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Abstract This paper proposes an interaction learning method suited for
semi-autonomous robots that work with or assist a human partner. The
method aims at generating a collaborative trajectory of the robot as a func-
tion of the current action of the human. The trajectory generation is based
on action recognition and prediction of the human movement given intermit-
tent observations of his/her positions under unknown speeds of execution;
a problem typically found when using motion capture systems in scenarios
that lead to occlusion. Of particular interest, the ability to predict the hu-
man movement while observing the initial part of his/her trajectory allows
for faster robot reactions, and as it will be shown, also eliminates the need
of time-alignment of the training data. The method models the coupling be-
tween human-robot movement primitives and is scalable in relation to the
number of tasks. We evaluated the method using a 7-DoF lightweight robot
arm equipped with a 5-finger hand in a multi-task collaborative assembly
experiment, also comparing results with our previous method based on time-
aligned trajectories.

1 Introduction

Assistive and collaborative robots must have the ability to physically inter-
act with the human, safely and synergistically. However, pre-programming a
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Fig. 1 Collaborative and assistive robots must address both action recognition and move-
ment coordination based on human observations. (a) A robot coworker must recognize the
intention of the human before deciding which action to take. (b) Observing the human
movement through corrupted (e.g. occluded, sparse, intermittent) position data, poses the
problem of identifying the correct phase of the movement.

robot for a large number of tasks is not only tedious, but unrealistic, especially
if tasks are added or change constantly. Moreover, conventional programming
methods do not address semi-autonomous robots—robots whose actions de-
pend on the actions of a human partner. Nevertheless, once deployed, for
example in a domestic or small industrial environment, a semi-autonomous
robot must be easy to program, without requiring the need of a dedicated
expert. For this reason, we advocate interaction learning as a data-driven
approach based on the use of imitation learning [18] for human-robot inter-
action.

Amongst the several challenges posed by interaction learning, this paper
focuses on two intrinsically related problems. First, the problem of estimating
the phase of the human movement, that is, the progress or the stage of the
execution of his/her trajectory under an intermittent streaming of position
data. This is a problem of practical importance since the majority of motion
capture methods currently available, such as marker tracking and depth cam-
eras, rely on planned spaces and well positioned cameras; requirements that
are incompatible with most already existing collaborative environments of in-
terest (e.g. in a hospital) where occlusions are prone to occur. Second, based
on this assessment, we address the problem of recognizing the action and
generating the corresponding movement of the robot assistant. As illustrated
in Fig. 1(a), by observing the movement of the human, a semi-autonomous
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robot must decide if it should hand over a plate, or hold a screwdriver. The
human, however, may execute movements at different unobserved speeds,
and position measurements may be corrupted by occlusions, which causes
the problem of temporally aligning sparse position observations with the in-
teraction model. Fig. 1(b) illustrates such a problem where the same sequence
of three observed positions may fit two models that are identically spatially,
but with different phases. Such ambiguity clearly hinders the adaptation of
the robot movement.

The contribution of this paper is a probabilistic framework for interaction
learning with movement primitives that allows a robot to react faster by esti-
mating the phase of the human, and to relate the outcome of the estimation
to assess different tasks. As the algorithm relies on Probabilistic Movement
Primitives [16] for human-robot interaction, the method will also be referred
to as Interaction ProMPs. An Interaction ProMP provides a model that cor-
relates the weights that parameterize the trajectories of a human and a robot
when executing a task in collaboration. The Interaction ProMP is conditioned
on the observations of the human and the robot is controlled based on the
posterior distribution over robot trajectories.

This paper consolidates our recent efforts in different aspects of semi-
autonomous robots. It leverages on the representation of movements with
ProMPs, our developments into the context of human-robot interaction
[1, 14], and the ability to address multiple tasks [14, 8]. While our previ-
ous interaction models were explicitly time-dependent, here, we introduce a
phase-dependent method. Section 2 emphasizes the most relevant works in
phase and time representations and briefly addresses related works in other
aspects of the framework1. Section 3 describes the proposed method with a
brief background on ProMPs, followed by Interaction ProMPs, phase esti-
mation, and action recognition. Finally, Section 4 provides experiments and
discussions on the application of the method in an assembly scenario.

