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Abstract
Estimating and predicting partially observable
states of a high-dimensional and highly stochas-
tic system is still a challenging problem in ma-
chine learning and robotics. Recently, kernel
methods for nonparametric inference (Song et
al., 2013) have been introduced which allow be-
lief propagation with arbitrary probability distri-
butions. However, one of the main limiting fac-
tors is that the provided algorithms scale cubi-
cally with the number of samples in the kernel
matrices. In this paper, we present an exten-
sion to these nonparametric methods for infer-
ence that uses only a subset of the samples for the
state representation, while still using the full data
set for learning the conditional operators. Our
approach is able to significantly reduce the learn-
ing and run time of the algorithm, while main-
taing or even improving the performance.

1. Introduction
Learning from partial and noisy, potentially high-
dimensional data is an ubiquitous problem in machine
learning and robotics. Examples of such problems are poor
and incomplete sensory data of a robot or occlusions in a
scene captured by a low-cost camera. In order to achieve
good estimates and predictions of a system’s state from
these incoming data streams, we need accurate forward
models of the system’s dynamics. Since these models are
generally hard to obtain analytically, learning them from
observed data is an attractive alternative.

A well known method for state estimation and prediction
is the Kalman filter (KF) (Kalman, 1960) for linear mod-
els. There are extensions for non-linear models such as

the extended Kalman filter (EKF) (Julier and Uhlmann,
1997) or the unscented Kalman filter (UKF) (Wan and Van
Der Merwe, 2000) which rely on local linearizations or
sample-based approximations with a known model. To per-
form state estimation and prediction with models learned
from data, Gaussian processes can be applied (Deisenroth
et al., 2015). Though, this method requires determinis-
tic approximate inference techniques which are computa-
tionally expensive and, in addition, scales poorly to high-
dimensional observations.

To overcome these problems, Song et al. (2013) recently
introduced a framework for nonparametric inference in
graphical models. This framework is based on the em-
bedding of probability distributions into reproducing kernel
Hilbert spaces (RKHS) (Smola et al., 2007; Baker, 1973;
Song et al., 2013). With the kernel space analogs of the
sum rule, the chain rule (Song et al., 2013) and, as a com-
bination of these, the Bayes’ rule (Fukumizu et al., 2013),
it is possible to perform inference on arbitrary probability
distributions. Moreover, the representation inherently al-
lows one to learn the required models from observed time
series. Yet, this framework has the severe disadvantage that
the computation time scales cubically with the number of
sample points used for learning.

In this paper, we propose a solution to this problem by
introducing a conditional operator in a kernel subspace.
While only a subset of the kernel samples is used to rep-
resent the embedded probability distribution, we make use
of the whole data set to estimate the transition and observa-
tion models. Hence, our algorithm can obtain improved es-
timation and prediction performance, while scaling linearly
with the number of samples in the training set for learning
and performing inference in constant time.

Similar approaches exist for Gaussian processes (Snelson
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and Ghahramani, 2006; Seeger et al., 2003; Smola and
Bartlett, 2001; Csató and Opper, 2002), which result in
a kernel function that incorporates the full data set, yet
performs the computations in a lower dimensional space
spanned by a sparse reference set. However, this specific
design of the kernel function restricts the set of computa-
tions available in the subspace, since kernel evaluations of
new data points always require the full data set.

2. Nonparametric Inference with Hilbert
Space Embeddings

In this section, we will review the embeddings of probabil-
ity densities into reproducing kernel Hilbert spaces (Smola
et al., 2007; Song et al., 2013), as well as the kernel analogs
of the sum rule, the product rule (Song et al., 2013), and
Bayes’ rule (Fukumizu et al., 2013).

For now, we consider two random variables X and Y on
the domains ΩX and ΩY and refer to their variates as x
and y, respectively. P (X) is the probability distribution
over the random variable X . For the filtering application,
we will later consider the states as random variates y and
observations as random variates x.

A reproducing kernel Hilbert space (RKHS) is a Hilbert
space of functions f : Ω → R, uniquely defined by a pos-
itive definite kernel function k(x, x′) := 〈φ(x), φ(x′)〉H
(Aronszajn, 1950). The kernel function implicitly defines
the feature mapping φ, which might be infinite dimen-
sional, and the inner product of the Hilbert space 〈·, ·〉H.
The elements of H can be reproduced by the kernel func-
tion k, i.e., f(·) =

∑m
i=1 αik(xi, ·).

