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Abstract— The task of physically assisting humans requires
from robots the ability to adapt in many different ways: to
changes in space of the human movement, to changes in the
speed of the human, to changes in the environment, etc. This
paper presents recent research on teaching robots how to
interact with humans and to adapt to different circumstances.
The approach presented here is based on Imitation Learning
and Probabilistic Movement Representations. In particular, this
paper explains the concept of a Mixture of Interaction Primitives
to learn interactions from multiple unlabeled demonstrations
and to deal with nonlinear correlations between the interacting
partners. Furthermore, a method to compute reactions to
human movements executed at different speeds is presented. A
number of experiments with a lightweight robotic arm illustrate
applications of the presented methods.

I. INTRODUCTION

Assistive robots can be of great benefit to society, helping
to increase the quality of life of people with disabilities and
reducing workers’ physical strain in the industry, for exam-
ple. However, humans may need assistance in a practically
unlimited number of scenarios. Therefore, preprogramming
a robot with a fixed set of rules to deal with every possibility
is very hard, if not impossible.

On the other hand, humans can usually adapt much better
to new situations than robots can. Therefore, a promising
idea is to provide robots with algorithms that allow them
to learn from human demonstrations how to behave in new
scenarios. Based on this idea, the concept of Interaction
Primitive (IP) has been proposed to program a robot for
physical collaboration and assistive tasks [1], [2]. IPs are
movement primitives that capture the correlation between the
movements of two agents—usually a human and a robot.
Then, by observing one of the agents, say the human, it
is possible to infer the controls for the robot such that
collaboration can be achieved.

A main limitation of IPs is the assumption that the
movements of the human and the movements of the robot
assistant are linearly correlated. This assumption is reflected
in the underlying Gaussian distribution that is used to model
the demonstrations. This assumption does not hold for tasks
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Fig. 1. Box assembly task consisting of three interaction patterns, where
each can be represented as an Interaction Primitive. In this work, we want to
learn multiple interaction patterns from an unlabeled data set of interaction
trajectories. Blue lines: plate handover. Black lines: holding tool. Red lines:
screw handover.

consisting of several interaction patterns, such as the box
assembly task illustrated in Fig. 1. Besides, even within a
single interaction pattern, the correlation between the two
agents may be nonlinear, for example, if the movements of
the human are measured in the Cartesian space, while the
movements of the robot are measured in joint space. In this
case, the correlation between the interacting agents can be
only locally treated as linear.

Manually labeling each subtask (e.g. “plate handover",
“screw handover", “holding screw driver") is a way to model
interactions with multiple subtasks and alleviate the nonlin-
earity of the training data. Ideally, however, robots should be
able to identify different subtasks by themselves. Moreover,
it may not be clear to a human how to separate a number
of demonstrated interactions in different, linearly correlated
groups. Thus, a method to learn multiple interaction patterns
from unlabeled demonstrations is necessary.

This paper briefly presents the method originally proposed
in [3], which uses Gaussian Mixture Models (GMMs) to
create a Mixture of Interaction Probabilistic Movement Prim-
itives.

The methods proposed in [1], [2] and [3] rely on time-
alignment techniques to learn interaction models and to



compute reactions to human movements. Those techniques,
however, do not allow for online conditioning on human
movements executed at different speeds, because full tra-
jectories are needed to perform the time-alignment. For this
reason, in the cited works, the conditioning was usually done
in the end of the human movement. In this paper, a method is
presented that allows for online conditioning on the human
movements, for example on the beginning of movements,
allowing for responsive robot reactions according to different
human speeds.

The remainder of this paper is organized as follows:
Section II presents related work. In Section III, Probabilis-
tic Movement Primitives (ProMPs) and Interaction ProMPs
are briefly introduced, followed by the Mixture of Interac-
tion ProMPs technique based on Gaussian Mixture Models
(GMMs). Section IV presents a method to compute online
the reaction of the robot to human movements executed
at different speeds. Section V evaluates the Mixture of
Interaction ProMPs technique first on a toy problem that is
useful to clarify the characteristics of the method and then on
a practical application of a collaborative toolbox assembly.
Then, an experiment is described, in which the robot receives
a cup from a human who hands it over at different speeds.
Section VI presents conclusions and ideas for future work.

II. RELATED WORK

Physical human-robot interaction poses the problem of
both action recognition and movement control. Interaction
dynamics need to be specified in a way that allows for robust
reproduction of the collaborative task under different external
disturbances, and a common approach is based on direct
force sensing or force emulation [4], [5], [6].

