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Abstract— Learning to perform tasks like pulling a door
handle or pushing a button, inherently easy for a human, can
be surprisingly difficult for a robot. A crucial problem in these
kinds of in-contact tasks is the context specificity of pose and
force requirements. In this paper, a robot learns in-contact tasks
from human kinesthetic demonstrations. To address the need to
balance between the position and force constraints, we propose
a model based on the hidden semi-Markov model (HSMM) and
Cartesian impedance control. The model captures uncertainty
over time and space and allows the robot to smoothly satisfy
a task’s position and force constraints by online modulation
of impedance controller stiffness according to the HSMM state
belief. In experiments, a KUKA LWR 4+ robotic arm equipped
with a force/torque sensor at the wrist successfully learns from
human demonstrations how to pull a door handle and push a
button.

I. INTRODUCTION

One of the most alluring practical consequences of allow-
ing robots to learn directly from demonstration is to relax
the analytical burden required to transfer physical human
skills to robotic platforms. This learning process is known in
literature as programming by demonstration (PbD), learning
from demonstration (LfD), or imitation learning [1], [2].
In this paper, we use the term in-contact tasks for tasks
that crucially involve the distribution of forces in space and
time at the interface between the robot’s end-effector and
its surrounding world. In-contact tasks within the domain
of human mastery are typically difficult to explicitly encode
into declarative terms.

Common interfaces for demonstration in PbD range from
direct recording of human actions to immersive teleoperation
[3], for example making use of haptic devices capable of
providing position and force information. Among them, with
kinesthetic teaching the human instructor can physically grab
and displace the robot’s body parts and operate its tool in
space and time. As discussed in [4], the mastered skill can be
demonstrated with minimal alteration of the geometric and
dynamic properties of the task on an appropriately designed
setup.

The approach presented in this paper utilizes kinesthetic
teaching, simultaneously collecting position and force pro-
files of a task as exemplified in Fig. 1. We use a compliant
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Fig. 1: Learning to pull a door handle from human demon-
stration with simultaneous teaching of pose and force re-
quirements.

robot with a force-torque sensor placed between the robot
flange and the tool [4], [5], as depicted in Fig. 2. This
allows a human instructor to perform intuitive and familiar
task executions, avoiding separate recordings of position and
force. Furthermore, the spatio-temporal correlation between
position and force information is preserved and the use of
external force recording devices avoided.

In order to model the dynamics of in-contact tasks, we
extend the PbD approach of [6], [7], which uses a combina-
tion of Hidden Semi-Markov Model (HSMM) and Gaussian
Mixture Regression (GMR). In addition to the spatial and
temporal constraints, our HSMM encodes the force profiles
recorded during the demonstrations. The state representation
of the HSMM allows us to smoothly modulate the stiffness
of a Cartesian impedance controller during the reproduction,
based on the belief over the states. The varying impedance
of the controller allows the robot to satisfy the position and
force constraints observed during the teaching as well as
retain safety thanks to the low stiffness interface.

The following Section II presents related work on in-
contact PbD. Sect. III describes in detail the mathematical
model used for learning the demonstrated task and the
stiffness selection mechanism. Next, the experimental setup
is presented and the results discussed in Sect. IV. Finally,
conclusions are drawn in Sect. V.

II. RELATED WORK
PbD is an effective way for transferring human physical

skills to robots. However, when the success of the taught
tasks strictly depends on the physical interaction of the robot
with the environment, force constraints have to be taken into
account. Including the force information in a PbD approach
requires modifications to the teaching, the learning and the
reproduction phases.



Fig. 2: End-effector configuration: the F/T sensor (B) is
mounted between the robot flange (A) and the tool (C).

During the demonstrations, the teacher has to provide a
meaningful reproduction of the force profiles. We use simul-
taneous kinesthetic teaching of pose and force constraints
[4], [5], based on the end-effector configuration shown in
Fig. 2. Rozo et al. [8] exploit a similar configuration to
teach an impedance-based robot to adapt its stiffness from
demonstration during a collaborative assembly task.

