ≤ ε,∫
p(s)φ(s) ds = φ̂,∫
p(s,a) ds da = 1.

The upper bound ε for the KL divergence is a parameter
of REPS that controls the exploration-exploitation trade-off
by restricting the greediness of the method. This parameter
is usually chosen heuristically. The constraint optimization
problem can be solved in closed form with the method of
Lagrange multipliers, yielding

p(s)π(a|s) ∝ q(s,a) exp [(Q(s,a)− V (s))/η] , (4)

where V (s) = vᵀφ(s) is a state dependent baseline similar
to a value function. The Lagrangian multipliers η and v can
be obtained efficiently by minimizing the dual function on
the samples.

3) Matching a Weighted Gaussian Process: Solving the
optimization problem obtained from REPS only gives the de-
sired probabilities p(si,ai) = p(si)π(ai|si) for the samples
in D. To generalize this sample-based policy representation
to a representation π̃ that generalizes for the whole state-
action space, the expected KL divergence between π and
π̃ can be minimized. This step is equivalent to a weighted
maximum likelihood estimate of π̃ with sample weights [18]

wi = exp ((Q(si,ai)− V (si))/η) . (5)

With these weights, π̃ can be approximated with a weighted
Gaussian Process (GP) [17], where the action ai for state

si is weighted by wi. A sparse formulation of the Gaussian
process [19] allows to keep the computations tractable.

B. Kernel Embeddings of Distributions

Kernel embeddings allow a nonparametric representations
of distribution with arbitrary shapes. We will use this rep-
resentation later as a feature mapping for the state of the
swarm. Let H be a reproducing kernel Hilbert space (RKHS)
of functions, uniquely defined by a positive definite kernel
function k(x,x′) := 〈ψ(x),ψ(x′)〉H [20]. Here, the feature
mappings ψ(x) are often intrinsic to the kernel functions
and might map into an infinite dimensional feature space.
We can embed a marginal distribution p(X) as the expected
feature mapping of its random variable µX := EX [ψ(X)] =∫

Ω
ψ(x) dp(x) [4]. In practice we estimate the embedding

from samples as

µ̂X =
1

m

m∑
i=1

ψ(xi) =
1

m

m∑
i=1

k(xi, ·). (6)

C. Planning Strategies

A* is a heuristic search algorithm commonly applied for
graph search problems [21]. The algorithm selects which
node ns to expand by minimizing the cost f(ns) = g(ns)+
h(ns), where g(ns) is the cost for reaching node ns from
the start and h(ns) is a heuristic that provides a lower bound
to the cheapest costs from s to the goal state sG. The cost
g(ns) for reaching a node ns can be computed by tracing the
path from ns back to the start node and recursively summing
up the sub-path costs, i.e.,

g(ns) = g(pred(ns)) + c(pred(ns), ns), (7)

where pred(ns) is the parent node of ns and c(ns1 , ns2) is
the cost of the path between nodes ns1 and ns2 .

Potential fields [22] are a fast planning method for mobile
robots. The robots move along a hypothetical force field,
being attracted to the goal position and repulsed from the
obstacles. The attraction potential and the repulsive potential
for an obstacle o are defined as

Uatt(s) =
1
2χd(s, sG)

2, and (8)

Urep(s,o) =

 1
2χ
(

1
d(s,o) −

1
do

)2

if d(s, sG) < do

0 else
, (9)

respectively. Here, d is a measure for the distance to the
target state sG or the obstacle o, do is the maximum distance
to the obstacle, and χ is a scaling factor. Summing up
both potentials yields the total potential U(s) = Uatt(s) +∑

o Urep(s,o). The path of the robot can be computed by
following the gradient ∇U(s). In our approach, we use the
repulsive potential in the cost term for the path segments
c(ns1 , ns2) of A* (see Section IV-B for more details).