We assume two reproducing kernel Hilbert spacesHX and
HY with kernel functions k : ΩX×ΩX → R and g : ΩY ×
ΩY → R, respectively, where k(x, x′) = 〈φ(x), φ(x′)〉HX

and g(y, y′) = 〈ϕ(y), ϕ(y′)〉HY
.

Embedding of a Marginal Distribution The kernel-
embedding of a marginal distribution P (X) of the ran-
dom variable X is the expected feature mapping (mean
map) of its random variates (Smola et al., 2007) µX :=
EX [φ(X)] =

∫
Ω
φ(x) dp(x). The mean map can be esti-

mated from a finite sample set as

µ̂X =
1

m

m∑
i=1

φ(xi) =
1

m

m∑
i=1

k(xi, ·). (1)

In general, given a set of feature mappings Φ =
[φ(x1), . . . , φ(xm)], any distribution q(x) over the domain
of X may be embedded as a linear combination of these
feature mappings by µ̂qX = Φβ, with a column weight vec-
tor β.

Embedding of a Joint Distribution The kernel-
embedding of a joint distribution P (X,Y ) (Baker, 1973;
Smola et al., 2007) of two random variables X and Y is
defined as the expected tensor product of the feature map-
pings CXY := EXY [φ(X)⊗ ϕ(Y )]. The corresponding
finite sample estimator is here

ĈXY =
1

m

m∑
i=1

φ(xi)⊗ ϕ(yi) =
1

m
ΦΥᵀ, (2)

with the feature matrices Φ = [φ(x1), . . . , φ(xm)] and
Υ = [ϕ(y1), . . . , ϕ(ym)]. The embedding of the joint dis-
tribution is also called the cross-covariance operator.

Embedding of a Conditional Distribution Similar to
the embedding of a marginal distribution, the embedding
of a conditional distribution P (X|Y ) (Song et al., 2013) is
defined as µY |x := EY |x [ϕ(Y )] =

∫
y∈ΩY

ϕ(y)p(y|x) dy.
Here, the embedding is not a single element of the RKHS
but rather a family of elements. A particular element of
the family is chosen by conditioning on a specific value of
x. To obtain the conditional embedding for a specific value
of x, Song et al. (2013) additionally introduced the condi-
tional embedding operator CY |X as

µY |x = CY |Xφ(x). (3)

Based on a relation from (Fukumizu et al., 2004), they ob-
tain the conditional operator as

CY |X = CY XC−1
XX , (4)

and derive its finite sample estimator as

ĈY |X = Υ(K + λIm)−1Φᵀ, (5)

with the feature matrices Υ := (ϕ(y1), . . . , ϕ(ym)) and
Φ := (φ(x1), . . . , φ(xm)), the Gram matrix K = ΦTΦ ∈
Rm×m, and regularization parameter λ.

The Kernel Sum Rule Given a joint distribution
P (X,Y ), the sum rule computes the marginal distribu-
tion P (X) by integrating out variable Y . By factoriz-
ing P (X,Y ) into P (X|Y )π(Y ) a prior distribution π of
Y can be taken into account which is in general different
from the distribution P (Y ) observed in the training set and
might additionally be represented using a different sample
set {ỹ1, . . . , ỹm̃} with weights α. Song et al. (2013) derive
the kernel sum rule by embedding this factorization into the
RKHS as

µπX = EY EX|Y [φ(X)] = EY
[
CX|Y ϕ(Y )

]
= CX|Y EY [ϕ(Y )] = CX|Y µπY
= Υ (G+ λIm)

−1
G̃α, (6)
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with the Gram matrices G = ΥTΥ ∈ Rm×m and G̃ =
ΥT Υ̃ ∈ Rm×m̃. The superscript π denotes that the mean
map µπX is conditioned on the prior distribution π(Y ). In
addition, Song et al. (2013) also provide a kernel sum rule
for the tensor product features as

CπXX = Υdiag
(

(G+ λIm)
−1
G̃α

)
Υᵀ, (7)

where CπXX is the prior modified covariance operator.

The Kernel Chain Rule Given a conditional distribu-
tion P (X|Y ) and a marginal prior distribution π(Y ), the
chain rule computes the joint distribution Q(X,Y ) =
P (X|Y )π(Y ). By embedding the marginal probability as
CπY Y in a tensor product RKHS and then applying the con-
ditional embedding operator, (Song et al., 2013) derived
the kernel chain rule as

CπXY = CX|Y CπY Y = Υ (G+ λI)
−1
G̃diag (α) Φᵀ. (8)

Alternatively, the kernel chain rule can also be applied to
the mean embedding µY by making use of the conditional
cross-covariance operator (Song et al., 2013; Fukumizu et
al., 2004) which results in

CπXY = C(XY )|Y µ
π
Y

= Υdiag
(

(G+ λI)
−1
G̃α

)
Φᵀ, (9)

where CπXY is the prior modified cross-covariance opera-
tor.