For the modeling of the motion along with the force
information of a task, the Dynamic Movement Primitive
(DMP) approach is the most widely used [4], [5], [9]
although also statistical models have been used [10], [11].
DMP models encode each dimension separately, allowing
the learning of force profiles without changes to the basic
approach. However, modeling the dimensions independently
does not allow to exploit the correlation between the different
variables. The model-free Probabilistic Movement Primitive
(ProMP) approach presented in [11] captures the correlation
of the trajectory, the commands and the sensory signal.
However, since the commands are part of the training, this
approach requires the robot to be teleoperated during the
demonstrations. Kinesthetic teaching, where the unrecorded
external forces of the teacher replace the robot commands,
is then not directly applicable, narrowing down the choice
of tasks.

Calinon et al. [6] propose the combination of Hidden
Markov Model (HMM) and GMR to create a probabilistic
model of demonstrated trajectories, by modeling a joint-
probability density function over the data, and to generalize
the taught task via regression. To further encode a duration
information for each state, the use of HSMM in PbD is
introduced in [7]. HMM-based approaches allow encoding
of several motions in the same model [6], a unified way of
handling periodic and non-periodic movements (DMP [12]
and ProMP [13] require a preliminary choice) and robustness
against non-aligned demonstrations. Inspired by these works
and the good performance of GMR-based methods in the
literature [6], [14], [15], our work extends the HSMM-GMR
formulation to include the force information in the learning,
bringing then the strenghts of HMM-based approaches to
the case of in-contact tasks. Morevoer, the choice of HSMM
allows us to perform state-specific control strategies.

Since interaction with the environment is required for in-
contact tasks, compliant control strategies like joint torque

control [9], [10] or impedance control [4], [5] are usually
coupled with the models. However, as pointed out in [10]
and confirmed by our experiments, simply playing back the
learned forces is not sufficient to successfully accomplish
tasks. Thus, a decision on which aspect of the motion (the
kinematic trajectory or the exertion of forces) to prioritize
needs to be made.

Our approach builds on a Cartesian impedance controller
whose stiffness parameters are changed during the execution
of the motion, based on the force information encapsulated
in each HSMM state. Instead of looking at the variance
of the demonstrations [9]–[11], we extract the two basic
modes of interaction given the recorded force: in-contact
with the environment and not in-contact. Our approach can
then choose automatically which aspect of the motion to
prioritize, avoiding manually set thresholds [4], [5]. Thanks
to the adjustable stiffness interface, the proposed approach
can cope with moderate untrained perturbations in the envi-
ronment as in [5], [9], [10] and allow safe operation close
to a human.

III. METHOD

We propose a HSMM-GMR based PbD approach able to
model the pose and force information of in-contact tasks
from demonstration. We combine the model with a Carte-
sian impedance controller with stiffness that is dynamically
adjusted during the reproduction based on the belief over the
HSMM states.

A. Model

Our model is based on the HSMM-GMR model applied
to PbD as proposed by Calinon et al. [6], [7]. In order to
address the case of in-contact tasks, our model takes into
account forces recorded during the demonstrations.

The learning framework uses an HSMM to model the
temporal evolution of trajectories with a continuous Gaussian
observation probability distribution assigned to each HSMM
state. Offline, we use a version of the Baum-Welch algo-
rithm [16] to learn the model parameters from a set of D
demonstrated trajectories. Online, we utilize GMR [17] at
each timestep to compute the desired twist (positional and
rotational velocity) and force.

We will now define the parameters of our N state HSMM
and discuss the model and how the parameters are used
in more detail. We train the model using a set of D
demonstrations. Each demonstration d ∈ {1, . . . , D} consists
of a set of Tmax samples describing the pose and forces
sensed at the end-effector of the robot. The N state HSMM
is parametrized by

λ = (π,A, µ,Σ, µD, σD), (1)

where π specifies the initial probability of each state, A
is the transition probability matrix where aji ∈ A is the
transition probability from state j to i, µ = (µ1, . . . ,µN )
and Σ = (Σ1, . . . ,ΣN ) are sets of mean vectors and
covariance matrices, respectively, of the N Gaussian joint
observation probabilities, and µD = (µD1 , . . . , µ

D
N ) and



σD = (σD1 , . . . , σ
D
N ) are sets of mean values and variances,

respectively, of the N Gaussian duration probability distri-
butions. The state duration pdf pDi (t) of state i is defined
as

pDi (t) = N (t;µDi , σ
D
i ), (2)

with t = 1, . . . , tmax. In the experiments, we computed the
maximum allowed duration of a state tmax from the length
of the demonstrations by

tmax = γ

⌈
Tmax
N

⌉
, (3)

with γ manually set to 2 allowing each state to last up to
twice the average duration.

