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Abstract— A new control strategy based on feedback motion
planning is presented for solving nonlinear control problems in
constrained environments. The algorithm explores the state-
space using a bi-directional rapidly exploring random tree
(biRRT) in order to find a feasible trajectory between an initial
and goal state. By incrementally scheduling LQR controllers,
it attempts to connect states so as to link the two trees. These
attempts are evaluated by verifying that the connected state
is inside the controllable area of an infinite time horizon
controller at the goal. This allows for a rapid delineation
of equivalent neighborhoods in the state-space. As a result,
random exploration is terminated as soon as a feasible solution
is made possible by feedback means, avoiding oversampling
and partially introducing optimal actions at the neighborhood
of the connection. The algorithm is demonstrated and compared
against a biRRT using single-link pendulum and cart-pole
swing-up tasks amongst obstacles, the latter showing a nearly
order of magnitude more efficient search.

I. INTRODUCTION

From manipulation to legged hoppers to aerial vehicles,
the agile nonlinear kinodynamic robot motion problem has
motivated the development of powerful, scalable, sample-
based motion planning algorithms. Such methods quickly
determine a (feasible) trajectory to reach a goal state. These
tools can be extended to tasks beyond trajectory generation,
because many tasks, including the design of feedback control
laws for nonlinear dynamical systems, can be viewed as a
trajectory for the robot to follow (albeit in the state space).

Motion planning methods, such as the Rapidly exploring
Randomized Tree (RRT) algorithm [1], typically determine
discretized open-loop trajectories that are then presumably
tracked using a separate feedback control system. Such a
decoupling is a strong assumption that can lead to: (1)
trajectories that are difficult (if not impossible) to control,
and (2) costly planning around conditions that could have
been handled by a controller. This, in turn, argues for an
integrated approach where the path is stable and efficiently
executable.

Two results from optimal controls provide insight towards
feedback motion planning. First, for the Linear Quadratic
Regulator (LQR) problem (in the infinite horizon case),
controllers can be solved directly (via the Riccati equation)
[2] leading to efficient and (under linear conditions) optimal
solutions. Second, recent methods (based on convex opti-
mization) allow for the estimation of Lyapunov functions,
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thus delineating the extent of regions of stability for smooth
nonlinear systems [3].

The exploration under differential constraints provides
improvements to the RRT by modifying its sampling strategy,
for example, by changing its Voronoi size for a non-uniform
distribution [4], and by sampling on non-expandable areas
[5]. However, little research has addressed the use of feed-
back during the exploration of the space as a method to
handle relations between states. This work introduces, and
is based on, the property that a local linear full-state LQR
controller has sufficient robustness to generate a connection
between tree nodes of a RRT, in the same way it handles set
point changes in a regulation problem.

The core idea is that gain scheduling (i.e., a series of
linear controllers for local regions of a nonlinear problem)
can be integrated to drive trajectory generation by informing
which regions of the state-space are “equivalent” since
they are within reach of a given controller. In contrast to
many feedback motion planning methods, particularly LQR-
Trees [6] and navigation function methods [7], there is
no intention to cover the greater state-space with control
laws as this paper is motivated by single-query nonlinear
control cases. The next section introduces and illustrates the
Gain Scheduled biRRT (GS-biRRT) using a (torque-limited)
inverted pendulum. The latter sections show results for the
case of a cart-pole amongst obstacles and indicates improved
scalability and efficiency of the method.

II. BACKGROUND AND RELATED WORK

Sampling-based motion planners have been proposed for
nonlinear dynamic control problems [5], [8] as an approach
for direct search of solutions in the state space. In this
context, RRTs [9] were used due to its ability in handling
kinodynamic and obstacle constraints.

For holonomic systems, the original RRT is modified
such that its EXTEND function (refer to [9] for details
of the algorithm) is replaced with a CONNECT function
[10]. While the RRT is expanded with a limited (often
fixed) step size towards a sample, in this case, the RRT
connects to the sample and only stops if an obstacle is
reached. However, this is a purely geometrical problem and
assumes a trivial inversion between initial and final states,
and does not consider dynamic constraints. The GS-biRRT
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uses a similar CONNECT function, but addresses dynamic
constraints trough a closed-loop controller.

