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Abstract— Teaching motor skills to robots through human
demonstrations, an approach called “imitation learning”, is an
alternative to hand coding each new robot behavior. Imitation
learning is relatively cheap in terms of time and labor and is a
promising route to give robots the necessary functionalities for
a widespread use in households, stores, hospitals, etc. However,
current imitation learning techniques struggle with a number
of challenges that prevent their wide usability. For instance,
robots might not be able to accurately reproduce every human
demonstration and it is not always clear how robots should
generalize a movement to new contexts. This paper addresses
those challenges by presenting a method to incrementally
teach context-dependent motor skills to robots. The human
demonstrates trajectories for different contexts by moving the
links of the robot and partially or fully refines those trajectories
by disturbing the movements of the robot while it executes the
behavior it has learned so far. A joint probability distribution
over trajectories and contexts can then be built based on those
demonstrations and refinements. Given a new context, the robot
computes the most probable trajectory, which can also be
refined by the human. The joint probability distribution is
incrementally updated with the refined trajectories. We have
evaluated our method with experiments in which an elastically
actuated robot arm with four degrees of freedom learns how
to reach a ball at different positions.

I. INTRODUCTION

Since the beginning of the 1980s, a large amount of
research has been done to make robots capable of learning
motor skills by imitating human demonstrations. This strat-
egy, called “imitation learning” [1], might become a viable
route to quickly train general-purpose robots to perform new
tasks on demand in environments such as households, stores,
hospitals, etc.

However, a number of challenges hinder the widespread
application of imitation learning in those environments. For
example, the robot might not be able to accurately reproduce
some of the movements demonstrated by the human and the
robot should be able to generalize the motor skills it has
learned so far to different contexts. In those cases, it may be
helpful to structure the imitation learning as an incremental
process. In this process, the human could incrementally refine
the robot trajectories in order to make it accomplish a certain
task or incrementally correct trajectories inferred by the robot
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(a) Experimental setup (b) Kinesthetic teaching

Fig. 1: Images of an experiment involving the BioRob, a
4 DoFs elastically actuated robot arm. The objective in this
experiment is to teach the robot how to reach a ball at each of
the positions pointed by the arrows. (a) The blue arrow points
to the current position of the ball, while the red arrows point
to other possible ball positions. (b) The human demonstrates
through kinesthetic teaching how to reach the ball at a certain
position.

in the face of new contexts. In this way, the human would
not have to demonstrate a movement all over again when
the robot had made a mistake. Instead, the human could just
give small incremental feedbacks that would be interpreted
by the robot as necessary changes to its movements and to
the relation between movements and contexts.

Following this perspective, the main contribution of this
paper is an algorithm that allows humans to teach robots
context-dependent motor skills through demonstrations in an
incremental manner. Our demonstrations have been obtained
through kinesthetic teaching, i.e. by letting the human grasp
and move the links of the robot. The proposed algorithm
allows the human to incrementally refine the movement of
the robot, a desirable feature if the robot cannot imitate the
original demonstration of the human or if the movement
executed by the robot does not yet solve the task at hand.

In our method, a joint probability distribution over refined
trajectories and context variables is built. Having built this
joint distribution, the robot is able to infer from previous
experiences what movement it should execute to accomplish
a certain task given a new context. The contexts used
in our experiments have been in the form of via points.
More generally, the context could for example be positions,



orientations or other properties of objects in the workspace
of the robot. The human can also incrementally correct the
inferences of the robot by intervening in its movements. Each
new refined trajectory and context is used to update the joint
distribution.

The algorithm proposed in this work is fairly general and
may be applied to teach different motor skills to robots. In
our experiments, this algorithm has been applied in a 2D
problem to make a particle pass through certain via points,
with the BioRob [2], an elastically actuated robot arm with
four degrees of freedom (DoFs), to make it reach a ball at
different positions and in a minigolf-like task involving the
same robot.

The remainder of this paper is organized as follows:
Section II presents related work. Section III introduces
the proposed method for incremental imitation learning of
context-dependent motor skills. Our method is explained
starting with a procedure to learn trajectories for a single
context. After that, the necessary extensions to deal with
context-dependent motor skills are described. Section IV
presents our experiments. Finally, Section V summarizes the
paper and discusses ideas for future work.