2 Related Work

Dynamical Movement Primitives [9], or simply DMPs, have been known to
address temporal variations with a phase variable. The phase variable is used
to govern the spread of a fixed number of basis functions that encode pa-
rameters of a forcing function. ProMPs use the concept of phases in the
same manner, with the difference that the basis functions are used to encode
positions. This difference is fundamental for Interaction Primitives since es-
timating the forcing function of the human is nontrivial in practice, while
positions can be often measured directly [14].

1 The interested reader is referred to our previous works for additional and detailed liter-

ature review in respect to their corresponding contributions.
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Recently, a modified form of DMPs where the rate of phase change is re-
lated to the speed of movement has been presented [21]. The method uses
Reinforcement Learning and Iterative Learning Control to speed up the exe-
cution of a robot’s movement without violating pre-defined constraints such
as carrying a glass full of liquid without spilling it. A similar form of iterative
learning was used to learn the time mapping between demonstrated trajec-
tories and a reference trajectory [20]. With their approach, a robot was able
to perform a surgical task of knot-tie faster than the human demonstrator.

Dynamic Time Warping (DTW) [17] has been used in robotics applications
for temporally aligning trajectories. For example, as part of an algorithm
that estimates the optimal, hidden trajectory provided by multiple expert
demonstrations [5]. Although DTW has been shown suitable for off-line pro-
cessing of data, its online application can be hard to achieve in practice due
to exhaustive systematic search. A different approach is to explicitly encode
the time of demonstrations such as in [3], where the structure of the model
intrinsically generate smooth temporal solutions. The measurement or es-
timation of velocity, for example, by differentiation of a consistent stream
of positions, removes the ambiguity of Fig. 1(b) and allows for the realiza-
tion of online algorithms that cope with very fast dynamics [10, 11]. Such
methods, however, rely on a planned environment free from occlusions and
fast tracking capabilities; requirements difficult to achieve in environments
where semi-autonomous robots are expected to make their biggest impact,
such as in small factories, hospitals and home care facilities. A disadvantage
of ProMPs in relation to representations based on multiple reference frames
such as the Dynamical Systems [3], and forcing functions as in DMPs, is that
ProMPs can only operate within the demonstrated, spatially invariant set of
demonstrations.

Several methods to learn time-independent models by imitation have been
proposed. For example, Hidden Markov Models (HMM) and Gaussian Mix-
ture Regression (GMR) have been used to learn and reproduce demonstrated
gestures [4] where each hidden state corresponds to a Gaussian over positions
and velocities, locally encoding variation and correlation. In [6], a method to
reactively adapt trajectories of a motion planner due to changes in the envi-
ronment was proposed by measuring the progress of a task with a dynamic
phase variable. While this method is suited for cases where the goal is known
from a planned trajectory—the phase is estimated from the distance to the
goal—a semi-autonomous robot is not provided with such information: the
goal must be inferred from the observation of the human movement, which
in turn requires an estimate of the phase.

This paper share similar challenges faced in [22] where the robot trajec-
tory had to be adapted according to the observation of the human partner
during handovers. In their work, the authors encoded the demonstrations in
a tree-structured database as a hierarchy of clusters, which poses the prob-
lem of searching matching trajectories given partial observations. The use
of a probabilistic approach allow us to address an equivalent search by sim-
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ply computing the likelihoods of various models given arbitrary segments of
observed trajectories.

Several other works have addressed the action recognition problem. Graph-
ical models, in particular, have been widely used. In human-robot interaction,
HMMs have been used hierarchically to represent the states and to trigger
low-level primitives [13]. HMMs were also applied to predict the positions
of a coworker in an assembly line for tool delivery [19] while in [12], Condi-
tional Random Fields were used to predict the possible actions of a human.
The prediction of the movement of human coworkers was addressed in [15]
with a mixture model. The cited methods address the generation of the corre-
sponding robot movement as an independent step, either by pre-programming
suitable actions [12], or by using motion planners [15]. In a similar vein, Petri
Nets were combined to control the transitions of a controller for a robot
mounted on the shoulder of a human [2]. Interaction ProMPs intrinsically
correlate the action of the human with the movement of the robot such that
action recognition and movement generation are part of the same process and
use the same model.

