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Abstract

This paper introduces our initial investigation on the prob-
lem of providing a semi-autonomous robot collaborator with
anticipative capabilities to predict human actions. Anticipa-
tive robot behavior is a desired characteristic of robot collab-
orators that lead to fluid, proactive interactions. We are par-
ticularly interested in improving reactive methods that rely
on human action recognition to activate the corresponding
robot action. Action recognition invariably causes delay in
the robot’s response, and the goal of our method is to elimi-
nate this delay by predicting the next human action. Predic-
tion is achieved by using a lookup table containing variations
of assembly sequences, previously demonstrated by differ-
ent users. The method uses the nearest neighbor sequence
in the table that matches the actual sequence of human ac-
tions. At the movement level, our method uses a probabilis-
tic representation of interaction primitives to generate robot
trajectories. The method is demonstrated using a 7 degree-of-
freedom lightweight arm equipped with a 5-finger hand on an
assembly task consisting of 17 steps.

Introduction

An important feature of a collaborative robot is its ability to
correctly reason about the action it should take to satisfy the
current (and upcoming) human action(s). At the continuous
level, the robot must also move in a manner that matches the
predicted human movement, such that coordinated physical
collaboration is possible. As illustrated in Figure 1, by ob-
serving the movement of the human, a robot partner must
not only decide if it should hand over a screw or a plate; but
once the human action is evident, the robot must spatially
coordinate its trajectory w.r.t the human movement. Chances
that the robot will provide the correct part increase if it only
reacts after the human request, but ideally the robot should
anticipate and deliver such parts beforehand.
Semi-autonomy has been one of the main approaches to
address complex decisions in human-robot collaboration.
Under the semi-autonomy approach, actions of the robot are
made functions of human actions. Thus, the human is put
in charge of the supervision and planning of a task. Semi-
autonomy has the immediate benefit of making the problem
of human-robot collaboration more tractable, in the sense
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Figure 1: In this paper a robot collaborator must decide
which action it should take in a proactive manner, before the
human requests such action. We motivate the method with
an experiment of a collaborative toolbox assembly where the
robot must anticipate if the human will ask for a plate or for
a screw.

that the robot reacts to the high-level decisions of the hu-
man rather than trying to predict them. Also, semi-autonomy
leads to robots that are fundamentally helpers, as opposed to
leaders. This makes semi-autonomous robots easier to be ac-
cepted by human coworkers since the human can still impose
his/her own preferences.

An interesting challenge for semi-autonomous robots,
however, is to address the incorporation of anticipative be-
havior. In other words, to allow a robot to adapt its own de-
gree of autonomy, for example, as a function of the amount
of the experience the robot has with the human. Take the
case of the collaborative assembly of multiple identical
products. While the human may be willing to dictate which
parts he/she wants from the robot during the assembly of the
first five products, a natural expectation is that the robot will
start to predict the pattern in which the parts are being as-
sembled; and therefore, to anticipate and deliver them to the
human before he/she asks for it.

This paper provides our initial investigations and experi-
mental results towards methods that allow semi-autonomous
robots to act with less supervision when enough experience
is acquired. Here, we opt for a lookup table approach that
gathers the demonstration of 26 different users that provide
their personal assembly sequence. The closest sequence in
the table that matches the actual human actions are used to
pre-trigger the actions of the robot. As it will be explained,
we also address the case when the sequence of the human ac-



tion changes, and therefore the robot’s plan of actions must
be adapted accordingly.

Coordination in Human-Robot Collaboration

One approach to anticipation is to provide a robot with a plan
that dictates the sequence in which actions are taken, and
that correctly predicts the next human action. In task plan-
ning, sequential plans are usually generated in an abstract,
high level space where actions are general symbolic descrip-
tions, as opposed to specific motions, and its sequencing can
be efficiently optimized. However, the connection between
task and motion has its own difficulties. They may required
intense planning at the low-level (Plaku and Hager 2010),
and due to the combinatorial growth of plans over time, local
commitments and short advances in limited horizons must
be made for efficiency (Kaelbling and Lozano-Pérez 2011).
The high level planning is aggravated in human-robot col-
laboration due to the multi-agent setting and concurrency in
actions (Toussaint et al. 2016).