IV. TOWARDS SOLVING THE ASSEMBLY TASK

To fulfill the task of assembling multiple parts of an object
into a whole unit, we use three components; an overview is
given in Figure 2. First, an assembly policy that describes



Fig. 2. The three components of our approach. Left: the assembly policy
defines waypoints for the objects; middle: a path planning strategy computes
collision free paths for the objects but is also used to position the Kilobots
for the next push; right: the object movement policy controls the light source
when the swarm is pushing the objects.

how the parts should move such that they form a whole
unit in the end. Second, a path planning strategy to guide
the swarm around the objects and to arrange them for the
next pushing task. And third, an object movement policy
that realizes basic movements of an object part indirectly by
controlling a light source that guides the robot swarm. In
the following section, we will describe these components in
detail.

A. The Object Movement Policy

The object movement policy controls the position of the
light source such that the swarm, which follows the intensity
of the light, pushes the object along the trajectory that was
generated from the assembly policy. We reduce the search
space for the object movement policies by considering only
pushes in positive x-direction or counterclockwise rotations.
By assuming symmetric objects, we can later apply the
learned policies to arbitrary movements by rotating and
flipping the state representation accordingly. We further
introduce a trade-off parameter ρ that weighs between trans-
lational and rotational movements. This trade-off is achieved
by the design of the reward function which we introduce in
Section IV-A.1. We learn multiple policies to control the light
source for discrete settings of the parameter ρ: one policy
for pure translation (ρ = 0), one for pure counterclockwise
rotation (ρ = 1), and an arbitrary number of policies for
different ratios ρ of combined translational and rotational
movements. In our experiments we usually learned object
movement policies for five settings of ρ.

1) The Reward Function: The reward function reflects the
setting of the trade-off parameter ρ ∈ [0, 1]. The function
rewards a purely rotational movement for ρ = 1 and a purely
translational movement for ρ = 0. For values in between,
ρ trades off the rotational against the translational term.
Given the translational movements dx in x-direction, dy in
y-direction and the rotational movement dθ, we define the
reward as

r(ρ) = ρ rrot + (1− ρ)rtrans − cydy, (10)

with the translational and rotational reward terms

rtrans = dx − cθ dθ, and (11)
rrot = dθ − cx dx, (12)

respectively. The weights cx, cy , and cθ scale the costs for
undesired translational or rotational movements.

2) States and Actions: We define our state relative to the
center of the object part that we want to push. Given the
relative light position l = (xl, yl) and a swarm configuration
with n agents, where agent i has the relative position bi =
(xi, yi), the state vector is defined as s := [l, b1, . . . , bn].
The action vector a = (ax, ay) is the desired displacement
of the light source in x- and y-direction.

3) Features and Kernels: To learn an object movement
policy that generalizes to different swarm sizes, we need to
employ a feature mapping that abstracts from the number
of individuals in the swarm and also from the allocation
of the single robots to their actual positions. Therefore, we
represent the state of the swarm as a distribution embedded
into a RKHS [4], where we treat each agent as a sample of
a distribution. This representation as distribution is invariant
to both, the allocation of the individual agent to the position
(i.e., which agent is at which position), as well as to the
number of agents in the swarm. Thus, the state of the swarm
is represented as

µb(·) =
1

n

n∑
i=1

k(bi, ·) =
1

n

n∑
i=1

ψ(bi), (13)

where k is a kernel function (e.g., the Gaussian kernel)
and ψ is the intrinsic feature mapping of k. With this state
representation, we can compute the difference between two
swarm distributions independently from the number of agents
by computing the squared difference of their embeddings

db(b, b
′) =

1

n2

n∑
i=1

n∑
j=1

k(bi, bj)−
2

nm

n∑
i=1

m∑
j=1

k(bi, b
′
j)

+
1

m2

m∑
i=1

m∑
j=1

k(b′i, b
′
j). (14)

Here, b and b′ are two swarm configurations with n and
m individuals, respectively. In addition to the state of the
swarm, we also need to represent the current relative position
of the light l and the desired displacement of the light a (i.e.,
the action) in the feature vector. For both, we can obtain the
squared distance simply by

dv(v,v
′) = −0.5(v − v′)ᵀdiag

(
σ−2

v

)
(v − v′), (15)

where v can be either the composition of l and a or only the
light position l, depending if we need a feature function for
state-action pairs or just states. We can now combine these
two distance measures into a kernel function

K(s, s′) = exp

(
−α
2
dv(v,v

′)− 1− α
2

db(b, b
′)

)
, (16)

where α ∈ [0, 1] weighs the importance of the non-agent
dimensions v and the agent dimensions b of the state s.