3 Probabilistic Movement Primitives for Human-Robot

Interaction

This section introduces ProMPs for a single degree-of-freedom (DoF) from
which the multi-DoF ProMP will follow naturally. In human-robot interac-
tion, the use of ProMPs consists on the adaptation of the multi-DoF case
where some of the DoFs are given by a tracked human interacting with a
semi-autonomous robot. This section finishes by introducing phase estimation
which will also provide means to recognize human actions in multiple-task
scenarios.

3.1 Probabilistic Movement Primitives on a Single

Degree-of-Freedom

For each time step t a position is represented by yt and a trajectory of length
T as a smooth sequence y0:T . A parameterization of y0:T in a lower dimen-
sional weight space can be achieved by linear regression on time-dependent
Gaussian basis functions ψt,

yt = ψ
T
t w + ǫy, (1)
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p(y0:T |w) =

T
∏

0

N (yt|ψ
T
t w,Σy), (2)

where ǫy∼N (0,Σy) is zero-mean i.i.d. Gaussian noise and w ∈ R
N is a

weight vector that encodes the trajectory. The number of Gaussian bases N
is often much lower than the number of trajectory time steps. In our case,
trajectories have an average time of 3 seconds and are sampled at 50 Hz. The
dimensionality is decreased from 3 × 50 = 150 samples to a vector of length
N = 20. The number of basis is a design parameter that must be matched
with the desired amount of detail to be preserved during the encoding of the
trajectory.

Assume M trajectories are obtained via demonstrations; their parameter-
ization leading to a set of weight vectors W = {w1, ... wi, ... wM} (the
subscript i as in wi will be used to indicate a particular demonstration when
relevant, and will be omitted otherwise). Define θ as a parameter to govern
the distribution ofW such that w∼p(w;θ). From the training data we model
p(w;θ) as a Gaussian with mean µw ∈ R

N and covariance Σw ∈ R
N×N , that

is θ = {µw,Σw}. This model allow us to sample from the demonstrated dis-
tribution over positions with

p(yt;θ) =

∫

p(yt|w)p(w;θ)dw = N (yt|ψ
T
t µw,ψ

T
t Σwψt +Σy). (3)

The Gaussian assumption is restrictive in two ways. First, the training data
must be time-aligned, for example by DTW; second, only one type of interac-
tion pattern—or collaborative task—can be encoded within a single Gaussian
(mixture of models were used to address the latter problem in an unsuper-
vised fashion [8]).

3.2 Correlating Human and Robot Movements with

Interaction ProMPs

Interaction ProMPs model the correlation of multiple DoFs of multiple
agents. Let us define the state vector as a concatenation of the P number of
observed DoFs of the human, followed by the Q number of DoFs of the robot

yt = [ yH
1,t, ... y

H
P,t, y

R
1,t, ... y

R
Q,t ]

T ,

where the upper scripts (·)H and (·)R refer to the human and robot DoFs,
respectively. Similar to the single DoF case, all DoF’s trajectories are param-
eterized as weights such that

p(yt|w̄) = N (yt|H
T
t w̄,Σy), (4)
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where H
T
t = diag((ψT

t )1, ..., (ψ
T
t )P , (ψ

T
t )P+1, ..., (ψ

T
t )P+Q) has P+Q diag-

onal entries. Each collaborative demonstration now provides P+Q training
trajectories. The weight vector w̄i of the i-th demonstration is

w̄i = [ (wH
1 )T , ..., (wH

P )T , (wR
1 )

T , ..., (wR
Q)

T ]T , (5)

from which a normal distribution from a set of M demonstrations W̄ =
{w̄1, ...w̄M} with µw ∈ R

(P+Q)N and Σw ∈ R
(P+Q)N×(P+Q)N can be com-

puted.
The fundamental operation for semi-autonomy is to compute a posterior

probability distribution of the weights (now encoding both human and robot)
w̄∼N (µnew

w ,Σnew
w ) conditioned on a sparse (e.g. due to motion capture oc-

clusion) sequence of observed positions of the human y∗ measured within the
interval [t, t′]. This operation can be computed with