The observation probability at time t for state i is defined
as

pi(zt) = N (zt;µi,Σi) , (4)

where zt = [xTt ẋ
T
t q

T
t q̇

T
t f

T
t ]T is the concatenation of

the observed variables at time t i.e. position xt and velocity
ẋt of the end-effector, quaternion representation qt of the
orientation of the tool and its derivative q̇t plus the novel
addition of the measured force f t. The mean vector µi ∈ µ
and covariance matrix Σi ∈ Σ, characterized as

µi =


µxi
µẋi
µqi
µq̇i
µfi

 , Σi =


Σxxi Σxẋi Σxqi Σxq̇i Σxfi
Σẋxi Σẋẋi Σẋqi Σẋq̇i Σẋfi
Σqxi Σqẋi Σqqi Σqq̇i Σqfi
Σq̇xi Σq̇ẋi Σq̇qi Σq̇q̇i Σq̇fi
Σfxi Σfẋi Σfqi Σfq̇i Σffi

,
(5)

parameterize the Gaussian observation probability for each
state i. We optimize the parameters λ offline over the
demonstrations using a version of the Baum-Welch algorithm
[16].

During the reproduction of the demonstrated task, we
update the belief distribution over HSMM states and use
this distribution to compute the desired control parameters:
twist and force. The forward variable αi,t specifies the
unnormalized probability for the system to be in state i

at time t. The belief over states hi,t = αi,t/
N∑
k=1

αk,t is

a normalized version of the forward variable. The forward
variable of state i is initialized as

αi,1 = πiQi(
[
x1

q1

]
) (6)

and depends on the priors πi and on the Gaussian probability

Qi(
[
x1

q1

]
) = N (

[
x1

q1

]
;

[
µxi
µqi

]
,

[
Σxxi Σxqi
Σqxi Σqqi

]
) (7)

of the starting pose
[
x1

Tq1
T
]T

. Note that the forward
variable does not directly depend on the observed force
or velocities. This means that during online operation the
evolution of states depends only on position and orientation,

not force. At each timestep we update the forward variable
with

αi,t =

N∑
j=1

min(tmax,t−1)∑
d=1

αj,t−dajip
D
i (d)

t∏
s=t−d+1

Qi(
[
xt
qt

]
). (8)

The control variables (the velocity of the end-effector ẋ∗
t ,

the derivative of the orientation q̇∗t and the desired exerted
force f∗

t ) are determined online as their expectations over
the current state distribution hi,t given the current position
and orientation

ẋ∗
t =

N∑
i=1

hi,t
[
µẋi + Σẋxi (Σxxi )−1(xt − µxi )

]
, (9)

q̇∗t =

N∑
i=1

hi,t
[
µq̇i + Σq̇qi (Σqqi )−1(qt − µ

q
i )
]
, (10)

f∗
t =

N∑
i=1

hi,t[µ
f
i + Σfqi (Σqqi )−1(qt − µ

q
i )

+ Σfxi (Σxxi )−1(xt − µxi )] . (11)

The desired velocity of the end-effector is computed in (9),
based on the current position, the trained parameters of the
HSMM’s states and assuming that the random variables are
Gaussian. In the same way, the desired rotational velocity
is computed in (10). Finally, the desired exerted force f∗

t is
computed in (11), assuming that both the position and the
orientation of the tool are given. The desired position and
orientation can then be computed by integration as

x∗
t+1 = xt + τẋ∗

t , (12)

q∗t+1 = qω ⊗ q∗t , (13)

with τ being the length of the single timestep and qω ≡ eτq̇
∗
t

using q̇∗t from (10).