At each learning iteration of the AC-REPS algorithm, we
select a kernel reference set Dref = (si,ai)

N
i=1 randomly

from the SARS samples. With this, we can define the feature
vector φ(s,a) for approximating the Q-function, where the
i-th entry of the feature vector

φ(s,a)i = K((si,ai), (s,a)), i = 1, . . . , N (17)



is the kernel function evaluated at the reference sample
(si,ai). For the policy improvement step, we need a state-
dependent feature function which we define as

ϕ(s)i = K(si, s), i = 1, . . . , N (18)

with the same kernel function as in Equation 17.

B. Assembly Policy and Path Planning Strategy

The assembly policy contains the construction information
stored as a list of oriented waypoints with required accuracies
for each object. These waypoints are processed consecutively
by applying either the object movement policy or the path
planning strategy. When the object movement strategy is
applied, we have to minimize the translational error etrans

and the rotational error erot until the next waypoint is
reached. We compute the desired translation-rotation ratio
as ρdes = erot/(etrans + erot) and choose the closest learned
object movement policy to be executed.

After reaching a waypoint, the swarm has to be arranged
at the next object. Using the object movement policy for
this task is not feasible since the swarm might collide with
other objects and the policy is only valid nearby the object to
move. Hence, in this case we use a path planning strategy to
guide the swarm around objects and arrange them for the next
pushing task. This strategy is a combination of A* with po-
tential fields, where we use the potential field in the cost term
c(s1, s2). Naively, we could also simply follow the gradient
of the potential field. This would however bring up several
issues such as getting stuck in local minima, avoiding narrow
passages, or oscillations around obstacles [23]. Instead, we
define the cost function as c(s1, s2) = d(s1, s2) +Urep(s2),
where d(s1, s2) is a measure of the distance between s1 and
s2, and Urep(s2) is the repulsive potential from the obstacle
in the potential field. As heuristic h(s) we use the Euclidean
distance to the target state. We plan a single path which we
follow with the center of the circular gradient. To avoid that
the swarm gets out of reach of the light gradient, the center
of the gradient has to stay within a certain range from the
mean position of the swarm.

V. EXPERIMENTAL SETUP & RESULTS

To evaluate the proposed learning method, we apply it
on the Kilobot platform [2]. The Kilobots are an affordable
and open source platform developed specifically for the
evaluation of algorithms on large swarms of robots. Each
robot is approximately 3 cm in diameter, 3 cm tall and
moves up to 1 cm/s by using two vibration motors. However,
the locomotion technique based on the slip-stick principle
restricts the Kilobots to flat surfaces with low friction and

Fig. 3. The value function plots around the object depict how our approach
successfully adapts to different settings of ρ.

5 10 15

0

10

20

Iteration

R
ew

ar
d

ρ = 0 ρ = 0.5 ρ = 1

Fig. 4. Mean and 2σ interval
of reward for pure translation, pure
rotation, and combined movement
(ρ = 0, ρ = 1, ρ = 0.5) over 10 runs
after 0 to 15 learning iterations.

20 40 60 80
0

2

4

6

8
·10−3

#Kilobots

R
ew

ar
d/

St
ep

Fig. 5. Average reward per time-
step of a pure translation (ρ = 0) and
a pure rotation (ρ = 1). All policies
are learned with 15 Kilobots and
evaluated with 5 to 80 Kilobots.

furthermore lacks proper odometry. We use phototaxis to
control a swarm of robots with a single light source [24].
In order to perform phototaxis, the robot activates one of
the two vibration motors and thereby moves slowly forward
while rotating. Whenever the ambient light sensor, which
is placed at the back of the robot, perceives an increasing
light intensity, the rotation direction is switched. This causes
the robot to move along the light gradient towards the light
source. We learn and evaluate the proposed method first on
a 2D Kilobot simulator and learning framework. For this, we
have implemented a Kilobot simulator in Python based on
the physics engine Box2D1 in a highly parallelizable fashion
to speed up the learning phase on a computing cluster. Later
we apply the policies that we have learned in simulation
directly to the real Kilobots.