II. RELATED WORK

While in this work we have been specifically dealing with
demonstrations through kinesthetic teaching, another form
of imitation learning involves observation. In this case, the
movements of a human are recorded by a camera or by a
motion capture system. Those movements are mapped to the
kinematics of the robot, which reproduces the demonstration
or learns motion primitives from multiple demonstrations
as in [3]. Usually, though, this mapping does not always
produce the most preferable motions. For this reason, re-
searchers have been investigating the idea of incremental
imitation learning through kinesthetic teaching to refine the
movements initially learned by the robot through observa-
tion.

Calinon and Billard [4] presented an approach based on
Principal Component Analysis (PCA) and Gaussian Mixture
Models (GMMs) to teach gestures to a humanoid robot. The
gestures are demonstrated by a human in two ways: the
human moves while sensors attached to his/her body record
his/her movements or the human performs kinesthetic teach-
ing by grasping and moving the arms of the robot. The robot
learns new gestures from multiple human demonstrations and
its movements can be incrementally refined by the human.
When performing kinesthetic teaching, the human can decide
which DoFs he/she wants to drive and which DoFs should be
autonomously driven by the robot. The DoFs driven by the
human are set in passive mode. In contrast, in our method, the
human disturbs the movements of the robot without setting
any DoFs in passive mode. In our work, the disturbances
introduced by the human lead to changes in the behavior of
the robot. The human does not need to demonstrate the whole
movement of a DoF again in case it is not moving correctly
yet. He/she just needs to apply incremental changes to this
movement.

Lee and Ott [5] also presented a method to teach motor
skills to a humanoid robot. In their method, first the robot
observes the movements of a human. Subsequently, a hu-
man may incrementally refine the movement of the robot
through kinesthetic teaching. Their work uses the concept
of a “motion refinement tube”, which is a region around
the nominal trajectory followed by the robot where the
controller has low stiffness, allowing the human to refine
the trajectory. Movements are represented in their method
by Hidden Markov Models (HMMs). Changes introduced
in a trajectory by the human translate into changes in the
parameters of the HMM representing that trajectory. The
updated HMM generates an updated trajectory, accounting
for the refinements introduced by the human. Their approach
offers desirable properties, such as the possibility of defining
the “refinement tube” in such a way that changes in the
trajectory of one joint do not result in accidental disturbances
in the trajectories of other joints. In contrast to our work, their
approach requires an accurate model of the robot dynamics
in order to identify human intervention. Our approach allows
robots to learn context-dependent motor skills in the absence
of an accurate model of the robot dynamics at the expense
of having the robot execute a movement with and without
human intervention at each iteration of the algorithm.

Another approach to incremental imitation learning aims at
eliciting human preferences from the feedbacks he/she gives
to the robot. Jain et al. [6] have developed a framework
that enables robots to learn grocery checkout tasks with
the help of human feedback. In their work, it is assumed
that the user has an unknown score function quantifying
the quality of trajectories in different contexts. This score
function is a weighted sum of predefined features describing:
1) interactions between objects, 2) robot arm configurations,
3) orientation and temporal behavior of the object being
manipulated, 4) interactions between the object being ma-
nipulated and the environment. The robot learns the weights
for each of those features from human feedback. The user
gives feedback by re-ranking a set of trajectories proposed
by the robot or by changing waypoints of trajectories, setting
the robot in zero-force gravity-compensation mode. In our
method, when giving physical feedback to the robot, the user
does not change specific waypoints. Instead, the user disturbs
the movement of the robot while it is moving. By doing so,
the user can directly interfere in the speed profile of the
trajectory of the robot, teaching it for example to hit a golf
ball faster or slower. Our work also differs from the cited one
by computing a probability distribution between trajectories
and contexts. While computation of the distribution requires
modeling assumptions (Gaussians, GMMs, etc.), it does not
require the design of a score function.