A thread in feedback motion planning is the idea of rep-
resenting local stability regions of a controller. This concept
may be viewed as a funnel representing a Lyapunov image
[11], where a local controller is able to bring any state within
the borders of the funnel to the single minima representing a
local goal. With an image of a local stability, and using the
Lyapunov property as a local navigation function, strategies
based on experiments [7], and sampling [12] are applied
to create a sequence of funnels representing different states
and controller stabilities, whose final output is the single,
desired goal. Recently methods for approximating the basin
of attraction based on sum-of-squares optimization have been
proposed [3], [6]. This allows for the generation of a tree of
LQR controllers that are extended to cover the space with
the estimated basin of attractions. Such a tool brings the
opportunity to explore feedback motion planning strategies
in conjunction with sample-based planners.

The method proposed in [6] is used to verify the stability
region of a time invariant LQR controller with an infinite
time horizon to achieve a goal. As shown in Fig. 1, the funnel
(representing a Lyapunov function) illustrates the fact that
there is a certain amount of acceptable error during trajectory
tracking. If the tracking controller can bring the state x4,
inside the the basin of attraction, then an infinite horizon
controller can drive Xy, 10 Tgoq as time goes to infinity.

The proposed method is illustrated with swing-up tasks of
underactuated inverted pendulums, for which there is exten-
sive literature when the environment is obstacle-free. Under
the unconstrained assumption, particular solutions based on
energy control [13] and partial feedback linearization [14]
are potentially more efficient (in time and control) than a
RRT based control. This is due to the use of a discrete set of
random actions to expand the RRT, which will almost always
be non-optimal choices. However, the same random nature
allows the proposed algorithm to find a control solution in
a constrained/obstacle-populated workspace, where such par-
ticular methods do not apply and where robotics applications,
like motion planning and control of a legged robot tend to
fall.

ITII. MOTIVATION AND INTRODUCTION OF THE
METHOD

Under differential constraints, a bidirectional RRT
(biRRT) works by generating a set of paths, starting from
an initial state, each attempting to connect to a goal state.
At each iteration, a random state (x,4,4) is sampled, and the
closest node on the forward tree (x,,04,) is identified. Next a
series of pre-defined open-loop actions starting from Z,,eq,
generates a set of candidate states. The closest candidate
t0 Zyang 18 selected as a new node x,., to be added to
the forward tree. The backwards tree is greedily extended
in the direction to .. The trees are then swapped when

tracking error

t—> infinite

........ open-loop trajectory

finite horizon closed-loop trajectory
————— infinite horizon closed-loop trajectory

Fig. 1. For purposes of the algorithm propsed, there is no need to track a
trajectory perfectly, as long as the last state under a finite horizon controller
falls inside the basin of attraction of an infinite horizon controller.

the number of nodes in each tree is unbalanced. (Details in
[15]).

An example of the biRRT used for control is shown in
Fig. 2(a). Consider a torque limited pendulum. The figure
on the left shows a biRRT search as a phase plot [0 x 0]
where the state space is defined by X = [0, 6]. For clarity of
explanation, the figure on the right illustrates an equivalent
biRRT search drawn with few elements. The goal of this
nonlinear control problem is to bring the pendulum from
the stable position Xgzqr¢ = [0, 0]7 to the upright position
Xgoar = [£m, 0]T. The limited actuator torque imposes
a swing-up action before the pendulum acquires enough
momentum to reach the upright position.

One characteristic of the RRT is that its convergence is
solely driven by open-loop actions starting from random
initial states. In practice, this means that a solution (if it
exists) is sought by the algorithm by continuously sampling
until a node in one of the trees is pulled close enough to a
node on the other tree, regardless if:

¢ (1) a certain pair of states (i.e a shortcut connection to a

solution) is easily connected by a closed-loop controller,

e (2) connecting nodes do not need to be close, because

under feedback control these “jumps” in states can be
easily handled by a feedback controller.