µnew
w = µw +K(y∗

t,t′ −H
T
t,t′µw),

Σ
new
w = Σw −K(HT

t,t′Σw),
(6)

whereK = ΣwH
T
t,t′(Σ

∗

y+H
T
t,t′ΣwHt,t′)

−1 and Σ
∗

y is the measurement noise.
The upper-script (·)new is used for values after the update and the subscript
(·)t,t′ is used to indicate the unvenly spaced interval between t and t′. The
observation matrix H

T
t,t′ is obtained by concatenating the bases at the corre-

sponding observation steps, where the Q unobserved states of the robot are
represented by zero entries in the diagonal. Thus, for a each time step t,

H
T
t =



























(ψT
t )1 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0

0 . . . (ψT
t )P 0 . . . 0

0 . . . 0 0P+1 . . . 0

0
. . . 0 0

. . . 0

0 . . . 0 0 . . . 0P+Q



























. (7)

Trajectory distributions that predict human and robot movements are
obtained by integrating out the weights of the posterior distribution

p(y0:T ;θ
new) =

∫

p(y0:T |w̄)p(w̄;θnew)dw̄. (8)

Fig. 2 summarizes the workflow of the Interaction ProMP. During the
training phase, imitation learning is used to learn the parameter θ. The distri-
bution is abstracted as a bivariate Gaussian where each of the two dimensions
are given by the distribution over the weights of the human and robot trajec-
tories. During execution, the assistive trajectory of the robot is predicted by
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Fig. 2 The workflow of Interaction ProMP on a single task where the distribution of

human-robot parameterized trajectories is abstracted as a bivariate Gaussian. The condi-
tioning step is shown as the slicing of the distribution at the observation of the human
position. In the real case, this distribution is multivariate.

integrating out the weights of the posterior distribution p(w̄;θnew). The op-
eration of conditioning is illustrated by the slicing of the prior, at the current
observation of the position of the human y∗

t .

3.3 Estimating Phases and Actions of Multiple Tasks

ProMPs are learned from multiple demonstrations. Previous works [14, 8]
have only addressed spatial variability, but not temporal variability of move-
ments. However, when demonstrating the same task multiple times, a hu-
man demonstrator will inevitably execute movements at different speeds,
thus changing the phase at which events occur. Previously, this problem has
been alleviated by introducing an additional pre-processing step on the train-
ing data for time-alignment based on a variant of DTW. Back to Fig. 1(b),
the aligned model is shown as the distribution of trajectories indexed by the
normalized time.

Time-alignment ensures that the weights of each demonstration can be
regressed from the same matrix ψ0:T , at the expense that temporal repre-
sentation is lost within the model. As a consequence, during execution, the
conditioning (6) can only be used when the phase of the human demonstra-
tor coincides with the phase encoded by the time-aligned model, which is
unrealistic in practice. In [14, 8] we avoided this problem by conditioning
only on the last position of the human movement, since for this particular
case, the corresponding basis function is known to be ψT . For any other
time step t, the association between y∗

t and the basis ψt is unknown given
that the human presents temporal variability and that the velocity is either
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unobserved or computation from derivatives impractical due to sparsity of
position measurements2.

We propose encoding the temporal variance into the model by learning
a distribution over phases from the multiple demonstrations. This enriched
model not only eliminates the need for time-alignment, but also opens the
possibility for faster robot behavior; the conditioning (6) can be applied be-
fore the end of the human movement. Initially, we replace the original time
indexes of the basis functions with a phase variable z(t). Define Tnom as an
nominal trajectory duration (e.g. the average final time of the demonstra-
tions) from which the weights of all demonstrations are regressed to obtain
the parameters of the distribution θ = {µw,Σw}; the Gaussian bases are
spread over the nominal duration ψ0:Tnom

. Assuming that each of the i-th
demonstrations has a constant rate of change in relation to Tnom, define a
temporal scaling factor

αi = Tnom/Ti. (9)