B. Stiffness selection and impedance controller

We utilise a Cartesian impedance controller with varying
stiffness kc along different Cartesian dimensions for control-
ling the arm. Our approach can be applied to any Cartesian
impedance controller with a control law in the form [18]

τ cmd = JT (diag(kc)(xcmd − xmsr) +D(dc) + F cmd)

+ τ dyn(q, q̇, q̈) , (14)

where diag(kc) denotes the diagonal matrix with the ele-
ments of kc on the main diagonal. The controller emulates
a spring-damper system driven by the desired xcmd and
the measured Cartesian pose xmsr, through programmable
Cartesian stiffness kc and damping parameters dc. The robot
can provide a force/torque feedforward term F cmd. The
model of the arm τ dyn(q, q̇, q̈) compensates for dynamical
forces such as gravity and Coriolis forces.



We compute the desired pose xcmd at each timestep
from the HSMM using (12) and (13) and F cmd using (11).
The stiffness coefficient kc acts as a weight between the
pose term in (14) and the feedforward force term F cmd.
When negligible stiffness is used along a dimension, F cmd
dominates the pose term diag(kc)(xcmd − xmsr). Increasing
kc instead favours the reaching of the commanded pose
xcmd.

We propose a mechanism for selecting, at each timestep
of the reproduction, the stiffness parameter kc based on
the distribution of forces in demonstrations. The mechanism
models the force readings as a mixture of two components:
one component explaining the readings during the free-space
motion phases of the task and another explaining the readings
when there is a contact between the robot arm and the
environment. We model the force readings in not in-contact
(denoted as NC) and the in-contact (denoted as C) phases,
respectively, with a negative exponential distribution and a
Gaussian distribution. Fitness to the collected demonstrations
drives our modeling choice. We use the Gaussian distribution
to be as general as possible since different tasks can have
different force distributions. We model the absolute values
of force readings since stiffness coefficients kc are always
positive regardless of the force sign.

The absolute values of force readings Fj along the Carte-
sian dimension j from the not in-contact phases (NC) of the
task are modeled as

P (Fj |NC) = λFj e
−λFj FH(Fj) = Exp(Fj ;λ

F
j ) , (15)

where H(·) is the Heaviside step function. The absolute force
readings Fj collected during the in-contact phases (C) of the
task are instead modeled as

P (Fj |C) =
1

σFj
√

2π
e

−(Fj−µFj )2

2(σF
j

)2 = N (Fj ;µ
F
j , σ

F
j ) . (16)

Then the mixture of the two distributions in (15) and (16) is

Fj ∼ P (Fj |C)φj+P (Fj |NC)(1−φj), j = 1, . . . , 3 (17)

where Fj is the absolute value of force reading from the set
of demonstrations and φj ≡ P (C) is a prior weighting the
distributions in the mixture. We optimize the priors φj and
the distribution parameters of the mixture with EM algorithm
[19] using data from human demonstrations.

We compute the probability of contact given the absolute
exerted force Fj for each Cartesian direction j using Bayes
rule as

P (C|Fj) =
P (Fj |C)φj

P (Fj |C)φj + P (Fj |NC)(1− φj)
. (18)

Based on this, for each state i = 1, . . . , N of the HSMM
we compute the probability of contact ηi using the absolute
value of the trained mean force µfi

ηi = P (C
∣∣|µfi |) . (19)

During the reproduction of the task, at each timestep t,
we adapt the stiffness parameters kc of (14) according to the

expected stiffness over the state and contact probabilities as

kc(t) =

N∑
i=1

(
hi,t diag(ηi)(kmax − kmin) + kmin

)
, (20)

where diag(ηi) denotes the diagonal matrix with the ele-
ments of ηi on the main diagonal. kmax and kmin define
respectively the maximum and the minimum stiffness al-
lowed for each Cartesian dimension. The choice of kmax is
a tradeoff between the desired compliance of the robot (and
thus the safety of the interaction) and the desired accuracy
of the pose reproduction. If the minimum allowed stiffness
kmin is set to zero, the Cartesian impedance controller can
act as a pure feedforward force controller.