Many authors approach the problem of joint human-robot
actions primarily at the motion level, with less concern on
a plan of actions but rather attempt to quickly generate a
reactive robot movement. This is a challenging problem be-
cause it no only requires a method to quickly recognize the
human intention at the early stages, but also to generate the
corresponding robot trajectory. For example, Mainprice and
Berenson (2013) and Hayne, Luo, and Berenson (2016) use
an occupancy grid approach where the human trajectory is
predicted and a robot trajectory is optimized such that it in-
terferes the least with the predicted volume swept by the hu-
man.

In a similar vein, Tanaka et al. (2012) uses a Markov
Model on discretized occupancy grid to predict the duration
and trajectories of a human in an assembly line. Gaussian
Mixture Models (GMMs) were used to classify the the ac-
tions of the human. In (Koppula and Saxena 2013), Con-
ditional Random Fields were used to predict the possible
actions of a human. In both works, however, the trajectory
generation of the robot was not addressed, at least explicitly
by their proposed methods. In these cases, the environment
must be structured enough such that robot trajectories can
be preprogrammed, or an extra step of online trajectory gen-
eration must be applied, as in (Hayne, Luo, and Berenson
2016).

To quickly recognize the human action, demonstrated tra-
jectories usually encoded with some probabilistic model can
be advantageous. For this purpose, GMMs can be used to
explicitly capture the correlation between time and states
(Calinon and Billard 2009), and in (Tanaka and Kosuge
2014) have been used to predict interaction between hu-
mans. However, a recurrent problem of probabilist repre-
sentations is that to better capture the spatial correlation,
demonstrated trajectories must be temporarily aligned. This
problem has motivated the work in (Perez-D’Arpino and
Shah 2015), where an online variant of Dynamic Time
Warping was applied to the framework of probabilistic flow
tubes (Dong and Williams 2012). In (Ben Amor et al. 2014),
an iterative version of DTW was presented and used with
Interaction Primitives. Apart from (Ben Amor et al. 2014),

in common, the related works do not explicitly address robot
trajectories as part of the model. The majority focus on early
human action recognition, or treat the design of the robot
motion as an independent step that must be executed once
the action is recognized (Mainprice and Berenson 2013;
Hayne, Luo, and Berenson 2016).

Anticipation can also be achieved by directly modeling
motions and the temporal sequence at which they are ob-
served. In this category, Hidden Markov Models (HMMs)
have been widely used. In (Kosuge et al. 2003) HMMs
were used to provide a dancing robot means to estimate the
next step of the human partner. HMMs have been used in
conjunction with Gaussian Mixture Regression (GMR) to
augment a mixture model with sequential information of
motions (Calinon et al. 2010). To address the prediction
of whole sequences of motions Inamura, Tanie, and Naka-
mura (2003) suggested using a HMM to symbolically repre-
sent whole sequences of motions. Later, Lee, Ott, and Naka-
mura (2010) extended this model for physical human-robot
interaction.

In teleoperation the problem of predicting the human ac-
tion is also important as it allows the robot to (partially)
take over the motions of the task. The principal difference
with our setting is that in teleoperation both human and
robot share the same physical interface, while here their in-
teractions with the environment are physically independent,
but their actions are functions of each other. Nevertheless,
the problem of shared autonomy, which has been investi-
gated in assisted teleoperation (Javdani, Srinivasa, and Bag-
nell (2015), Dragan and Srinivasa (2013)), provides formal-
izations that can be used in the context of semi-autonomy,
although the bridge between shared and semi autonomy re-
quire further clarifications.

Interaction Primitives

Imitation learning (e.g. see (Schaal 1999)) is a paradigm that
has been proposed to alleviate the expert programming prob-
lem. Movement primitives are representations to learn gen-
eralizable robot movements by means of demonstration, and
have been a key component in many applications in imita-
tion learning.

The use of movement primitives for learning human-robot
interaction movements with Dynamical Movement Primi-
tives was introduced in (Ben Amor et al. 2014) under the
name Interaction Primitives (IPs), and later used for action
recognition and multiple interactions (Maeda et al. 2016).
However, although suitable for low-level policy representa-
tion, such methods do not address any high-level mechanism
that incorporate their sequences of actions, that is, the se-
quence in which such Interaction Primitives are executed.
Thus, such robots act based on human action recognition
and semi-autonomy.