The single scaling factor αi means that observations (the three red circles in
Fig. 1(b)) are “stretched” or “compressed” at the same rate in the temporal
direction. Although simple, our experiments have shown that this assumption
holds in practice for simple, short stroke movements typical of handovers
(see [7] for problems where a multiple-phase algorithm is required). Thus, a
trajectory of duration T can be computed relative to the phase

p(y0:T |w) =

T
∏

0

N (y(zt)|[ψ(zt)]
Tw,Σy), zt = αt. (10)

Given the sparse partial sequence of human position observations, a pos-
terior probability distribution over phases is given as

p(α|y∗

t,t′ ,θ) ∝ p(y∗

t,t′ |α,θ)p(α). (11)

For simplicity, we assume the prior p(α) as a univariate Gaussian distribution,
obtained from the M demonstrations, α∼N (µα, σ

2
α). For a specific α value

the likelihood is

p(y∗

t,t′ |α,θ) =

∫

p(y∗

t,t′ |w̄, α)p(w̄)dw̄

= N (y∗

t:t′ |[A(zt:t′)]
Tµw, [A(zt,t′)]

T
Σw[A(zt,t′)] +Σ

∗

y),

(12)

where

2 Under a single temporal scaling factor assumption, and in the case direct measurements

of velocity were possible, the phase could be directly estimated.
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[A(zt,t′)]
T =











[ψ(zt,t′)]
T
1 . . . 0

0
. . . 0

0 . . . [ψ(zt,t′)]
T
P











, (13)

is the matrix of basis functions of the observed positions of the human, which
corresponds to the observed entries of the full matrix H in (7), however, now
indexed by the phase zt = αt. Given yt,t′ , (12) is computed for each sampled
α candidates, and the most probable scaling value

α∗ = argmax
α

p(α|y∗

t,t′ ,θ) (14)

is selected. Intuitively, the effect of different phases is to stretch or compress
the temporal axis of the prior (unconditioned) distribution proportionally
to α. The method then tests which scaling value generates the model with
the highest probability given the observation y∗

t,t′ . Once α∗ is known, its
associated observation matrix H(z0:T ) can be used in (6) to condition and
predict the trajectories of both human and robot. To efficiently estimate
the phase during execution, one approach is to sample a number of values
of α from the prior p(α) and precompute and store, for each of them, the
associated matrix of basis functions A(z0:T ) and H(z0:T ) beforehand.

In a multi-task scenario, we can now address the recognition of the task
given the positions yt,t′ . Assume a K number of collaborative tasks are en-
coded by independently trained Interaction ProMPs represented by the pa-
rameter θk. For each task k, the most probable α∗

k and likelihood must be
stored. By noting that each task is represented by its own parameter θk, the
most probable task is given by re-using the likelihoods of the set {α∗

k,θk}.
The task recognition is given by

k∗ = argmax
k

p(k|y∗

t,t′), (15)

where p(k|y∗

t,t′) ∝ p(y∗

t,t′ |α
∗

k,θk)p(k) with p(k) being a prior probability dis-
tribution of the task and p(y∗

t,t′ |α
∗

k,θk) was previously obtained in (12). The
two optimizations in (14) and (15) lead to an algorithm that scales linearly
in the number of sampled α’s and in the number of tasks.

4 Experiments with a Semi-Autonomous Robot

Collaborative assembly experiments were conducted using a 7-DoF lightweight
arm equipped with a 5-finger hand. In all experiments, the wrist of the human
was tracked by motion capture, providing XYZ Cartesian coordinates. The
trajectories of the robot were recorded by kinesthetic teach-in with the joint
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encoders. For each demonstration, the set of human-robot measurements were
paired and stored with a sampling rate of 50 Hz.

4.1 A Multi-Task Semi-Autonomous Robot Coworker

As it was shown in Fig. 1(a), we applied our method on a multi-task scenario
where the robot plays the role of a coworker that helps a human assembling
a toolbox. This scenario was previously proposed in [8] where time-alignment
was used on the training data. While in our previous work, conditioning could
only be computed at the end of the movement, here, the robot can predict
the collaborative trajectory before the human finishes moving, leading to
a faster robot response. Moreover, since the method described in Section 3
was applied without aligning demonstrations the time spent in pre-processing
training data was considerably decreased.

robot

human

(a) Handing over a plate (b) Handing over a screw

robot
human

(c) Holding the screw driver

robot

human

Fig. 3 Demonstrations of the three different interactions and their respective trajectories.