To summarize, at each timestep, we compute the desired
stiffness coefficient using the normalized forward variable ht,
that is, the probability of being in each HSMM state, and the
state’s probability of contact η. The proposed mechanism
is able to smoothly vary the stiffness coefficients along
all Cartesian directions individually. We can, for example,
have the x-axis with stiffness close to kmax (following the
commanded pose xcmd) and the z-axis with stiffness close to
kmin (exerting the commanded force term F cmd), all learned
automatically from human demonstration.

IV. EXPERIMENTS AND RESULTS

The proposed method was evaluated experimentally to
study how the demonstrated tasks are reproduced, by
analysing the pose and the exerted forces. The pulling of
a door handle and the pushing of a button were chosen as
evaluation tasks. In both cases, the robot has to exert force
in order to accomplish the task’s objective while remaining
compliant for safety reasons.

The experiment setup consisted of a 7-DOF KUKA LWR
4+ robotic arm with a six-axis ATI mini 45 F/T sensor rigidly
mounted between the robot flange and tool as shown in
Fig. 2. The selected tools were a BH8-series BarrettHand
in a fixed finger configuration for the handle experiment
(Sect. IV-A) and a pen with a softened tip for the button
experiment (Sect. IV-B). The arm has integrated torque
sensors at each joint that make it capable of programmable
active compliance, torque control and gravity compensation.
The robot was interfaced to an external computer running the
proposed PbD framework through the KUKA Fast Research
Interface protocol at 100 Hz [18].

During the teaching phase, a human instructor grabbed
the flange of the robot and moved the robot in order to
teach the pulling down of the handle (see Fig. 1) and the
pushing of the button. The demonstrations were provided in
gravity compensation mode to ease the demonstrator’s effort
in moving the system. The tool pose was recorded using joint
encoders and contact forces were recorded using the F/T
sensor. Experiments consisted of several reproductions but
no significant variance was observed between the different
trials.



RMSE Position [m] Orientation Force [N]

Handle experiment 0.023 2.874◦ 6.547

TABLE I: RMS error for the handle experiment of the mea-
sured trajectory with respect to the collected demonstrations.

A. Handle pulling experiment

This experiment’s purpose was to evaluate the capability
of the proposed model to execute a complex task involving
changes in the tool’s orientation and a non trivial distribution
of forces in time and space.

1) Setting: For this experiment, a common door handle
mechanism was mounted on a rigid structure, at reachable
distance from the robot arm. A set of D = 10 demonstrations
were collected and used to train the HSMM with N = 15.
During this experiment and the experiment presented in
Sect. IV-B, the number of states N of the HSMM was
manually chosen. Model selection criteria such as Bayesian
Information Criterion (BIC) could be used to find a compro-
mise between accuracy and complexity of the model [20].

During the reproduction, at each timestep t, the com-
manded pose

[
x∗
t
Tq∗t

T
]T

from (12) and (13), and the
feedforward force f∗

t from (11) were sent to the Cartesian
impedance controller (14) at 100 Hz. The damping values
dc were set to 0.7 Ns

m and 0.7 Nms
rad for the linear and the

angular motions respectively. The stiffness range parameters
kmax and kmin were set respectively to 2000 N

m and 0 N
m for

the linear motions and to 200 Nm
rad and 0 Nm

rad for the angular
motions.

2) Results and analysis: Figures 4 and 5 show pose and
force profiles during a typical reproduction. The robot was
able to successfully complete the learned task, reproducing
not only the demonstrated pose but also the recorded force
profiles while retaining a low stiffness interface with the
environment. The combination of HSMM and GMR was
able to extract the relevant features from the provided set of
demonstrations. Although the demonstrations differ slightly
from each other, no alignment of the signals was performed
and readings were affected by noise (especially the force
readings coming from the F/T sensor).

The stiffness selection mechanism was able to model the
two modes (in-contact and not in-contact) from the force
readings and compute the probability of contact P (C|Fj)
for each Cartesian direction. Fig. 3a shows how the force
readings along the x-axis were modeled by two distributions.
The mixture was then used to compute the probability of
contact P (C|Fx) as shown in Fig. 3b.