Akgun et al. [7] conducted a study evaluating kinesthetic
teaching by demonstrating trajectories as well as kinesthetic
teaching by demonstrating keyframes. They concluded that
both trajectory and keyframes demonstration are viable meth-
ods to teach motor skills to humanoid robots and have their
specific advantages. When keyframes were demonstrated,
the trajectories were generated by splines connecting the



keyframes. They presented a way to demonstrate keyframes
iteratively to the robot, but did not present a way to demon-
strate trajectories iteratively. In this paper, we present a
method for demonstrating trajectories iteratively. The method
presented here might be of interest to future usability studies
such as the one presented in [7].

The idea of incremental imitation learning has also been
used in conjunction with tactile feedback to allow humans
to teach grasp positioning and adaptation to robots [8], [9].

As explained in Section III-B, we have been using as
part of our algorithm the framework of Probabilistic Move-
ment Primitives (ProMPs) [10] for achieving generalization.
This framework offers a straightforward way of inferring
trajectories given contexts. Other methods such as task
parameterized models discussed in [11] and [12] have very
good generalization properties as well. In task parameterized
models, demonstrations are observed from different frames.
Different contexts are then represented by different positions
and orientations of these frames. For example, by changing
the position and orientation of an object of interest in the
workspace of the robot, the position and orientation of the
frame associated to this object also changes. The product of
distributions over trajectories observed from different frames
determines the trajectories that should be executed in a
new context. The novelty of our work resides not in the
generalization to different contexts in itself but in offering
the human an intuitive way to teach trajectories to a robot
in an incremental manner. The human feedback also changes
how the robot responds to different contexts. The incremental
learning aspect of this work could be combined with task
parameterized models as well.

Reinforcement Learning methods, as in [13], have been
used to make robots find successful movements for solving
a given task and to generalize those movements to new
situations. However, in the absence of a good model of
the robot and of its environment, which would allow for
optimization in simulation, it might take too long to find a
successful policy with the real robot. In this case, our method
may be helpful by allowing the human to influence the search
for good policies.

III. INCREMENTAL IMITATION LEARNING

In this section, our method for incremental imitation learn-
ing of context-dependent motor skills is explained. First, in
Section III-A, a procedure is explained that allows a human
to teach a trajectory to a robot through kinesthetic teaching
and to incrementally introduce adjustments to the trajectory.
Afterwards, Section III-B explains how this procedure can be
combined with a probabilistic framework to provide the robot
with the capability of learning context-dependent motor skills
from human demonstrations and incremental refinements.

A. Incremental Imitation Learning of a Trajectory for a
Single Context

The workflow depicted in Fig. 2 describes our procedure
to incrementally teach a trajectory to the robot for a single
context. First, an initial desired trajectory τD is defined.

τD
new = τD

old + α(τHR-τR)

robot alone (feedback 
tracking)

τDuR

τHR

τR

robot in 
open-loop

τR*

human
intervention

τH*

Fig. 2: Workflow of procedure to incrementally teach a
trajectory to a robot for a single context.

This initial desired trajectory could have been defined by
a vector of Cartesian or joint positions entered by the user
or by kinesthetic teaching. We assume the existence of
a feedback controller with potentially imperfect dynamics
compensation. The robot tries to track τD, but executes in
general a different trajectory τR. The sequence of forces or
torques uR generated by the controller at each time step is
recorded. The robot returns then to its initial position and uR

is executed. While the robot executes uR, the human can
disturb the trajectory of the robot. The resulting trajectory
τHR is recorded. We propose an update of the form

τnew
D = τ old

D + α (τHR − τR) , (1)

where α ∈ [0, 1] is a scalar that defines how much the
difference between the trajectories τHR and τR should
change the desired trajectory τD. In our experiments, the
term α has been set equal to 1. Smaller values of α decrease
the update step, what might be useful to adjust for cases in
which the human tends to exaggerate his feedback.