Our method does not use nor emulate force signals, but
instead learns the correlation between the trajectories of
two agents. Correlating trajectories not only simplifies the
problem in terms of hardware and planning/control but also
allows us to correlate multi-agent movements that do not
generate force during the interaction, for example, the simple
gesture of asking and receiving an object.

Graphical models have also been used to describe interac-
tion dynamics. In the computer vision community, HMMs
have been widely adopted to model interaction dynamics
from input video streams [7], [8]. As a result, graphical
models have also gained considerable attention in the field
of human-robot interaction [9], [10], [11], [12], [13].

While very successful for classifying actions, graphical
models, however, may not be the best option when it comes
to generating motions. In [14], for example, the use of a
HMM with discrete states, although very successful in action
classification, introduces artifacts into the motion generation
part that hinders motion generalization. Therefore, a clear
problem in physical human-robot interaction is that while
graphical models may be suitable in the action recognition
domain, motion generation at the continuous level must also
be taken into account. Llorens et al. [15] present a hybrid
design for a robot to be used on the shoulder. In their work,
Petri Nets accounts for discrete control transitions while, at

the motion level, Partial Least Squares Regression has been
used to find the best action of the robot at future time steps.

Perhaps the principal distinction of our method is the use
of Interaction Primitives (IPs), introduced in [1], initially
based on Dynamical Movement Primitives [16] and later ex-
tended to Probabilistic Movement Primitives [17] with action
recognition in [2]. As shown in [2], Interaction Primitives can
be used to not only recognize the action of an agent, but also
to coordinate the actions of a collaborator at the movement
level; thus overcoming in a single framework both layers of
discrete action recognition and continuous movement con-
trol. Differently from [2], where different interaction patterns
must be hand-labeled, [3] proposes the unsupervised learning
of a Mixture of Interaction Primitives. This paper presents a
slightly shortened explanation of the method proposed in [3]
and, in addition, a method to compute online the reaction of
the robot to human movements executed at different speeds.

III. MIXTURE OF INTERACTION PRIMITIVES

In this section, we will briefly discuss the Interaction
Primitive framework based on Probabilistic Movement Prim-
itives [2], [17]. Then we will present the concept of a Mix-
ture of Interaction Primitives, which is based on Gaussian
Mixture Models.

A. Probabilistic Movement Primitives

A Probabilistic Movement Primitive (ProMP) [17] is a
movement representation based on a distribution over trajec-
tories. The probabilistic formulation of a movement primitive
allows operations from probability theory to seamlessly
combine primitives, specify via points, and correlate joints
via conditioning. Given a number of demonstrations, ProMPs
are designed to capture the variance of the positions q and
velocities q̇ as well as the covariance between different joints.

For simplicity, let us first consider only the positions q
for one degree of freedom (DOF). The position qt at time
step t can be approximated by a linear combination of basis
functions,

qt = ψ
T
t w + ε, (1)

where ε is Gaussian noise. The vector ψt contains the N
basis functions ψi, i ∈ {1, 2, 3, ..., N}, evaluated at time
step t, where we will use standard normalized Gaussian basis
functions. The number N of basis functions is defined by the
user. In our experiments involving the box assembly task, for
example, 30 basis functions were enough to achieve good
approximations of the demonstrated trajectories.

The weight vector w is a compact representation of a
trajectory. Having recorded a number of trajectories of q, we
can infer a probability distribution over the weights w. In the
original ProMP formulation [17], p(w) is a single Gaussian
distribution. While a single w represents a single trajectory
q1:T , we can obtain a distribution p(q1:T ) over trajectories
by integrating w out,

p(q1:T ) =

∫
p(q1:T |w)p(w)dw, (2)



where T represents here the number of time steps of each
trajectory after time-alignment.

If p(w) is a Gaussian, p(q1:T ) is also Gaussian. The distri-
bution p(q1:T ) is called a Probabilistic Movement Primitive
(ProMP).

B. Interaction ProMP

An Interaction ProMP builds upon the ProMP formula-
tion, with the fundamental difference that we will use a
distribution over the trajectories of all agents involved in
the interaction. Hence, q is multidimensional and contains
the positions in joint angles or Cartesian coordinates of all
agents. In this paper, we are interested in the interaction
between two agents, here defined as the observed agent
(human) and the controlled agent (robot). Thus, the vector q
is now given as q = [(qo)T , (qc)T ]T , where (·)o and (·)c
refer to the observed and controlled agent, respectively.

Let us suppose we have observed a sequence of positions
qot at m specific time steps t, m ≤ T . We will denote this
sequence by D. Given those observations, we want to infer
the most likely remaining trajectory of both the human and
the robot.