A. Learning the Object Movement Policy

For learning the object movement policy, we simulate a
world with a single square object of 15cm width which is
initialized at (0, 0), the world is simulated at 10Hz, however,
we only take one SARS sample per second. We sample
the initial positions of the Kilobots and the light with two
different strategies to obtain a stable learning process. In the
first, we initialize the light above the object and the Kilobots
uniformly around the object. In the second, we choose the
initial position of the swarm and the light by sampling
polar coordinates from a a Gaussian with increasing variance
for the angle and uniformly in the interval [0.1, 0.75] for
the radius. By increasing the variance of the Gaussian, we
ensure that the policy is first learned in regions that are
more important for the task (i.e., behind the object) and later
in regions that are further away from the object. We learn
the object movement policies with 15 Kilobots for a square
object over 20 iterations. In each iteration we sample 100
episodes with 125 steps per episode. Afterwards, we maintain
a set of SARS tuples which we choose randomly from the
new samples and the old SARS tuples. To define the feature
function for LSTD, we further select 1000 samples randomly
from the SARS data set just as another 500 samples as sparse
subset for the GP. Figure 3 depicts the value function after
15 iterations for three different translation-rotation ratios ρ.
For this visualization we use artificial configurations where
all Kilobots and the light are at the same position (x, y).

1Box2D – A 2D Physics Engine for Games, http://box2d.org/

http://box2d.org/


Fig. 6. The pure translation policy learned with 15 Kilobots evaluated
on different swarm sizes. With a size of 50 agents and more, the swarm
distributes around the object which obstructs the intended push.

Fig. 7. Two examples for a successful assembly task. The Kilobots are
depicted by gray circles and the light position by a yellow circle. A video of
both experiments is available at https://youtu.be/kuU8wsR9dD4.

For the pure translation ρ = 0 the expected reward has its
maximum centered on the left side of the object and the
minimum on the right side of the object. The value function
for the combined action looks similar to the value function
for pure translations but is slightly shifted around the top
left corner of the object. The value function for the rotation
is a skewed circle around the square. Figure 4 shows the
average reward during the learning process. The achieved
reward starts converging after 7 iterations.

To evaluate how well our approach generalizes to different
swarm sizes, we applied the policies learned with 15 Kilobots
to swarms with 5 to 80 Kilobots. Figure 5 shows the average
reward per step for a pure translation policy (ρ = 0) and
a pure rotation policy (ρ = 1). Up to a swarm size of
about 40 Kilobots the reward increases. The more agents
are able to push the object the higher is the combined force
and, hence, the object moves faster. However, from a swarm
size of roughly 50 Kilobots on the average rewards start to
decline. The swarm then distributes around the object so that
the Kilobots are pushing it from opposing directions and by
that obstructing the desired motion. Figure 6 depicts this
evaluation for different swarm sizes.

B. The Assembly Task in Simulation

As a first task, the Kilobots have to assemble a larger
square composed of four squares. Three squares are already
assembled and a fourth square has to be pushed in the
remaining gap by translating and rotating the object. The
controller uses five object movement policies with rotation-
translation trade-off parameters ρ ∈ [0, 0.25, 0.5, 0.75, 1].
The assembly process is shown in Figure 7. First, the swarm
approaches the object by following the path generated by
the A* algorithm. Afterwards, the object movement polices
are applied and the Kilobots push the object along the path
generated from the waypoints until the target configuration is
reached. The system solves the task in eight out of ten trials.
In both failure trials the controller guides the Kilobots around

Fig. 8. The Kilobot swarm (A) pushes the assembly
objects (B) on a 2m×1.5m whiteboard. The circular
light gradient (C) is projected onto the table by a
video projector (D). The scene is observed with an
RGB camera (E).

Fig. 9. Modification of the Kilobot hardware, to
achieve a good phototaxis behavior. Left: commer-
cially available Kilobot with an SMD light sensor.
Right: modified Kilobot with a through-hole diode
as in the original design, the SMD sensor is covered
with black hot glue.

the currently manipulated square into the other squares which
destroys the beforehand assembled configuration.