Kernel Bayes’ Rule Given a prior distribution π(Y ) and
a likelihood function P (X|Y ), Bayes’ rule computes the
posterior distribution P (Y |x) of Y given an instance x of
X . Fukumizu et al. (2013) derived the kernel Bayes’ rule
(KBR) with the prior modified covariance operator CπXX ,
obtained from the kernel sum rule, and the prior modified
cross-covariance operator CπY X , obtained from the kernel
chain rule, similar to the conditional operator as

µπY |x = CπY |Xφ(x) = CπY X (CπXX)
−1
φ(x). (10)

By applying the finite sample estimates of the kernel sum
rule and the kernel chain rule, they arrive at

D = diag
(

(G+ λI)−1G̃α
)

µπY |x = CπY X (CπXX)
−1
φ(x)

= CπY X
(

(CπXX)
2

+ κI
)−1

CπXXφ(x) (11)

= Φ̃DK
(
(DK)2 + κI

)−1
DK :x, (12)

with the kernel vector (K :x̄)i = k(xi, x̄) of the observa-
tion x̄. Since the weights αi can be negative, Fukumizu et
al. (2013) make use of the Tikhonov regularization for the
inversion of CπXX in Equation 11.

3. Efficient Nonparametric Inference in a
Subspace

A pervasive problem of kernel methods is the trade-off be-
tween accuracy and computational efficiency. On the one
hand, large sample sets are a severe computational prob-
lem, especially due to the inversion of the Gram matrix
which is in O(m3). On the other hand, we demand large
sample sets due to two reasons. First, we want represen-
tative sample sets that cover a large range of the problem
domain and still provide a reasonable accuracy. Second, to
get good estimations of the conditional operators for highly
stochastic systems, a large number of transitions and thus
samples is required. Since the second motivation is more
important for highly stochastic systems, we want to use
only a representative subset for the mean embedding, while
still using the entire sample set for estimating the condi-
tional operators.

3.1. The Subspace Conditional Operator

In this paper, we introduce the subspace conditional oper-
ator which maintains computational efficiency by reducing
the operator size with an appropriate sparsification tech-
nique, while still using the whole set of training samples for
learning the conditional operator. Based on the sample sets
Φ = {φ(x1), . . . , φ(xm)} and Υ = {ϕ(y1), . . . , ϕ(ym)}
introduced in Section 2, we define the respective subsets
Γ ⊂ Υ and Ψ ⊂ Φ, with |Γ| = |Ψ| = n� m, and assume
these subsets to be sufficient for representing the mean em-
beddings. While the subspace conditional operator CSX|Y
applied to an embedding φ(x) ∈ HX gives the mean em-
bedding µY |x ∈ HY , we can derive it by first defining an
auxiliary conditional operator C̃SY |X as

µY |x = C̃SY |XΨᵀφ(x), (13)

that maps from the subspace projected embedding Ψᵀφ(x)
to the mean embedding µY |x. We can then obtain this aux-
iliary conditional operator by minimizing the squared error

0 =
∂

∂C̃X|Y

∥∥∥Υ− C̃X|Y ΨᵀΦ
∥∥∥

2

0 = −2
(

Υ− C̃X|Y ΨᵀΦ
)

ΦᵀΨ

C̃SX|Y ΨᵀΦΦᵀΨ = ΥΦᵀΨ

C̃SX|Y = ΥΦᵀΨ (ΨᵀΦΦᵀΨ + λI)
−1

and obtain the subspace conditional operator as

CSX|Y = C̃SX|Y Ψᵀ (14)

= ΥΦᵀΨ (ΨᵀΦΦᵀΨ + λI)
−1

Ψᵀ (15)

= ΥḠ
(
Ḡ

ᵀ
Ḡ+ λI

)−1
Ψᵀ, (16)
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where Ḡi,j = g(ϕ(yi), ϕ(ȳj)) ∈ Rm×n is the kernel ma-
trix of the sample feature set Φ and its subset Ψ. Since
we assume that n � m, the inverse in the subspace con-
ditional operator is in Rn×n and, thus, of a much smaller
size than the inverse in the standard conditional operator
shown in Equation 5. Additionally, we can exploit the fea-
ture matrix Ψᵀ on the right hand side of the subspace con-
ditional operator, and represent the state estimate always
in the subspace. Hence, we are able to completely avoid
representations and computations in the high-dimensional
space spanned by the full sample set.