The update (1) resembles the format of iterative learning
control (ILC) [14], [15]. Fundamentally, ILC learns tracking
commands with respect to a given trajectory that the robot
should execute. The challenge addressed by our method
relates to the acquisition of the desired trajectory updates,
which are assumed to be implicitly provided by human
interventions. As in ILC, the control signal, in this case the
desired trajectory τD for the feedback controller, is updated
according to an error, in our case (τHR − τR). In other
words, the difference between the trajectory that the robot
executes without disturbance τR and the trajectory that the
robot executes with human disturbance τHR indicates how
the control signal τD should be changed in order to perform
the movement that the human wishes. While in ILC the
reference trajectory used in the computation of the tracking
error is predefined, in update (1) the reference trajectory
τHR changes at each iteration when the human is allowed to
disturb the trajectory of the robot. The human decides when
to stop disturbing the trajectory of the robot, in which case
τHR = τR and τnew

D = τ old
D , which means that the desired

trajectory does not change anymore.



B. Learning Context-Dependent Motor Skills from
Incremental User Feedback

This section presents our method for incremental imitation
learning of context-dependent motor skills. This method is
based on the procedure explained in the previous section and
uses Probabilistic Movement Primitives (ProMPs) [10].

1) Probabilistic Movement Primitives: A ProMP is a
probability distribution over trajectories. This probability
distribution can be built from multiple demonstrated trajecto-
ries. In the ProMP framework, each demonstrated trajectory,
which has a duration of T time steps, is approximated by
a weighted sum of N normalized Gaussian basis functions.
This approximation can be represented by the equation

τ = Ψw + ε, (2)

where ε is a zero-mean i.i.d. Gaussian noise, i.e. ε ∼
N
(
0, σ2ITxT

)
, and

Ψ =


ψ1 (1) ψ2 (1) · · · ψN (1)
ψ1 (2) ψ2 (2) · · · ψN (2)

...
...

. . .
...

ψ1 (T ) ψ2 (T ) · · · ψN (T )

 . (3)

The terms ψn (t) correspond to basis functions indexed by n
and evaluated at time t. The centers of those basis functions
are positioned at regular intervals along the time axis. The
vector of weights w = [w1, w2, · · · , wN ]

T , containing the
weight wn for each basis function ψn, can be computed
through linear least squares, according to

w =
(
ΨTΨ

)−1
ΨT τ . (4)

Once the weight vector w for each demonstrated trajectory
τ has been computed, a probability distribution p (w) over
weight vectors can be defined. In this work, p (w) is assumed
to be a Gaussian with mean µw and covariance Σw, i.e.

p (w) = N (µw,Σw) . (5)

With this assumption, it is possible to compute in closed
form the probability distribution p (τ ) over trajectories by
integrating out the weight vectors w as in the equation

p (τ ) =

∫
p (τ |w) p (w) dw, (6)

which results in

p (τ ) = N (µτ ,Στ ) , (7)

where

µτ = Ψµw, (8)

Στ = σ2ITxT + ΨΣwΨT . (9)

2) Modeling Context-Dependent Motor Skills: In this
work, ProMPs are used to infer the most probable trajectory
for a given context. In order to achieve this, a normal
joint probability distribution over weight vectors w and the
corresponding contexts, here represented by the vectors c, is
created,

p (w, c) = N (µjoint,Σjoint) , (10)

where

µjoint =

[
µw
µc

]
, Σjoint =

[
Σww Σwc
Σcw Σcc

]
.

Given a specific context c, it is then possible to compute the
conditional probability distribution

p (w|c) = N
(
µw|c,Σw|c

)
, (11)

where

µw|c = µw + ΣwcΣ
−1
cc (c− µc) , (12)

Σw|c = Σww −ΣwcΣ
−1
cc Σcw. (13)

Next, the conditional probability distribution p (τ |c) can
be computed by solving the equation

p (τ |c) =
∫
p (τ |w) p (w|c) dw, (14)

which results in

p (τ |c) = N
(
µτ |c,Στ |c

)
, (15)

with

µτ |c = Ψµw|c, (16)

Στ |c = σ2ITxT + ΨΣw|cΨ
T . (17)

3) Online Learning with Human Feedback: This section
explains the proposed algorithm, which allows robots to learn
in an online fashion context-dependent motor skills from
human demonstrations and refinement. This algorithm uses
the refinement procedure illustrated as a workflow in Fig. 2
in conjunction with the probabilistic modeling of context-
dependent motor skills previously explained in Section III-
B.2.