As a second task, the Kilobots have to assemble a C-
shaped object and a T-shaped object. The swarm has to
rotate the T-shaped object by 180◦ before pushing it into
the C-shaped object. We use the same five object movement
policies learned with a square object as in the previous task.
Figure 7 depicts the assembly process. First, the Kilobots
rotate the T-shaped object from the starting orientation to
the target orientation. Afterwards, the swarm pushes the
object close to the final position but rotates the C-shaped
object while approaching. Yet, the assembly succeeds after
correcting the orientation of the target assembly by rotating
the already assembled objects. The system solved the task in
six out of ten trials. In all failure trials, the T-shape was
pushed inaccurately and disturbed the position of the C-
shape. In general, the policies learned with a square were
only applicable to a limited extent for pushing the T-shape.

C. The Kilobot Setup

In this section, we will give a short overview of the robotic
setup we use to evaluate the proposed method on the real
Kilobots. We will also describe how we had to modify the
light sensor of the Kilobots and the software we use on the
robots as well as the approaches for detecting Kilobots and
objects in a camera image. We use a horizontally mounted
2m × 1.5m whiteboard as environment for the swarm. The
whiteboard setup is very suitable for the Kilobots as it
provides a reflective surface with a low friction which is
beneficial for the slip-stick motion of the Kilobots but also
for the IR-based communication between the robots. We
further emulate a moving light source using a projector
mounted vertically on the ceiling and an RGB camera to
track Kilobots and objects. The setup is depicted in Figure 8.

1) Light Sensor Adjustment: In contrast to the original
design developed at Harvard [25], the commercially man-
ufactured Kilobots2 have a slightly modified design. The
replacement of the through hole (TH) light-sensitive diode at
the back with a surface-mounted device (SMD) light sensor
at the left side significantly decreases the performance of the
phototaxis algorithm. This is mainly caused by two reasons.
First, the shifted sensor placement breaks the assumption that
the robot should switch its movement direction as soon as
the minimum light intensity is detected. Second, as the SMD

2Distributed by K-Team, http://www.k-team.com/

https://youtu.be/kuU8wsR9dD4
http://www.k-team.com/
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Fig. 10. Left: moved distance in gradient direction with TH diode and
SMD sensor. Kilobots with TH diode are about 10 times faster. Right: sensor
response curves of SMD sensor and TH diode. The TH diode has a much
greater dynamic range. The plots show mean and average over 5 runs with
SMD sensor and over 6 runs with TH diode, each with a different Kilobot.

sensor is mounted directly on the printed circuit board (PCB),
it is shadowed by the battery. Additionally, the chosen SMD
sensor has a roughly three-times-reduced dynamic range in
comparison to the TH sensor which we chose as replacement
(see Figure 10). This leads to worse performances in scenes
with weak gradients as it is the case for a video projector.
As the PCB still features the connectors for the TH sensors,
restoring the original design is easy. We disabled the SMD
sensors by covering them with black hot glue. Figure 10
compares both sensors.

2) Tracking of Kilobots and Objects: To obtain the posi-
tions of the Kilobots and the objects in the scene, we apply
simple detection and tracking algorithms. However, the low
illumination of the scene (which is required for the phototaxis
behavior of the Kilobots) and the bright circular gradient
projected onto the table exceeds the dynamic range of the
RGB camera. To overcome this problem, we generate HDR
images from images with different exposure times.

a) High Dynamic Range Images: An efficient method
to compute an HDR image from a series of images with
varying exposure times is presented in [26]. Each camera
has a unique, unknown response curve f−1(yij) = tixj =:
I(yij) that maps the product I(yij) of the true pixel values
(irradiances) xj (i.e., the light intensity at the pixel) with the
exposure time ti to the observed pixel values yij . Assuming
that we would know the inverse of the response curve I(yij),
we could compute the true pixel value as

xj =

∑
i ω(yij)I(yij)ti∑

i ω(yij)t
2
i

. (19)

Here, ω(yij) is a bell shaped function that puts a higher
weight on values in the middle of the camera range which
are considered to be less noisy. Fitting a response curve to
data from the camera sensor can be achieved by the non-
linear least-squares optimization problem

min
I

∑
i,j

ω(yij)(I(yij)− tixj)2. (20)

Since we need to solve for both, I(yij) and xj , the solution
can be found iteratively using the Gauss-Seidel relaxation

∀m : Em = {(i, j) : yij = m} (21)

I(m) = Card(Em)−1∑
i,j∈Em

tixj , (22)

where Em is the index set of the sensor value m and
Card(Em) its cardinality, i.e., how often m has been ob-
served in all images. Initially, we use a linear mapping

Fig. 11. Images with different exposure times are combined into a HDR
image. Left: short exposure; middle: long exposure; right: HDR image.