The assembly consists of three different collaborative interactions. In one
of them, the human extends his hand to receive a plate. The robot fetches a
plate from a stand and gives it to the human by bringing it close to his hand.
In a second interaction, the human fetches the screwdriver and the robot
grasps and gives a screw to the human as a pre-emptive collaborator would
do. The third type of interaction consists of the robot receiving a screwdriver
such that the human coworker can have both hands free (the same primitive
representing this interaction is also used to give the screwdriver back to the
human). Each interaction of plate handover, screw handover and holding
the screwdriver was demonstrated 15, 20, and 13 times, respectively. The
trajectories obtained from the demonstrations are shown in Fig. 3 in the
Cartesian space. Note, however, that the interaction primitives were trained
on the Cartesian coordinates of the wrist with the joint coordinates of the
robot.

To make a direct comparison between the previous method and the present
method, the same training data presented in [8] was used. The durations of
each demonstration was, however, randomly modified as we noticed the orig-
inal data did not present sufficient variability of phases (in our initial tests
the correct phase could be reasonably estimated with only 2 to 3 α samples).
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The randomization acts as a surrogate for different demonstrators with dif-
ferent speeds of execution. The original time-aligned demonstrations for one
of the tasks can be seen in Fig. 4(a) as the several gray curves. Using leave-
one-out cross-validation (LOOCV) the figure shows that the uncertainty of
the human position collapses at the end, when the measurement is made
on the test data. The posterior distribution, shown as the blue patch with
± two-standard deviations, predicts the robot final joint positions with an
average error of 2.1 ± 6.7 degrees. Fig. 4 (b-c) shows the proposed method
with phase-estimation where the training data includes various phases. In
Fig. 4(b), the observation represents 25% of the total trajectory length. The
final positional error was of 6.8 ± 11.3 degrees. In (c), 50% of trajectory was
observed and the error decreased to 2.0 ± 5.7 degrees, roughly achieving the
same accuracy as the time-aligned case shown in (a). The error was computed
by averaging the RMS final position error over the 7 joint positions of the
arm.
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Fig. 4 Prediction of the distribution over trajectories of the human and the robot for
the task of handing over a screw driver. (a) The previous method with time-aligned data
without phase estimation and therefore conditioned only a the last observation of the
human position. The phase estimation method where five measurements randomly spaced
are taken up to 25% of the total duration of the human movement in (b) and 50% of the

total duration of the human movement in (c).



Title Suppressed Due to Excessive Length 13

A
v
e

ra
g

e
 p

o
s
it
io

n
 e

rr
o
r 

(d
e

g
.)

0

5

10

15

20

10%         25%         50%        80%  Time
aligned

P
o

s
it
io

n
 u

n
c
e
rt

a
in

ty
 2

s
ig

m
a
 (

d
e

g
.)

0

5

10

15

20

10%         25%         50%        80%  Time
aligned

(b)(a)
Lenght of observations  Lenght of observations  

Fig. 5 Leave-one-out cross-validation over the whole training dataset of plate handovers.
The final position errors (a) and the uncertainty (±2σ) (b) of the predictions are shown.
The predictions are made when 10, 25, 50, and 80% of the trajectory are observed and
compared with the time-aligned case.

In Fig. 5(a), each bar represents the final position error as the average over
the 7 joints of the robot with LOOCV over the whole data set of demonstra-
tions. The figure shows the cases when 10%, 25%, 50%, and 80% of the
trajectory were observed. For each observation, 25 samples of the phase pa-
rameter α were used. We compared those results with the original method [8]
when the prediction is made based on the final measurement, indicated by
the bar labeled “Time aligned”. When 80% of the trajectory was observed,
the prediction provided the same accuracy of the time-aligned method.

From the same LOOCV test, the uncertainty at the final position (that
is, the width of the blue patch previously shown in Fig. 4 at the end of the
trajectory), was also quantified. These results are shown at the right plot Fig.
5(b). Note that when 80% of observations were provided, a trajectory with
less uncertainty than the time-aligned case can be predicted. This results
from the fact that, with phase estimation, a larger number of observations
are used to condition the covariance of the prior in (6).