The robot starts with an initial joint probability distribution
p (w, c) over weights w and contexts c. Given this prior
and a certain context c, the robot computes p (τ |c) =
N
(
µτ |c,Στ |c

)
, as in Section III-B.2. The robot’s desired

trajectory τD is set equal to the mean µτ |c. The algorithm
iterates over the refinement loop depicted in Fig. 2 as many
times as the human wants. By the end of this iteration, the
weights w of the new desired trajectory τD are computed,
using (4). This new weight vector wM and the given con-
text vector cM are concatenated to form the vector x =[
wT

M , c
T
M

]
, where M is the number of situations experienced

so far. The joint distribution p (w, c) = N (µjoint,Σjoint) is
then updated according to Welford’s method for computing
mean and covariance online [16]. According to this method,
the mean µjoint is updated with

µnew
joint = µ

old
joint +

(
xT − µold

joint

)
M

(18)



and the covariance matrix Σjoint with

Snew (i, j) = Sold (i, j)+(
M − 1

M

)(
x (i)− µold

joint (i)
) (
x (j)− µold

joint (j)
)
, (19)

Σnew
joint (i, j) =

Snew (i, j)

M − 1
, (20)

where S = (M − 1)Σ is an auxiliary matrix.
Afterwards, the whole procedure is repeated for a new

context. Algorithm 1 summarizes the proposed method.

Algorithm 1 Incremental Imitation Learning of Context-
Dependent Motor Skills
1: Initialize µjoint and Σjoint with a few demonstrations

or with predefined values
2: for each new c
3: compute µw|c and Σw|c (Eqs. 12 and 13)
4: compute µτ |c and Στ |c (Eqs. 16 and 17)
5: τD = µτ |c
6: refinement loop (until human decides to stop)
7: robot tracks τD with feedback controller

(τR and uR are recorded)
8: robot executes uR in feedforward and human

is allowed to disturb the trajectory
(τHR is recorded)

9: τnew
D = τ old

D + α (τHR − τR)
10: end
11: wM =

(
ΨTΨ

)−1
ΨT τD

12: update µjoint and Σjoint (Eqs. 18, 19 and 20)
13: end

IV. EXPERIMENTS

This section presents two experimental evaluations of the
proposed algorithm. First, a simple 2D problem is presented.
In this problem, the human can incrementally teach trajecto-
ries to the learning system, which can infer what to do in the
face of new contexts. Afterwards, experiments are described
that show the applicability of our method for teaching motor
skills to a real robot.

In all the experiments described in this paper, the number
N of Gaussian basis functions, introduced in Section III-
B.1, was 20. This value was determined empirically by
increasing the number of basis until the trajectories could
be approximated to a desired level of detail.

A. 2D Problem

We designed a simple 2D problem in order to facilitate
the understanding of the algorithm and the visualization
of results. In this problem, a particle moves with constant
velocity in the x-direction. Initially, its velocity in the y-
direction is zero. The user can introduce an acceleration in
the y-direction by pressing the keys “up” or “down” on the
keyboard. The objective is to teach the system a trajectory
that passes through two via points. The y-coordinates of
each via point constitute in this case the context, which

is represented by the vector [y1, y2]
T , where y1 is the y-

coordinate of the via point located at x = 2 and y2 is the
y-coordinate of the via point located at x = 3.6.

After being trained for a number of different configura-
tions of the via points, the system should be able to infer
the right trajectory to pass through the via points both in the
configurations that it has already experienced as well as in a
previously unseen configuration. The human can iteratively
apply disturbances to the trajectory of the particle. This way,
the human can correct the trajectory initially inferred by the
system for a given context. See Fig. 3 for an illustration of
this 2D problem.

In this problem, uR is a time-indexed sequence of forces
in y direction, while the trajectories τR, τHR and τD are
time-indexed sequences of (x, y) positions.