In regards to Interaction Primitives, the contribution of
this paper is to provide IPs with a layer of prediction.
That is, we are interesting in providing the robot the abil-
ity to predict the sequences in which IPs should be ex-
ecuted to accomplish a task. Although motivated by IPs,
the method is not associated with a particular representa-
tion of movements. Other representations that demand ac-



tion recognition—such as GMMs and HMMs—can poten-
tially profit from the method. In this work we opt for IPs
because of its simplicity. The single joint probability that
models the interaction can be used to both recognize the ac-
tion and generate the robot trajectory. While other methods
such as (Mainprice and Berenson 2013) and (Tanaka et al.
2012) demand an independent step for robot trajectory gen-
eration.

Anticipative Interaction Primitives

The proposed method uses IPs where robot movement prim-
itives are activated based on the recognition of the current
human action. We propose adding a mechanism that pre-
triggers the initial parts of the robot’s movement primitive,
based on training data that reveal the most likely sequence
of future actions.

The workflow of the method is shown in Figure 2. The
training phase consists in learning multiple Interaction Prim-
itives, for each of the interaction patterns involved in the
task {51, ...Sn}. In the case of our experiment, one pattern
would be a plate handover, for example. At the planning
level, we also learn the most likely sequence S™ at which
such interaction patterns will occur. During execution, the
plan is used to predict the next interaction S,, € S*, and to
pre-trigger the robot action by executing the first part of its
trajectory. Interaction Primitives are then executed to recog-
nize the human action. If the recognized action matches the
prediction, the remainder of the trajectory is executed. Oth-
erwise, a returning trajectory is used to reset the robot state
and execute the correct trajectory for the recognized action.
The following Sections will detail each component of the
method.

Lookup Table of Actions

For this initial investigation, we adopt a straightforward
lookup table of interaction sequences. We assume a task can
be segmented by the sequential execution of IV interaction
patterns or actions. We assume the existence of a number
of D demonstrations of different users indicating their pref-
erences in executing such sequences. These sequences are
used to fill the lookup table L € RP*Y with elements S;;.

Given the current, partial history of interactions S’ =
{5],...,8%} with K < N, the closest sequence in the
lookup table is retrieved. The optimal predictive sequence
is taken as the i-th row of L with the minimum distance

K
i* = argmin » _|S;; — 8}|,Vi € [1..D]. (1)
i i
The predictive sequence can be used to predict the sequence
of actions from steps K + 1 to N.

For the first iteration, as S’ is empty, two natural initial-
izations are possible. One is to not predict, and wait for the
human to take the actions of the first iterations, such that (1)
can be subsequently used. A second approach is to use the
sequence whose incidence is the highest in the table, and as-
sume this sequence as the most likely sequence that the user
will follow.

Note that the algorithm must account for the case where
the next predicted human action S*[K + 1] may differ from
the actual action. In this case, (1) must be called to recom-
pute a corrected sequence. Since the lookup table is expected
to be of small size ([number of demonstrations x number of
parts]), the computation of the predictive sequence is com-
putationally inexpensive.

Interaction Primitives

Each element in the sequence S™ is used to pre-trigger the
execution of the corresponding Interaction Primitive. We
use the method of Interaction Probabilistic Movement Prim-
itives (Maeda et al. 2016) since it addresses human ac-
tion recognition. The method assumes that, for each inter-
action pattern, distributions of robot and human trajecto-
ries are normally correlated. This distribution is obtained
from pairs of human-robot demonstrated trajectories. As-
sume a demonstration for a plate handover, where both the
robot and human move simultaneously—one agent to han-
dover, the other agent to receive—the plate!. The trajectories
are usually encoded as weight vectors using radial-basis-
functions and linear regression (Bishop 2006). Thus, for the
d-th demonstration define the weight vector

Wq = [ (w{I)Tv ey (wlf:’[)T7 (’wfb)Tv ooy (wg)T ]T7 (2)
containing the concatenation of the parameterized trajecto-
ries of the P degrees-of-freedom (DoFs) of the human, with
the () DoFs of the robot.