Defining w̄ = [wT
o , w

T
c ]
T as an augmented vector that

contains the weights of the human and of the robot for one
demonstration, the conditional probability over trajectories
q1:T given the observations D of the human can be computed
by using

p(q1:T |D) =

∫
p(q1:T |w̄)p(w̄|D)dw̄, (3)

which can be solved in closed form, assuming p(w̄) is a
Gaussian.

C. Mixture of Interaction ProMPs

The goal of the Mixture of Interaction ProMPs method is
to learn several interaction patterns given the weight vectors
that parameterize our unlabeled training trajectories. For this
purpose, we learn a GMM in the weight space, using the
Expectation-Maximization algorithm (EM) [18].

Assume a training set with n vectors w̄ represent-
ing the concatenated vectors of human-robot weights as
defined in section III-B. In order to implement EM
for a GMM with a number K of Gaussian mix-
ture components, we need to implement the Expecta-
tion step and the Maximization step and iterate over
those steps until convergence of the probability distribution
over the weights, p(w̄;α1:K ,µ1:K ,Σ1:K), where α1:K =
{α1, α2, · · · , αK}, µ1:K = {µ1,µ2, · · · ,µK} and Σ1:K =
{Σ1,Σ2, · · · ,ΣK}. Here, αk = p(k), µk and Σk are the
prior probability, the mean and the covariance matrix of
mixture component k, respectively. We initialize the param-
eters α1:K , µ1:K and Σ1:K using k-means clustering before
starting the Expectation-Maximization loop. The number K
of Gaussian mixture components is found by leave-one-out
cross-validation.

The mixture model can be formalized as

p(w̄) =

K∑
k=1

p(k)p(w̄|k) =
K∑
k=1

αkN (w̄;µk,Σk). (4)

Expectation step: Compute the responsibilities rik, where
rik is the probability of cluster k given weight vector w̄i,

rik = p(k|w̄i) =
N (w̄i;µk,Σk)αk∑K
l=1 αlN (w̄i;µl,Σl)

. (5)

Maximization step: Update the parameters αk, µk and
Σk of each cluster k, using

nk =

n∑
i=1

rik, αk =
nk
n
, (6)

µk =

∑n
i=1 rikw̄i
nk

, (7)

Σk =
1

nk

(
n∑
i=1

rik(w̄i − µk)(w̄i − µk)T
)
. (8)

Finally, we want to use our model to infer the trajectories
of the controlled agent given observations from the observed
agents. We need to find the posterior probability distribution
over trajectories q1:T given the observations D, as in Section
III-B.

In order to compute this posterior using our GMM prior,
first we find the most probable cluster k∗ given the obser-
vation D, using the Bayes’ theorem. The posterior over the
clusters k given the observation D is given by

p(k|D) ∝ p(D|k)p(k), (9)

where
p(D|k) =

∫
p(D|w̄)p(w̄|k)dw̄

and
p(w̄|k) = N (w̄;µk,Σk).

Thus the most probable cluster k∗ given the observation
D is

k∗ = argmax
k

p(k|D). (10)

The output of the proposed algorithm is

p (q1:T |D) =

∫
p (q1:T |w̄) p (w̄|k∗, D) dw̄, (11)

i.e. the posterior probability distribution over trajectories
q1:T , conditioning cluster k∗ to the observation D.

IV. REACTING TO MOVEMENTS AT DIFFERENT SPEEDS

Each trajectory can be associated with a phase function
z(t) = αt, which assumes values between 0 and Z, where
Z is a fixed value defined by the user, typically 1 or 100.
The higher the value of α, the faster the phase goes from 0
to Z and the faster the movement gets executed.

The phase parameter αi of a trajectory indexed by i is
given by

αi =
Z

Ti
, (12)



where Ti is the duration of the trajectory i. During train-
ing, the phase parameter of each demonstrated trajectory is
determined by using (12). Then the mean and the standard
deviation of this set of values for the phase parameter are
computed, defining a Gaussian probability distribution.

Given a set D of observed positions of the human at
specific time steps of a movement in execution, the rest of
this movement and the reaction of the robot can be computed,
as long as this human movement fits into the probability
distributions learned in the training phase.