Fig. 4 shows the prior and the posterior probability
distributions over trajectories after the human had trained
the system for two contexts. In this simple problem, after
experiencing only two examples, the system could already
infer trajectories that passed close to the via points. The
progress in the generalization ability of the system is depicted
in Figs. 5 and 6. Fig. 5 shows the prior and the posterior over
trajectories without any training, after the human had trained
the system for one context and so on until the system had
previously observed eight different contexts. Fig. 6 shows
the mean squared error

MSE =
1

2

(
(y (2)− y1)2 + (y (3.6)− y2)2

)
(21)

of the trajectories executed by the particle when observing
each context for the first time. Here y (2) and y (3.6) are
the y-coordinates of the particle when x = 2 and x = 3.6
respectively.

The MSE for the first context is 100, because the trajectory
is 10 units apart from each via point. After the human has
taught the trajectory for two different contexts through the
refinement loop, the MSE of the trajectories executed by
the particle for previously unseen contexts already drops to
almost zero.

B. Real Robot Experiments

We tested our algorithm in experiments with the
BioRob [2], a 4-DoF elastically actuated robot arm. It is a
biologically inspired robot whose cables and springs roughly
mimic the functionality of antagonistic pairs of muscles. The
BioRob is light and compliant, nevertheless challenging to
model and control1.

In these experiments, the objective of the human was to
teach the robot how to reach a ball positioned on steps of a
ladder as shown in Fig. 1. We defined six different positions
for the ball (see Fig. 7). We chose to represent each position
by two values, expressing the two different heights with
respect to the ground and the three different left-to-right
positions. This choice was motivated by the fact that the

1The robot is controlled by a proportional-derivative (PD) controller with
feedforward terms to compensate for gravity and friction/stiction. In these
experiments, only three DoFs are actually being used.
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Fig. 3: 2D problem. Left plot: the red circles represent two
via points through which the trajectory should pass; the black
line represents the trajectory being currently tracked by the
particle; the blue line represents the trajectory executed by
the particle until the current instant. Right plot: the red
circles represent the same two desired via points; the red
line represents the trajectory that the particle would execute
without any human interference; the blue curve represents the
trajectory executed by the particle with human interference.

relations between the values assumed by the context variables
are important, not their absolute values. In this setup, there
was no camera detecting the ball. The values representing
the different contexts were manually provided to the robot.

In our experiments with the BioRob, uR is a time-indexed
sequence of torques, while the trajectories τR, τHR and τD
are time-indexed sequences of joint angles. By working with
trajectories in joint space, we avoid any possible problems
related to kinematic redundancy that would need to be
addressed if our trajectories were sequences of Cartesian end
effector positions.

In order to initialize the prior probability distribution
p (w, c) over weight vectors and contexts, the refinement
loop depicted in Fig. 2 was executed for four different posi-
tions of the ball: “top left” represented by the vector [1, 1]T ,
“top right” represented by [1, 3]

T , “down left” represented
by [2, 1]

T and “down right” represented by [2, 3]
T .

After building the prior, the for loop described in Algo-
rithm 1 was executed. The robot computed the most probable
trajectory τ for the context “top middle” represented by
[1, 2]

T . The human improved the trajectory of the robot
through the refinement loop until the robot could successfully
reach the ball at the “top middle” position. After the human
decided to quit the refinement loop, the joint probability
distribution p (w, c) over weights and contexts was updated
according to (18), (19) and (20). Then the robot used its
updated prior to compute a trajectory for the context “down
middle” represented by [2, 2]

T .
Having built the prior based on trajectories that reach the

ball at each of the four corner positions, the robot was able
to compute trajectories to reach or pass close to the ball
at the two previously untrained middle positions. Using our
refinement loop, the human could correct the trajectories
inferred by the robot. In a second pass of the algorithm over
all the six positions, the robot was able to reach the ball every
time without needing any further refinement from the human.
Please refer to our accompanying video for a recording of
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Fig. 4: Prior and posterior over trajectories for the 2D
problem after the human had trained the system for two
contexts. Left plot: the light gray curves represent the
trajectories executed by the particle after refinement provided
by the human for two different configurations of the via
points, represented by the light gray circles; the blue curve
represents the prior mean and the blue shade represents two
standard deviations of the prior. Right plot: the configuration
of the via points represented by the red circles is different
from the configurations that have been observed so far by the
system, which are represented by the light gray circles; the
black curve represents the prior mean and the gray shade
represents two standard deviations of the prior (the prior
in this plot is the same as in the left plot); the blue curve
represents the posterior mean and the blue shade represents
two standard deviations of the posterior.
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Fig. 8: Three iterations of the refinement loop. Upper row: Trajectories in joint space of the 1st DoF of the BioRob. Lower
row: The correspondent end effector trajectories in Cartesian space.
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Fig. 6: Mean squared error (MSE) of trajectory executed by
the particle when the system is observing each context for
the first time.