In the following sections we will, analogously to (Song et
al., 2013; Fukumizu et al., 2013), use the subspace condi-
tional operator to derive the subspace versions of the kernel
sum rule, the kernel chain rule and the kernel Bayes’ rule.

3.2. The Subspace Kernel Sum Rule

For the kernel sum rule, (Song et al., 2013) applied the con-
ditional operator to the mean map of a distribution π(Y ).
Analogously, the subspace kernel sum rule for a marginal
mean map becomes

µπX = CSX|Y µ
π
Y = ΥḠ

(
Ḡ

ᵀ
Ḡ+ λI

)−1 ˜̄G
ᵀ
α, (17)

where µπY = Φ̃α is the embedding of the prior distribution
π(Y ) that is in general represented with a different sam-
ple set Φ̃ which results in the kernel matrix ˜̄G = Φ̃ᵀΨ.
In contrast to Song et al. (2013), who construct the kernel
sum rule for tensor product features by applying the con-
ditional operator to the embedding µπY and then construct
a covariance operator with the conditioned weights α′, we
first construct the covariance operator and then apply the
conditional operator to both sides as

CS,πXX = CSX|Y C
π
Y Y (CSX|Y )ᵀ = CSX|Y Φ diag (α)Φᵀ(CSX|Y )ᵀ

= ΥḠL ˜̄G
ᵀ

diag (α) ˜̄GLḠ
ᵀ
Υᵀ, (18)

where CπY Y is the embedding of the prior distribution π(Y )
as covariance operator and the Tikhonov regularized in-
verse L = (Ḡ

ᵀ
Ḡ+ λI)−1 ∈ Rn×n.

3.3. The Subspace Kernel Chain Rule

The kernel chain rule computes the prior modified cross-
covariance operator by applying the conditional operator
to an embedding of π(Y ) in a tensor product RKHS. The
subspace kernel chain rule is a straight forward modifica-
tion of the kernel chain rule of (Song et al., 2013), i.e.,

CS,πY X = CSY |XC
π
XX

= ΥḠ
(
Ḡ

ᵀ
Ḡ+ λI

)−1 ˜̄G
ᵀ

diag (α)Φ̃ᵀ. (19)

With the subspace kernel sum rule and the subspace kernel
chain rule we can now construct the subspace kernel Bayes’
rule.

3.4. The Subspace Kernel Bayes’ Rule

Analogous to Fukumizu et al. (2013), we construct the sub-
space kernel Bayes’ rule (subKBR) with the prior modified
covariance operator from the subspace kernel sum rule and
the prior modified from the subspace kernel chain rule as

µπY |x = CS,πY X
((
CS,πXX

)2

+ γI

)−1

CS,πXXφ(x). (20)

By inserting the definitions from Equations 18 and 19
and applying the matrix identity A (BA+ λI)

−1
=

(AB + λI)
−1
A, we can define the following matrices

E := Ḡ
ᵀ
ΥᵀΥḠ = Ḡ

ᵀ
KḠ ∈ Rn×n, (21)

D := L ˜̄G
ᵀ
diag (α) ˜̄GL ∈ Rn×n, (22)

and arrive at

µπY |x = Φdiag (α) ˜̄GLED
(

(ED)
2

+ γI
)−1

Ḡ
ᵀ
K :x,

(23)

with (K :x)i = k(xi, x
∗) the kernel vector of the new ob-

servation x∗. Since E andD are both in Rn×n, the matrix
inversion is only in O(n3). The whole kernel Bayes’ rule
is in O(mn2) and, thus, scales linearly with the number of
sample points (given a fixed reference set) instead of cubi-
cally as for the original kernel Bayes’ rule.

4. Experimental Results
We compare the subspace kernel Bayes’ rule (subKBR) to
the standard KBR with two experiments on simulated data.
In both experiments, we used the respective KBRs and con-
ditional operators to perform kernel Bayes’ filtering (KBF
and subKBF) (or prediction) (Fukumizu et al., 2013) on the
observations. We map from the Hilbert space to the state
space using a linear mapping similar to Zhu et al. (2014)
We will use the term training set to talk about the set of
samples that is used to learn the conditional operators and
subspace set to talk about the set of samples that is used for
the subspace projection.