Multiple demonstrations are then stacked in a matrix
of weights [wy, ... wp]|?. Under the normal assumption
w~N(p,,, 3,,), the trajectories of both agents y,., can be
predicted with

pwmozjfwmmMMwa, 3)

where y,.7 € R(PH@)XT 5 a concatenation of trajectories
of all involved DoFs.

Action Recognition

Given the NNV possible types of interaction, the current
interaction can be recognized from the human observation
with Baye’s theorem

p(nlye) < p(yi.pIn)p(n), )
where p(n) is a prior distribution of the n-th interaction, and

yr, € RY *T" are the observed trajectories of the human,
observed in the interval [t ¢']. The likelihood in (4) can be
computed with

p@;wwz/?wauﬁﬂmEQMwa

= N('y;t/ |H1Tt/ Moy Hg:t/ EwHt:t/ + 2:)3

where HY,, is the matrix with the basis functions corre-
sponding to the observed time steps, and Z; is the obser-
vation noise. The interaction pattern is then recognized from
the human action with

&)

S = argmax p(n|y;.,.)- (6)

'The robot being moved by kinesthetic demonstrations, for ex-
ample.
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Figure 2: The training phase and execution phase of the proposed method. Multiple demonstrations are provided in the form of
sequences of interactions, and in the form of pairs of human-robot trajectories. The training sequences are used to construct a
lookup table while the pairs of trajectories are used to build Interaction Primitives (IPs) for each interaction. During execution,

the sequences are used to pre-trigger the corresponding IP.

Coordination of Trajectories

Once the human action is recognized, the corresponding
Interaction Primitive for the action S can be conditioned on
the same human observations y;.,, to produce a posterior
distribution of both agent’s trajectories. These trajectories
predict the whole human and robot’s movement. The pre-
dicted mean of the robot trajectories can then be used as a
reference for the feedback controller of the robot.

Conditioning is achieved in closed-form with

/’1’;; = Hy + K(y::t’ - Hz?t’y’w)a (7)
=3, - KHL,Z,),

where K = %,H], (3; + HE, %, H,)~'. Equation
(3) is used for the trajectory prediction, with the differ-

ence that the parameters of the distribution are updated
we N (po, 235)-

Experiments

As a proof-of-concept, we propose an experiment where the
robot plays the role of a coworker that helps a human as-
sembling a toolbox. Interaction Primitives are constructed
by pairing joint trajectories of the robot with the Cartesian
trajectories of the human. In the experiment, the human wrist
provides the trajectories via tracking of optical markers. The
assembly consists of a total of 17 steps where 10 actions rep-
resent screw handovers and 7 actions are given by plate han-
dovers. The goal of the robot is to predict if the human needs
a screw or a plate, and according to this prediction execute
the initial pre-grasping of parts. To finalize the grasping of
the object and hand it over to the human, the robot must first
infer the human action S with the procedure described in the
previous Section.

The sequence in which the different plates and screws are
needed are provided by the lookup table. A picture of the
toolbox used in the experiments is shown in Fig. 3, with the
labels of each part. The table was constructed by asking a

Labels
o ey SP: Side Plate (2x)
FP: Front Plate (2x)
MD BP: Bottom Plate (2x)
SP | SP MD: Main Plate (1x)
SC: Screw (10x)
SC
e )
% = ’
T ‘ £y e 3 ? 1
EE: Al FP 7
| BP BP %

Figure 3: The experiment consists in assembling a toolbox
with 7 plates and 10 screws. Each part was labeled and a
total of 26 users were asked to show the sequences that they
prefer to receive the parts.

total of 26 users to indicate which order they would assemble
the toolbox. For example, the following three sequences

FP SP SC SC FP SC SC BP MP SC SCBP SP ...
FP SP SC SC FP SC SC BP MP SC SCBP SP ...
FP SC SC SP SC SC FP BP MP SC SC BP SP ...

show that the first two users prefer to have the front plate
(FP) and side plate (SP) first, and then ask for the two screws
(SC) that attach them together. The third user, on the other
hand, prefers to ask for one plate, position the two screws on
the hole, and then ask for the second plate.