the full experiment.
Fig. 8 shows three iterations of the refinement loop to

teach the robot how to reach the ball at the position “top left”
when the robot had no previous experience. The figure shows
the trajectories in joint space of the 1st DoF of the BioRob
and the corresponding end effector trajectories in Cartesian
space. In the first iteration, the robot arm simply hung
down. Then, the human demonstrated through kinesthetic
teaching how to reach the ball. In the second iteration, the
robot tried to track the new desired trajectory. Since the
controller of the robot is not able to track a desired trajectory
accurately, the robot only passed close to the ball, but still

[1,1]T [1,2]T [1,3]T

[2,3]T[2,2]T[2,1]T

Fig. 7: Ball positions in an experiment involving the real
robot. The positions represented by the vectors written in
blue are the contexts that were used to initialize the prior
probability distribution p (w, c) over weight vectors and
contexts. Having built this prior, the robot infers trajectories
to reach the ball at the positions represented by the vectors
written in red.



did not reach it (see the middle plot in the lower row). The
human refined this trajectory further by interfering in the
movement of the robot. In the third iteration, the robot was
able to reach the ball alone and the human did not give
any further feedback. The small differences between the red
curve (trajectory generated by feedback tracking) and the
blue curve (trajectory generated by reproducing the sequence
of torques generated by the feedback tracking controller) are,
in the third iteration, due to small errors in the repeatability
of the robot.

We also performed experiments in which the human taught
a robot how to putt in a minigolf-like task. In this case,
there was only one context. In the phases in which the
human was allowed to disturb the trajectory, the human kept
his hands close to the robot and applied forces to its end
effector when he judged necessary. After a few iterations,
the desired trajectory τD tracked by the feedback controller
was such that it led to the robot being able to sink the ball.
This experiment was recorded and is also included in the
accompanying video.

V. CONCLUSION AND FUTURE WORK

This paper presented an algorithm to allow humans to
incrementally teach robots context-dependent motor skills.
This algorithm is particularly relevant when the robot cannot
track desired trajectories accurately or when trajectories
initially computed by the robot given a new context do not
solve the task at hand. In those cases, our algorithm offers
the human an intuitive way of refining the trajectories of the
robot. Moreover the refined trajectories and the new contexts
are used to update the probability distribution used by the
robot to compute trajectories given contexts. A 2D problem
and experiments involving a 4-DoF elastically actuated robot
arm demonstrate the effectiveness of the proposed algorithm.

As it is, the presented method for the human to teach
the robot is not suitable when the robot moves very fast,
is too heavy or manipulates a dangerous object. For those
cases, an alternative way for the human to introduce changes
in the trajectory of the robot would be necessary. Instead
of physically interacting with the robot while it moves, the
human could for instance use a graphical interface to change
the trajectory or use teleoperation.

In this work, we modeled the joint probability distribution
p (w, c) over weights and context variables as a single
Gaussian. This model entails that w and c are linearly
correlated, which is a reasonable assumption for the simple
tasks we have dealt with so far. On the other hand, in a task
such as playing table tennis, in which the robot would have
to execute forehand and backhand strokes, this assumption
would probably not hold. In order to deal with those cases, an
alternative would be to model p (w, c) as a Gaussian Mixture
Model.

The contexts addressed so far in our work have been only
in the form of via points. Other possible contexts could be
the weight or the size of objects manipulated by the robot,
goal position of an object thrown by the robot, positions
and orientations of objects in the workspace, etc. For the

simple contexts evaluated so far, the human could teach the
robot in a few iterations how to solve the task at hand and
the generalization capabilities of the algorithm also helped
reducing the amount of human intervention needed. Further
evaluations shall be made in order to determine if the human
can successfully teach skills with other types of context as
well.
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