Figs. 2(b)(c) show the proposed feedback approach incor-
porated to a biRRT. Fig. 2(b) shows an attempt to connect
the trees during the first iterations of the biRRT. A local
linear feedback controller is used to track the path starting
from x.;,se, but because of the nonlinearities and differential
constraints involved, the connection between the trees is be-
yond the robustness of the linear controller and the tracking
fails. The “jump” of states is too large and the system states
finished at z4;,,, whereas the ideal tracking (without jumps)
should bring it to 7404;. As the trees expand in a direction
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a) In a conventional biRRT, a solution is found when the trees contain approximately two coincident states, generating
smooth transitions between nodes.
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b) An attempt to track a distant connection between nodes by feedback control fails. The final state of the finite horizon
controller is is out of the stability boundaries of the infinite horizon controller at x goal (gray area).
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c) As the biRRT expands, the connection causes less disturbance for the tracking controller. The feedback was able to
bring the final state inside the basin of attraction, despite the tracking error.

Fig. 2.

While a biRRT must sample until nodes on each tree are close to each other, the proposed algorithm tries to generate and track connections,

verifying the feasibility by observing that the final state is stabilizable by the controller at the goal. (Notice that the angles in radians are shown unwrapped).

towards each other, the connection distance decreases, to the
point that a closed-loop control succeeds in bringing x4,
inside the basin of attraction of an infinite horizon controller
designed to keep %404 stable (refer to Fig. 1). This situation
is shown in Fig. 2(c), where the total number of nodes (or
states) is 63 compared to 202 nodes for the conventional
biRRT (Fig. 2(a)).

From a classical control theory perspective, the forced
connection in Fig. 2 using a feedback controller is similar to
a large trajectory disturbance (or step input) where the refer-
ence changes from ' se t0 Tpnew. If the reference change is

too large, then the controller will fail to track and eventually
destabilize. If the reference change is within the range of the
controller action, the RRT search is terminated because the
goal is reachable by an infinite horizon stabilizing controller.

A comparison of the exploration required in each case
shows the potential of feedback control within a sampled
based motion planning structure. Certainly, the very efficient
solution of the last example comes at the expense that at each
iteration, a local linear feedback controller must be designed
and simulated for every iteration of the RRT. While a RRT
trajectory can be generated with any kind of forward (black
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blox) simulator, in the feedback approach, explicit handling
of the dynamics (i.e., a model) is required depending on the
method used for feedback design and the verification of the
basin.

This paper is motivated by the following features of
feedback motion planning:

« avoid oversampling of states;

« allow the termination of the RRT exploration as soon
as it is made possible by feedback means;

o feedback controller is designed as the RRT expands;
and,

« partially optimal trajectories at the neighborhood of the
connection are achieved (by using optimal regulators)

IV. THE GAIN SCHEDULED RRT

This section introduces a feedback controller and a ver-
ification method for the feasibility of connection of states.
This informs the GS-biRRT design.

A. Feedback controller

For systems with a quadratic reward function, optimal full
state feedback solutions may be found by solving the Riccati
equations to generate LQR gains for both the infinite horizon
(via the algebraic Riccati equation) and the finite horizon (via
the differential Riccati equation, typically solved by dynamic
programming) [2]. These solutions are used for a stabilizing
controller at the goal and a tracking controller during the
trajectory following phase, respectively.

The use of time variant linear quadratic regulators is
suitable in the biRRT framework because the gains can be
designed incrementally according to the growth of the back-
wards tree, as hinted in [6], when the LQR gains are designed
as a continuous sequence of gains on each branch of the
backwards tree finishing at x4,4;. In the proposed approach,
because the LQR gains must be designed incrementally, for
each node, the differential Riccati equation is solved based
on the value of the controller on the previous node with:

—P=PA+ATP-PBQ;'BTP+Q, (1)

where A, B are the system dynamics linearized at the states
of the tree node and @,, @, are the penalty matrices for
state error and control usage, respectively. Feedback control
is given by:

Su(t) = —Q, ' BT P(t)z 2)

where the K = Q;'BTP(t) is the finite horizon LQR
gains. Fig. 3 illustrates the process in which the LQR gains
are designed backwards incrementally by integrating Eq. 1
starting with the value of P(¢,,_1) of the parent node.

For the final expected cost, the value of P = P(ty) is
given by the infinite horizon LQR. This not only allows the
calculation of the gains at the goal by solving the algebraic
Riccati equation [2] in Eq. 3, but also makes it possible to

X],P(t]),KJ

X , P(t,)
%, P(t)K, goap

Fig. 3. Incremental generation of LQR gains along the backwards tree
(direction represented by the arrow).
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Fig. 4. Two degree of freedom controller. The feedback controller has a
sequence of LQR gains scheduled at each tree node that is part of the RRT
open-loop trajectory.

verify the basin of attraction for the time invariant controller
(detailed in sec. IV-B).