In order to perform this computation, a number of phase
parameters αj are sampled from the Gaussian distribution
N
(
α;µα, σ

2
α

)
determined in the training phase. The index

j here stands for the index of the sampled phase parameter
value. For each αj , the probability of αj given observation
D is computed1,

p (αj |D) ∝ p (D|αj) , (13)

where2

p (D|αj) =
∫
p (D|w, αj) p (w) dw. (14)

Equation 14 can be solved in closed form, as well as the
mean trajectory µτj and the covariance Στj that determine
a distribution over trajectories given the phase parameter αj .
The rest of the human movement and the robot reaction can
be computed by

µτ =

∑
j p (αj |D)µτj∑
j p (αj |D)

, (15)

Στ =

∑
j p (αj |D)

(
Στj + µτjµ

T
τj − µτµTτ

)∑
j p (αj |D)

. (16)

This result is thus a weighted average of the predictions with
all sampled parameters αj . By being able to condition on a
partial observation of the human movement, while taking into
consideration the conditional probability of each sampled
phase parameter αj , this method is able to predict the rest
of human movements varying considerably in speed profile
and the reaction of the robot, without time-aligning training
nor test trajectories.

Predicting the rest of the human movements may be
important for example when the robot has to avoid collision
with the human or has to intercept his/her trajectory. If the
objective of the user is only to compute the reaction of the
robot, predicting the rest of the human movements can be
left aside, saving computational resources.

V. EXPERIMENTS

This section presents experimental results in three different
scenarios using a 7-DOF KUKA lightweight arm with a 5-
finger hand3.

1Note that p(αj) is not part of the expression, since the phase parameters
αj are being sampled.

2Assuming w and α independent variables.
3Regarding the control of the robot, the design of a stochastic controller

capable of reproducing the distribution of trajectories is also part of ProMPs
and the interested reader is referred to [17] for details. Here we use a
compliant, human-safe standard inverse-dynamics based feedback controller.

The goal of the first scenario is to expose the issue of
the original Interaction Primitives [1], [2] when dealing with
trajectories that have a clear multimodal distribution. In the
second scenario, we propose a real application of the Mixture
of Interaction Primitives where the robot assistant acts as
a third hand of a worker assembling a toolbox4. Finally,
an experiment in which the robot receives a cup from a
human demonstrates an application of the proposed method
to compute online the reaction of the robot to movements
executed at different speeds5.

A. Nonlinear Correlations between the Human and the
Robot on a Single Task

To expose the capability of our method for dealing with
multimodal distributions, we propose a toy problem where
a human specifies a position on a table and the robot must
point at the same position. The robot is not provided any
form of exteroceptive sensors; the only way it is capable
of generating the appropriate pointing trajectory is by cor-
relating its movement with the trajectories of the human.
As shown in Fig. 2, however, we placed a pole in front of
the robot such that the robot can only achieve the position
specified by the human by moving either to the right or to
the left of the pole. This scenario forces the robot to assume
quite different configurations, depending on which side of
the pole its arm is moving around.

During demonstrations, the robot was moved by kines-
thetic teaching to point at the same positions indicated by
the human (tracked by motion capture) without touching
the pole. For certain positions, as the one indicated by the
arrow in Fig. 2(a), only one demonstration was possible. For
other positions, both right and left demonstrations could be
provided as shown in Fig. 2(a) and 2(b). The demonstrations,
totaling 28 pairs of human-robot trajectories, resulted in a
multimodal distribution of right and left trajectory patterns
moving around the pole.

In this scenario, modeling the whole distribution over
the parameters of the trajectories with one single Gaussian
(as in the original Interaction Primitive formulation) is not
capable of generalizing the movements of the robot to
other positions in a way that resembles the training, as the
original framework is limited by assuming a single pattern.
This limitation is clearly shown in Fig. 3(a), where several
trajectories generated by a single cluster GMM (as in the
original Interaction Primitive) cross over the middle of the
demonstrated trajectories, which, in fact, represents the mean
of the single Gaussian distribution.

Fig. 3(b) shows the predictions using the proposed method
with a mixture of Gaussians. By modeling the distribution
over the parameters of the trajectories using GMMs as
described in section III-C, a much better performance could
be achieved. The GMM assumption that the parameters are
only locally linear correlated seemed to represent the data
much more accurately.

4Video available at http://youtu.be/9XwqW_V0bDw
5Video available at https://youtu.be/hAJHPep5KuQ



(a) (b)

Fig. 2. Experimental setup of a toy problem used to illustrate the properties
of the Mixture of Interaction Primitives. The robot is driven by kinesthetic
teaching to point at the positions specified by the human (pointed with
the wand). Certain pointed positions can be achieved by either moving the
arm to the right (a) or to left (b) of the pole placed on the table. Other
positions, such as the one indicated by the arrow, can only be achieved by
one interaction pattern.

ground truth
prediction

(a) (b)

Fig. 3. Results of the predictions of the robot trajectories in Cartesian
space. Both subplots show the same ground truth trajectories generated
by driving the robot in kinesthetic teaching. The predictions are generated
by leave-one-out cross-validation on the whole data set comprised of 28
demonstrations. (a) Prediction using the conventional Interaction ProMPs
with a single Gaussian. (b) Prediction using the Mixture of Interaction
ProMPs.