Interaction ProMPs also provide the ability for the robot to spatially co-
ordinate its movement according to the movement of the human. A practical
application is the handover of an object at different positions as shown in
Fig. 6. In the left picture, the robot first receives the screwdriver from the
human. In the right picture, the human extends his hand in a different loca-
tion and the robot then delivers the tool back. The trajectory of the robot
was inferred by conditioning the Interaction Primitive on the first second of
the movement of the human. We have previously quantified the accuracy of
the prediction in our setup achieving positional errors of less than 3 cm [14].

With phase estimation, the robot reaction time for the handover of the
screwdriver shown in Fig. 6 decreased on average by 2 seconds, a reduction
of 25% of the task duration in relation to the original time-aligned case. Our
preliminary evaluations on the assembly scenario was carried out by sampling
25 values of α phases for each of the three tasks, thus requiring 75 (25 samples
× 3 tasks) calls to the computation of the probabilities (11) while the human
moves his arm. The whole process, including the final prediction of the full
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Fig. 6 Handover and return of a screwdriver at different positions, obtained by condition-
ing the Interaction ProMP on the positions of the wrist marker.

trajectory with (8), observed during the first second of the human movement
took in average 0.20 seconds using Matlab code on a conventional laptop
(Core i7, 1.7 GHz). To control the robot, only the mean of the posterior dis-
tribution over trajectories for each joint of the robot was used, and tracked by
the standard, compliant joint controller provided by the robot manufacturer3.
A video of this experiment can be watched in http://youtu.be/4qDFv02xlNo

4.2 Discussion of the Experiment and Limitations

In practice, there is an upper limit on the number of tasks and sampled α’s
that can be supported. This limit can be empirically evaluated as the total
time required to compute the probability of all sampled alphas, for all tasks,
which must be less than the duration of the human movement. Otherwise,
it is faster to predict the robot trajectories based on the final measurement
of the human, as it was done in previous works. This limit depends on the
efficiency of the implementation and the duration of the human movement.

Since the experiments aimed at exposing the adaptation of the robot move-
ment solely by means of the Interaction Primitives, no direct feedback track-
ing of the marker on the human wrist was made. The Interaction Primitive
framework may potentially benefit when used in combination with a feedback
controller that tracks the markers directly. Note, however, that it is not possi-
ble to completely replace an Interaction Primitive by a controller. A feedback
controller does not provide the flexibility and richness of the trajectories that
can be encoded in a primitive learned from human demonstrations.

A system that allows for reliable estimation of velocity (or a constant
stream of position) can greatly simplify the estimation of the phase, and
under the assumption of a constant rate α, make the problem readily solv-
able. On the other hand, the nondisruptive deployment of semi-autonomous
robots in the field must cope with occluded and sparse position measure-
ments, often provided by low-cost sensors such as Kinect cameras, which
requires algorithms that are capable of estimating the phase from such data.

3 Although not used in this paper, the ProMP framework also provides means to compute

the feedback controller and the interested reader is referred to [16].
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In the short term we envision a self-contained setup that uses a Kinect cam-
era as a replacement of the optical marker tracking system that was used
during the experiments.

5 Conclusions

This paper presented a method suited for collaborative and assistive robots
whose movements must be coordinated with the trajectories of a human
partner moving with different speeds. This goal was achieved by augment-
ing the previous framework of Interaction ProMPs with a prior model of
the phases of the human movement, obtained from demonstrated trajecto-
ries. The encoding of phases enriches the model by allowing the alignment
of the observations of the human in relation to the interaction model, under
an intermittent positional stream of data. We experimentally evaluated our
method in an application where the robot acts as a coworker in a factory.
Phase estimation allowed our robot to predict the trajectories of both inter-
acting agents before the human finishes the movement, resulting in a faster
interaction. The duration of a handover task could be decreased by 25% while
using the same robot commands (same speed of the robot movement).

A future application of the method is to use the estimated phase of the
human to adapt the velocity of the robot. A slowly moving human suggests
that the robot should also move slowly, as an indication that a delicate task
is being executed. Conversely, if the human is moving fast, the robot should
also move fast as its partner may want to finish the task quickly.
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