PA+ATP - PBQ;'B"P+Q, =0 (3)

For simulating the closed-loop control, a conventional two
degree-of-freedom controller [2] is gain scheduled for trajec-
tory tracking shown in Fig. 4. The feedforward compensator
(trajectory generation) outputs are defined by an interpolated
sequence of states and actions registered in each node of
the biRRT. The feedback compensator is scheduled with
the interpolated gains of the respective node. The feedback
control law is given as:

u(t) = K(z — 24) + ug 4)
where K is the scheduled gain for the corresponding state.

B. Verification of the Connection

Consider again the biRRT in Fig. 2(c). The feasibility of
the forced connection between x5, in the forward tree with
Tpeyw 10 the backwards tree is verified with a forward integra-
tion to simulate the closed-loop tracking task. The scheduled
controller, drives the states to follow the open-loop trajectory
starting from .. and passing through ¢, T2, 1, Tgoal,
respectively; tracked by scheduled controllers designed in
section IV-A. Because the connection Zjose — Lneaqr do€s not
address the system dynamics, a tracking error is generated
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and the final simulated state x4;, is not expected to be
at Zgoq1. However, if the tracking controller is properly
designed, the final integrated state x;,, approximates 4ol
as the greedy biRRT expands and the trees get closer (in a
Lo metric sense).

Lyapunov stability [16] gives the property that if the finite
horizon tracking controller brings x;,, inside the basin of
attraction, then the infinite time horizon controller (Eq. 3) at
the goal will drive 2y, t0 T404;. Conversely, if the final state
is outside the basin of attraction (shown in Fig. 2(b)), then
the forced connection has generated disturbance beyond the
tracking ability of the controller, rendering a failed attempt.

Reasoning that a state is inside the basin under a finite
horizon control, provides an elegant way of estimating
successful connections under a fixed simulation time. This
is more efficient than a brute force solution which would
consider simulating connection attempt until the system
reaches steady-state regime and verifying if it reached x 0.

Estimation of the basin of attraction of the controller (as
proposed in [6]) provides a method for the direct computation
of Lyapunov functions for both the time invariant LQR (at
Tg40qt) and for the states in the vicinity of the open-loop
trajectory that falls within the boundaries of the basin at
the goal. The method proposed uses the positive definite
structure of V(z) = x? Px as a Lyapunov function at the
goal (for the local linear system) and find the maximum value
of p which delimits the boundaries of the stable region:

Ba(p) = {x/0 < V(x) < p} )

and the property that Vis negative definite within the bound-
aries of B is verified using convex optimization based on
sum-of-squares method (detailed explanation of the method
is found in [6], [17]).

C. The Algorithm

BiRRTs are chosen as the basis for implementing the al-
gorithm because their greedy nature that attempts to connect
one tree to each other, which makes the exploration shorter.
However, the algorithm can be easily reduced to a single
forward RRT by simply fixing the backwards tree to a single
Zg0q; N0de with no further adaptation.

The gain scheduled biRRT (GS-biRRT) algorithm is ini-
tiated by designing an infinite time LQR at the origin and
verifying its basin of attraction, similar to the procedure in
[6]. The forward and backwards tree are then expanded as
in an ordinary biRRT algorithm.

At every new node ., in the backwards tree, three
additional steps are made:

1) A set of finite time LQR gains are calculated based on
the previous values of the P matrix (Eq. 1) recorded in the
parent node of x,.,. The resulting P is then kept with
the new node.

2) A direct connection between the closest node Z.jose
in the forward tree to x,., in the backwards tree is made.

Tnew

Similar to step 1), a set of LQR gains are calculated for ;s
based on the values of the x,,.,, controller (refer again to Fig.
2(c)).

3) Forward simulation connecting x.,s. in the forward
tree to Ty in the backwards tree while following its parents
until & 4,4;. The final state is then checked to see if it is inside
the basin.