I(m). Later, the HDR images can then be computed directly
by Equation 19. To remap the image from the HDR space
to the 8-bit image space we apply an adaptive logarithmic
mapping [27]. Figure 11 depicts the generation of an HDR
image.

b) Object Tracking: To achieve a stable and robust
tracking of the pose of arbitrary objects, we mark the
objects with Chilitags [28]. Chilitags are precise, reliable and
illumination tolerant 2D fiducial markers and thus are well
suited for the experimental setup.

c) Kilobot Tracking: Due to the small size of the
Kilobots in the camera image, it is not feasible to employ the
tracking with Chilitags. However, the round geometry of the
robots makes this a well-suited problem for a Hough circle
transform (HCT). HCT is not as precise and robust as the
Chilitag tracking, but since the policy uses a distribution-
based state representation, it is less sensitive to noise in the
Kilobot state. Hence, a rough tracking with HCT is sufficient.

3) Kilobot Phototaxis Control: To control the Kilobot
swarm we project a circular gradient (ca. 40cm diameter) into
the scene. As long as the Kilobots are within the radius of the
gradient, they follow the gradient towards its center using a
phototaxis controller. Each Kilobot turns either left or right,
however as they turn around the left or right rear leg and
not around their center this movement includes always also
a translational forward component. The phototaxis controller
switches the turn direction, when the sensed light intensity
is greater than the previous measurement.

D. The Assembly Task on the Kilobots

We transferred the experiment described in Section V-B
to the system introduced in Section V-C using 12, 15, and
24 Kilobots. For the experiment with the real Kilobots, the
swarm size is limited as the area of the circular gradient
is limited and the robots outside of the gradient are not
controllable anymore. Still, the phototaxis performance is
not sufficient to keep all robots reliably in the area of the
gradient. We apply the five policies learned in simulation
(Section V-B) directly to the Kilobot platform. No further
optimization on the real robots is required. The system is able
to push the fourth quad close to the others with 12 Kilobots.
Yet, only around half of the swarm remains in an area where
the gradient has an influence when approaching the final
position. Hence, the robot swarm is not able to finish the
assembly by correcting the orientation of the missing quad.
When we used 15 Kilobots the assembly succeeds. Although
again many robots fail to follow the light source and diverge
in the scene, the amount of Kilobots that remain in the area
of the gradient is sufficient to finish the assembly task. Still,
the other objects are shifted during the assembly process.



Fig. 12. Assembly of a square part with three similar parts into a big square
with different swarm sizes. In the first row: 12 Kilobots, in the second row:
15 Kilobots, in the third row: 24 Kilobots Multiple robots are lost during
the run, larger swarm sizes lead to better performances and faster execution.
A video is available at https://youtu.be/kuU8wsR9dD4.

A swarm size of 24 Kilobots reduced the time necessary to
complete the assembly task from around 950s to about 700s.
Four still pictures from the runs with 12, 15, and 24 Kilobots
are depicted in Figure 12.

VI. CONCLUSION
In this paper, we have introduced a method to learn

assembly tasks for swarm robots with a single global control
signal. We have divided this problem into three components:
an assembly policy, which we assume as given; a path
planning strategy; and a object movement policy which we
learn with AC-REPS. For the learning method, we have
introduced a swarm representation that is invariant to the
number of agents in the swarm and their specific locations.
This representation simplifies not only the search space for
the learning method, it also allows to transfer the learned
policy to different swarm sizes. We have shown in simulation
that this approach is able to solve an assembly task for
objects on which the policy has been learned but also for
new object shapes. We have demonstrated that the learned
policy can be directly transferred to the real robots without
additional learning.
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