During the reproduction, the stiffness selection mechanism
adjusted the kc of the Cartesian Impedance controller based
on the state belief hi,t of the HSMM. Fig. 6 shows for the
x-axis how the mechanism correctly recognized the HSMM
states where there was a contact with the handle (states 8 to
11) and consequently adapted the stiffness to values closer to
the selected kmin. While it may first seem counterintuitive to
have a low stiffness during contact phases, the low stiffness
cancels the spring effect of the impedance controller that
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Fx histogram

φxP (Fx|C)
(1-φx)P (Fx|NC)

(a) Distribution of the force measurements Fx collected during
the teaching of the handle experiment. The mixture components
P (Fx|C) and P (Fx|NC) model respectively the in-contact and
the not in-contact force reading along the x-axis.
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Force [N]

1 - P (C|Fx)
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(b) Probability of contact P (C|Fx) given the force measurement
along the x-axis for the handle experiment.

Fig. 3: Computation of the probability of contact P (C|Fx)
by analyzing the recorded force profiles. The axis limit of
the plots are different for a better visualization of P (C|Fx).

opposes the force feedforward. Thus with low stiffness, the
commanded force term F cmd influences the control law more,
resulting in a better reproduction of the force profile. At the
same time, the robot remains safe as the contact forces are
limited to those measured during demonstrations.

The RMS errors shown in Table I confirm the accuracy
of the reproduction. The RMSE values are computed be-
tween the reproduction and the non-aligned demonstrations.
The small delay between the commanded profiles and the
measured profiles shown in Fig. 4 and 5 can be explained
by the spring-damper dynamics of the Cartesian impedance
controller.

B. Button pushing experiment

The purpose of this experiment was to justify the need for
the force to be modeled in the case of in-contact tasks and
compare the accuracy in the force profile reproduction of
the proposed stiffness selection mechanism against constant
stiffness reproduction. To ease the analysis, we chose a
button pushing task where relevant forces are exerted only
in one Cartesian direction. To further test the capabilities of
our model, we explored also the case of small perturbations
in the environment by displacing the button 2 cm lower and
2 cm higher.

1) Setting: Following demonstration of the task and train-
ing of the model, four experimental conditions regarding the
reproduction were compared:
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Fig. 4: Pose of the end-effector during a reproduction of the taught task (handle pulling) compared to the demonstrations
and the commanded trajectory. The commanded trajectory computed with (12) and (13) generalizes over the provided
demonstrations.
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Fig. 5: Force profiles along the Cartesian axes recorded during a reproduction of the taught task (handle pulling) compared to
the demonstrated and commanded profiles. The model is able to generalize over the provided set of demonstrations, despite
the significant noise coming from the F/T sensor.

1) forceless reproduction, without training of the force
profiles and, consequently, no force control (Condition
1);

2) reproduction with constant stiffness kc, with training
and feedforward control of the exerted forces (Condi-
tion 2);

3) reproduction with the stiffness selection mechanism,
with the training and feedforward control of exerted
forces and dynamically set stiffness in the Cartesian
impedance controller (Condition 3);

4) reproduction in case of perturbations in the environ-

ment, same as Condition 3 but the button was placed
2 cm lower or 2 cm higher than in the demonstration
(Conditions 4a and 4b, respectively).

The training set consisted of D = 4 demonstrations, used to
build the HSMM with N = 10 states. The damping values dc
were set to 0.7 Ns

m and 0.7 Nms
rad for the linear and the angular

motions respectively. In Conditions 1 and 2, the stiffness
of the Cartesian impedance controller was set to a constant
safe value of kc = 2000 N

m for the linear components and
to 200 Nm

rad for the angular components. In Condition 1, the
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Fig. 6: Working principle of the stiffness selection mech-
anism. The mechanism defines the probability of contact
along the x-axis ηx for each state of the HSMM. Online,
the stiffness along the x-axis is adjusted based on the state
belief hi,t.

commanded pose
[
x∗
t

q∗t

]
from (12) and (13) was sent to the

Cartesian impedance controller. Additionally, in Conditions
2, 3 and 4, the force feedforward f∗

t from (11) was sent to the
Cartesian impedance controller. The parameters kmax and
kmin of the stiffness selection mechanism for Conditions 3
and 4, have equal values to the handle experiment in Sect. IV-
A.