If the final state is outside the basin, conventional biRRT
expansion proceeds. If the final state is inside the basin,
the search stops and LQR gains are scheduled by back
propagating the solution of Eq. 1 from Zgoqr 10 Zint.
The algorithm outputs the sequence of LQR controllers for
feedback control, as well as the open-loop trajectory to be
tracked.

D. Implementation Details

An alternative to step 3) is to estimate the basins of
attraction for each new node on the backwards tree as
proposed for the LQR-trees algorithm in [6]. Then it is
enough to verify that the feedback controller can drive
the states from .5 to the basin of x,.,. However, this
requires more computation than a direct forward simulation.
Moreover, there is no intention of covering the space with
basins of attractions since this work is motivated by single
query problems.

In step 3), starting the simulation from ... and not from
Tstart (see Fig. 2(c)) alleviates a full forward integration of
the trajectory during the verification of the connection. This
can be helpful for long trajectories where simulations are
computationally intensive. However, for stability verification
of systems with critical nonlinear dynamics, it may be
judicious to simulate the full trajectory, especially if the
system is stiff and there is concern about numerical error
integration during simulation.

The estimation of the basin of attraction does not consider
saturation of the actuators. A basin of attraction of a saturated
system is smaller than the basin of an unsaturated dynamics,
since there is less control authority for stabilization. One
way to alleviate this problem is to set a large penalty for
the control usage of the LQR controller at the goal (J =
x7Qux + u”’Quu, with Q, large). Since a large penalty
is not intuitive, tracking robustness of the saturated system
is increased by purposely allowing some margin for the
feedback control (du in Fig. 4). The connection is verified
with a maximum actuator value that is slightly lower, (e.g.
5 to 25 %) than the real actuator limits.

V. RESULTS AND DISCUSSION
A. Single-Link Pendulum

The GS-biRRT is implemented for the single-link pendu-
lum described in section IIl. The pendulum has a mass of
5 kg concentrated at the tip, length 0.5 m and damping 0.1
kgm?/s. The biRRT is expanded and verified with control
actions u = [0 ,+1 ,£+2 ,+3] Nm and the torque limit for

123



|
- 2
Angle (rad) Angle (

rad)

Fig. 5. GS-biRRT expansion. Blue: forward tree, red: backwards tree,
black: integrated feedback dynamics, green: forced connected trajectory,
gray area: basin of attraction of the infinity horizon controller at the goal.
Sequence 1 and 2: connection attempts where the system does not achieve
the basin. At step 3 the system reaches the basin. Step 4: complete closed-
loop trajectory.

the final feedback controller is 3.75 N'm and 25% of control
margin for tracking error corrections.

Fig. 5 shows the result of the proposed GS-biRRT on
the phase-plane. In the first two sub figures, the closed-loop
controller tries to connect the forward and backwards tree
naively without success (note x;,,, does not reach the basin
of attraction). In subfigure 3, x;,,, finishes inside the basin.
Notice that the controller connects the still far x.j,s. and
Tnear States where in a normal biRRT approach, random
sampling would proceed until these states approximately
coincide. Fig. 6 shows the time response of the previous
simulation. Notice that forced connection Z ose — Tnear
creates a large trajectory discontinuity, that requires feedback
correction. In an average of ten simulations for each method,
the conventional biRRT finds a solution with a tree of
157£78 nodes, while the GS-biRRT needs in average 63+7
nodes (where +o is one standard deviation).

B. Cart and Pole Swing-Up

As the dimension of the search increases, the difference in
the size of the trees between the biRRT and the GS-biRRT
(and, the exploration required to find a solution) becomes
more obvious. In part, this is because the linear quadratic
regulator is indifferent of the size of the state vector.

The method is initially applied to swing-up task in an
unconstrained workspace (Fig. 7). This canonical nonlinear
control theory problem, consists of moving the actuated
cart backwards and forwards, so that the unactuated pole

Ang. vel. (rad/s)

|
l
0.5 1 1.5 2 2.5

w

Input (N)

Fig. 6. The forced connection of the GS-biRRT shows as a large trajectory
disturbance in time response. A margin for tracking correction is important
to afford the discontinuity in trajectory.

YA

N

%

N

Fig. 7.

\ X

s
Cart pole model.

is swung-up, from its stable position to the upright position,
with the cart resting at its start position.