Fig. 4 shows snapshots of the experiment for the handover
of plate (upper row) and the handover of the screw (bottom
row). Note that during the pre-grasping phase the actions of
the robot are independent of the human. While the human
is busy working on his own, the robot queries the next ac-
tion in the sequence S* to find out which object it should
prepare to grasp. The robot then waits at the pre-grasping



Figure 4: Anticipative human-robot collaboration on the assembly task. The snapshots show the handover of plate (up-
per row) and the handover of the screw (bottom row). Note that during the pre-grasping phase the human and robot act
independent from each other, thus increasing the overall efficiency of the task. The full experiment can be watched at

https://vimeo.com/180552453.

position. Action recognition is then executed, providing the
robot a confirmation that the pre-grasping of the chosen part
is actually correct. The pictures at the last column show the
spatially coordinated handover of the plate and screw. Coor-
dination means that the position at which the robot delivers
the part is conditioned on the position of the human marker.
Coordination is achieved using the procedure (7) by condi-
tioning the confirmed Interaction Primitive for the task on
the current position of the human hand.

In the case the recognized human action differs from the
pre-triggered action, the robot must give priority to the hu-
man decision. This means that the robot must then back
off and switch to the recognized human action. This case
represents a possible drawback w.r.t. robots that only op-
erate in semi-autonomous mode as the latter do not have
the ability to be pro-active, and therefore, to make mis-
takes in its decisions. For the experiments, we hand-coded
a contingency trajectory that allows the robot to return from
the erroneous pre-grasp and switch to the correct grasping.
Snapshots of this procedure can be seen in Fig. 5. Note
that the optimal sequence must be revised using (1) when-
ever the recognized action does not match the action pre-
dicted in the sequence. The experiment can be watched at
https://vimeo.com/180552453.

Table 1 summarizes the reduction of waiting time due to
the pre-grasping of the parts. The duration of the trajectory
that moves the robot hand from the rest posture to the pre-
grasping of a plate takes 10 seconds. The duration of the
trajectory that grasps and delivers the plate to the human
hand takes 17 seconds (the computation time required for
action recognition and conditioning is negligible given the
time scale, and usually less then 0.5 seconds). If preemption
is not used, the human has then to wait for the whole pre-
grasping plus handover. Thus, the reduction of the waiting
time in comparison of a purely semi-autonomous task is of
10/(10+17) = 37%. Similar for the screw, the waiting time

reduction achieved was of 35%. Considering that there are
10 screws and 7 plates involved, the pre-triggering saves the
user from waiting approximately 3 minutes when consider-
ing the whole toolbox assembly.

Table 1: Reduction of waiting time due to pre-grasping

Pre-grasping | Grasp + handover | Reduction
Plate 10 sec 17 sec 37 %
Screw 11 sec 20 sec 35 %
Conclusions

We presented a method for a semi-autonomous robot to an-
ticipate and initiate the movements that most likely address
the next human action. The method uses a lookup table to en-
code demonstrated sequences of actions, and nearest neigh-
bor to retrieve the, presumably, most likely sequence of hu-
man actions. Pre-triggering actions offers the potential to
greatly decrease the amount of waiting time.

A limitation of nearest neighbor in our problem is that all
possible sequences that the human may ever execute, must
be present on the table. If the human executes a sequence
that is not in the lookup table, the robot will opt for the clos-
est but not exact one. Potentially, such a sequence may have
many disagreements with the way the user wants to assem-
ble the toolbox. As a consequence, the switching and execu-
tion to the correct action—which takes longer than simply
not predicting the human—may lead to frustrating interac-
tions. We are currently addressing more suitable methods for
dealing with this problem.

Acknowledgment

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
gramme (FP7-ICT-2013-10) under grant agreement 610878
(3rdHand).



Pre-grasping

Switching object grasping and IP

Figure 5: In this example, the robot’s predicted action was a plate and the robot prepared the pre-grasping of the plate. The
human, however, grasped the screw driver, indicating that the correct action is the screw handover. The robot then switches the

action. Note that the optimal sequence must be recomputed.
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