Synthetic Data For the first experiment, we simulate
a pendulum which we randomly initialize in the ranges
[0.1π, 0.4π] and [−0.5π, 0.5π] for the angle θ and the an-
gular velocity θ̇, respectively. The pendulum has a mass
of 5kg and a friction coefficient of 1. The angular veloc-
ities are subject to Gaussian process noise ξ ∼ N (0, 1)
and the states are observed with Gaussian observation noise
η ∼ N (0, 0.1). Additionally, the observed angles are ran-
domly perturbed by an offset of π

4 . These random pertur-
bations occur with a probability of 0.1 in every time step.
Each episode consists of 30 time steps with ∆t = 0.1.
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We use a squared exponential kernel for the states as well as
the observations, where we apply the median trick to select
the bandwidths. The regularization parameters are set to
λT = exp(−1) for the transition operator, λO = exp(−6)
for the observation operator and γ = exp(−6) for the ker-
nel Bayes’ rule. We simulate 200 episodes to form a train-
ing set and choose the kernel samples randomly. We con-
duct the experiment for 100, 150, 300, 450 and 600 kernel
samples in a randomly selected training set and fixed the
size of the subspace set to 100 samples.

Figures 1, 2, and 3 show the results of this experiment in
terms of performance, learning time, and run time, respec-
tively. In Figure 1, we see that the subspace KBF has a
slightly better performance when the training set equals the
subspace set and maintains the performance of the standard
KBF with an increasing number of training samples while
the subspace set is fixed. Figures 2 and 3 show the improve-
ment of efficiency for learning and filtering of the subKBR
over the standard KBR.

100 150 300 450 600
0.05

0.06

0.07

0.08

size of training set

M
SE

standard KBF
subspace KBF

Figure 1. Comparison of the standard KBF to the subspace KBF.
The subspace KBF is learned with a subspace set of 100 sam-
ples. Depicted are the median and the [0.25,0.75] quantiles over
20 evaluations.

100 150 300 450 600
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s

standard KBF
subspace KBF

Figure 2. Evaluation of the training time of the KBF and the sub-
KBF. Depicted is the median over 20 evaluations.

Video Frames In the second experiment, we filtered the
frames of a video stream consisting of 30 frames. We use
the same simulated pendulum as described in the previous
paragraph. Here, we apply process noise ξ ∼ N (0, 2) as
well as the random pertubations to the pendulum angles,
and render the pendulum movements into video frames
with a width and height of 10 pixels. Finally, we project
the frames into the space spanned by the first ten princi-

100 150 300 450 600
0

200

400

600

size of training set

se
co

nd
s

standard KBF
subspace KBF

Figure 3. Evaluation of the run time of the KBF and the subKBF
for filtering 30 episodes with each 30 steps. Depicted is the me-
dian over 20 evaluations.

pal componentents of the training video data and use these
projections as observations. Again, we use the squared ex-
ponential kernel, where the bandwiths are set to the me-
dian distance of the data points. The regularization pa-
rameters are set to λT = exp(−10) for the transition op-
erator, λO = exp(−10) for the observation operator and
γ = exp(0.8) for the kernel Bayes’ rule. Similar to Song
et al. (2010), we normalize α to a maximum distance be-
tween the minimal and maximal value of 1 for numerical
stability.

We use a dataset of 100 episodes and conduct the experi-
ment for a reference size of 100, 200 and 300 samples. The
subspace conditional operator is always trained with train-
ing set of 1500 samples. Figure 4 shows the mean squared
error of the angles extracted from the filtered video data
to the groundtruth. We can see that the subspace kernel
Bayes’ filter already reaches better results with a small ker-
nel size and maintains its performance with an increasing
number of samples in the reference set.

100 200 300
10−2

10−1

100

size of reference set

M
SE

standard KBF
subspace KBF

Figure 4. Comparison of the KBF and subKBF for filtering high-
dimensional video frames. The subKBF is for all evaluations
trained with 1500 sample points. Depicted are the median and
the [0.25,0.75] quantiles over 20 evaluations.

5. Conclusions
In this paper, we presented a new formulation of the condi-
tional embedding operator, called the subspace conditional
operator. This formulation enables us to represent embed-
dings of probability distributions in a subspace of the kernel
samples, while still using the whole sample set for learning
the operators. We showed that the subspace conditional
operator outperforms the standard conditional operator in
terms of performance, learning time and run time.
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