B. Assembling a Box with a Robot Assistant

In this experiment, we recorded a number of demon-
strations of different interaction patterns between a human
and the robot cooperating to assemble a box. We used the
same robot described in the previous experiment. During
demonstrations, the human wore a bracelet with markers
whose trajectories in Cartesian coordinates were recorded
by motion capture. Similarly to the first scenario, the robot
was moved in gravity compensation mode by another human
during the training phase and the trajectories of the robot in
joint space were recorded.

There are three interaction patterns. Each interaction pat-
tern was demonstrated several times to reveal the variance of
the movements. In one of them, the human extends his/her
hand to receive a plate. The robot fetches a plate from a
stand and gives it to the human. In a second interaction, the
human fetches the screwdriver, the robot grasps and gives
a screw to the human as a pre-emptive collaborator would
do. The third type of interaction consists of giving/receiving
a screwdriver. Each interaction of plate handover, screw
handover and holding the screwdriver was demonstrated 15,
20, and 13 times, respectively.

As described in section III, all training data are fed to

Fig. 4. Handover of a plate. Conditioning on three different positions of
the wrist (using motion capture) of a human coworker.

the algorithm resulting in 48 human-robot pairs of unlabeled
demonstrations. The presented method parameterizes the
trajectories and performs clustering in the parameter space
in order to encode the mixture of primitives.

In the inference/execution phase, the algorithm first com-
putes the most probable Interaction Primitive mixture com-
ponent based on the observation of the position of the wrist
of the human by using (10). Using the same observation, we
then condition the most probable Interaction Primitive, which
allows computing a posterior distribution over trajectories for
all seven joints of the robot arm as in (11). Finally, the mean
of each joint posterior distribution is fed to a standard inverse
dynamics feedback tracking controller.

As an example, Fig. 4 shows the robot executing the plate
handover at three different positions based on the location
of the wrist marker. Note that the postures of the arm are
very different, although they are all captured by the same
Interaction Primitive.

C. Reacting to Human Movements Executed at Different
Speeds

In this experiment, a human moved at different speeds
to hand over a cup to the robot. The reaction of the robot
was computed online after observing only the beginning of
the human movement. The robot reacted faster or slower,
according to the human’s speed.

During training, the human moved with different speeds
in the direction of the robot but also varying the position at
which he handed over the cup, while the robot was moved by
kinesthetic teaching to receive the cup at the correct position.
The trajectories of the human were about 150 cm long. Each
of those trajectories was a sequence of (x, y, z) coordinates
of the human’s left wrist, which had markers attached to it
detectable by a motion capture system.



During test, the human was observed only during the
first 50 cm of his trajectory. Then, 15 values for the phase
parameter α were sampled from the p(α) learned in the
training phase. Subsequently, the rest of the movement of the
human and the expected reaction of the robot were computed
online using the method presented in Section IV.

The methods proposed in [1], [2] and [3] could not
condition online on the beginning of the human’s movement,
since it is not possible to time-align his trajectory before it
has been completed.

VI. CONCLUSIONS

In this paper we presented a Mixture of Interaction Prim-
itives where Gaussian Mixture Models are used to model
multiple interaction patterns from unlabeled data. In addition,
this paper presented a method to compute online the reaction
of a robot to human movements executed at different speeds.
This method is able to condition on the beginning of the
human movement, allowing the robot to start reacting before
the human reaches the end of his/her trajectory.

In the future, we intend to use the stochastic feedback
controller provided by the original ProMP work in [17]. With
this controller, the compliance of the robotic arm increases
with the variance of the trajectory.

We are currently considering extensions of our work
where the human positions are replaced by other variables
of interest. For example, the same framework can be used
to correlate joint and end-effector trajectories of the same
robot to learn nonlinear forward/inverse kinematic models.
Similarly, the Mixture of Interaction Primitives can be used
to correlate the interaction between motor commands and
joint trajectories to learn inverse dynamics models.

Solutions must still be found for situations such as the hu-
man stopping in the middle of his/her movement or changing
his/her mind and deciding to perform another movement after
having started a different one. The presented framework can
compute reactions of the robot to human movements, as long
as these movements fit into the probabilistic distributions
learned in the training phase, both in terms of space and
speed. Therefore, if there were no situations during training
phase in which the human stopped in the middle of his/her
movement, the reaction of the robot would probably not be
a suitable one if the human would act in this way during test
phase.

The combination of the framework presented here with
sensory feedback to allow the robot for detecting obstacles,
objects and perturbations may also be promising.
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