2) Results and analysis: In Conditions 1, 2 and 3, the
robot was able to follow the learned trajectory with com-
parable accuracy of approximately 0.015 m RMSE over the
end-effector position and lower than 1◦ for the orientation
(see Table II). In contrast, the force reproductions differed
significantly, particularly in tool z direction (direction of the
pushing), as illustrated in Fig. 8.

Fig. 8a shows that in Condition 1, i.e. without the
force feedforward term F cmd, the position feedback of the
impedance controller did not cause sufficient force for the
task to be achieved. In Condition 2, the force reproduction
improved but the force component still had an offset of ap-
proximately 20 N with respect to the demonstrations during
the pushing of the button (4s - 6s) due to the compliance of
the Cartesian impedance controller (see Fig. 8b). As a result,
the pushing of the button failed also in this case.

Fig. 8c shows the force profile achieved using the proposed
stiffness selection mechanism, illustrating good force repro-
duction with respect to the demonstrations. After a transient,
caused by the contact between the button and the tool at t =
4s and the acceleration achieved by the robot arm due to the
feedforward term F cmd, the measured force profile accurately
follows the demonstrations with a RMSE of 4.7 N against
the 8.3 N and the 10.7 N of Condition 2 and 1 respectively.

To evaluate the capability of the model to adapt to minor
changes in the environment, the button was placed 2 cm
higher or 2 cm lower with respect to the demonstration
set (Conditions 4a and 4b). Fig. 7 shows the position and
force profiles along the z-axis in these two Conditions.

RMSE Position [m] Orientation Force [N]

Condition 1 0.015 0.543◦ 10,769
Condition 2 0.015 0.555◦ 8,301
Condition 3 0.015 0.613◦ 4,737

Condition 4a 0.021 0.534◦ 5,316
Condition 4b 0.016 0.547◦ 4,483

TABLE II: RMS error for the button experiment of the mea-
sured trajectory with respect to the collected demonstrations.
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Fig. 7: Experimental conditions 4a (top plots) and 4b (bottom
plots): z coordinate of the end effector and force profile along
the z tool axis.

Despite the fact that displacements were not present in the
training set, the model can cope with them with an acceptable
accuracy (see Table II) thanks to the stiffness selection
mechanism that, lowering the stiffness during the pushing of
the button, allows the reaching of other positions besides the
commanded xcmd. Similar to Condition 3, the force transients
are present in both cases of displacement, with an higher
peak for Condition 4a. The greater contact forces during the
transient in this case are due to the feedforward force term
F cmd acting longer than expected, letting the robot gain more
inertia before contact.

V. CONCLUSION

In this paper, we proposed a programming-by-
demonstration approach for in-contact tasks that uses
a hidden semi-Markov model for encoding the dynamics of
the demonstrated trajectories including the force profiles.
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Fig. 8: Force profiles in the tool z direction. The force profile generated by the proposed stiffness selection mechanism in
sub-figure (c) was closest to the demonstrated force profiles.

We proposed a mechanism for selecting the stiffness
parameters of a Cartesian impedance controller based on
the current belief of the HSMM states and the analysis of
the recorded force profiles. The state representation allows
state-specific control strategies. During the reproduction, the
proposed approach achieved safe and compliant operation
of an impedance controlled robot while retaining force
reproduction capabilities when needed. The approach can
select the maximum allowed stiffness, retaining safety of the
interaction. A F/T sensor was used during the demonstration
to simultaneously teach position and force tasks. The sensor
is however not needed during the reproduction due to the
feedforward nature of the force control.

In the case of tasks with complex force distributions,
the proposed stiffness selection mechanism might fail in
modelling the in-contact and not in-contact components of
the motion. In that case, more complex distribution models
such as mixtures of distributions could be used. However, in
tasks such as kneading a mass of dough, the division between
force and position requirements is not clear. Nevertheless,
the proposed approach of modelling how to combine several
control strategies with mixtures of distributions could be used
as a starting point towards those complex tasks. However,
better understanding of dynamics of such tasks would be
essential for future developments.
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