The state vector is x = [z, 0, &, 0]7, Xint = [0, (2k +
1), 0, 0], Xg0at = [0, (2k)7, 0, 0], where k = 0,+1,+2,+
3.... The dynamics are based on the model in [18]:

Mme+m

. —F;—mlf§? sin 0
 gsind, + cos b, [M}

o= i ] ©
3 me+m
Fi +ml {9? sin 6, — 6, cos 94
By = (7
Mme +m
where:
g = —9.8 m/s?, acceleration due to gravity

m. = 1.0 kg, mass of cart

m = 0.1 kg, mass of pole

lc = 0.5 m, position of center of mass of the pole
Il =1 m, pole length
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a) biRRT search finished with 1174 nodes

b) GS-biRRT search finished with 182 nodes

Fig. 8. Swing-up of a cart and pole in a free workspace. Blue: forward tree, red: backwards tree, black: closed-loop response, gray area: basin of attraction

of the infinity horizon controller at the goal.

The trees are expanded with the cart forces u = [0, +2, +
4,4+ 6,+8,+10] N and closed-loop maximum saturation is
12.5 N. Fig 8 shows the biRRT compared to the GS-biRRT
search. The state-space is shown in two separated phase plots
for clarity. For an average of ten simulations for each method,
the biRRT grew 1660 4= 1221 nodes to find a solution while
the GS-biRRT required only 144+85 nodes. Thus, much less
exploration was required to find the control sequence. The
average execution time of the open-loop swing-up trajectory
of the biRRT in the same set of experiments was 4.4£1.0 s
and the GS-biRRT 2.0 + 0.5 s. For the sake of comparison,
a solution found by a trajectory optimization routine based
on collocation [19] shows that the optimal time swing-up
motion is 1.6 seconds.

The use of an RRT framework makes it natural for the GS-
biRRT to find control strategies among external constraints
(e.g., obstacles) as shown in Fig. 9. In this example, the task
is to start with the pole at the x;,,;: = [0, (2k+1)m, 0, 0] and
finish at X404, = [3.7, (2k)7, 0, 0], while passing under the
obstacle in the middle, and while avoiding the rail stoppers.

For comparison, 25 simulations were conducted. For all of
them, the GS-biRRT shows a consistent strategy (consisting
of accelerating the cart until it passes under the obstacle,
decelerating so that the pole goes up, and finally controlling
the balance and bringing the cart to the goal position).
Unless the greedy element luckily samples close to optimal
sequences, the biRRT case is more varied with the cart
generally having trouble passing around the obstacle, and
again during the final swing-up without hitting the stopper.
On average, the length of the curve traced by the poletip
(dotted line) for the biRRT and the GS-biRRT case was
11.2 + 5.3m and 6.0 & 0.8m, respectively. In the latter, the
small standard deviation is an indication that all solutions
generated are roughly consistent. This is an interesting result
because although the algorithm runs over a randomized
planner, the feedback controller finishes the search at the
first feasible opportunity, which tends to occur when the trees
are still simple in shape; and thus, the solutions generate a

similar trace in the workspace.

Although the GS-biRRT may not always lead to a faster
swing-up trajectories (because the disturbance caused by
connecting the trees generates an extra time to balance the
pole under feedback), it shows that the biRRT exploration
using only random samples leads to unnecessarily long
trajectories.

VI. CONCLUSION AND FUTURE WORK

A method to solve nonlinear control problems in con-
strained workspaces using a feedback motion planning strat-
egy is presented. The RRT framework is used to generate
random sampled states, and feedback control is used to
connect start and goal states at the first feasible opportunity.
The connection is made by attempts in tracking a large
disturbance caused by the unnatural connection of distant
states. The connections are verified with the use of an
estimated basin of attraction. The method avoids oversam-
pling of states and generates feedback gains as part of the
process. The optimal control is solved with simple linear
LQR controllers, whose design process — different from
other dynamic programming strategies — is not affected by
the dimension of the problem. While components of this
problem have been explored before, no prior work spans the
entirety of gain scheduling feedback and motion planning in
an integrated manner.

Future effort are looking to verify the feasibility of the
GS-RRT method for nonholonomic motion planning and
fully actuated mechanisms where feedback linearization may
avoid the use of scheduled controllers.
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