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Abstract— A new control strategy based on feedback motion
planning is presented for solving nonlinear control problems in
constrained environments. The algorithm explores the state-
space using a bi-directional rapidly exploring random tree
(biRRT) in order to find a feasible trajectory between an initial
and goal state. By incrementally scheduling LQR controllers,
it attempts to connect states so as to link the two trees. These
attempts are evaluated by verifying that the connected state
is inside the controllable area of an infinite time horizon
controller at the goal. This allows for a rapid delineation
of equivalent neighborhoods in the state-space. As a result,
random exploration is terminated as soon as a feasible solution
is made possible by feedback means, avoiding oversampling
and partially introducing optimal actions at the neighborhood
of the connection. The algorithm is demonstrated and compared
against a biRRT using single-link pendulum and cart-pole
swing-up tasks amongst obstacles, the latter showing a nearly
order of magnitude more efficient search.

I. INTRODUCTION

From manipulation to legged hoppers to aerial vehicles,

the agile nonlinear kinodynamic robot motion problem has

motivated the development of powerful, scalable, sample-

based motion planning algorithms. Such methods quickly

determine a (feasible) trajectory to reach a goal state. These

tools can be extended to tasks beyond trajectory generation,

because many tasks, including the design of feedback control

laws for nonlinear dynamical systems, can be viewed as a

trajectory for the robot to follow (albeit in the state space).

Motion planning methods, such as the Rapidly exploring

Randomized Tree (RRT) algorithm [1], typically determine

discretized open-loop trajectories that are then presumably

tracked using a separate feedback control system. Such a

decoupling is a strong assumption that can lead to: (1)

trajectories that are difficult (if not impossible) to control,

and (2) costly planning around conditions that could have

been handled by a controller. This, in turn, argues for an

integrated approach where the path is stable and efficiently

executable.

Two results from optimal controls provide insight towards

feedback motion planning. First, for the Linear Quadratic

Regulator (LQR) problem (in the infinite horizon case),

controllers can be solved directly (via the Riccati equation)

[2] leading to efficient and (under linear conditions) optimal

solutions. Second, recent methods (based on convex opti-

mization) allow for the estimation of Lyapunov functions,

thus delineating the extent of regions of stability for smooth

nonlinear systems [3].

The exploration under differential constraints provides

improvements to the RRT by modifying its sampling strategy,

for example, by changing its Voronoi size for a non-uniform

distribution [4], and by sampling on non-expandable areas

[5]. However, little research has addressed the use of feed-

back during the exploration of the space as a method to

handle relations between states. This work introduces, and

is based on, the property that a local linear full-state LQR

controller has sufficient robustness to generate a connection

between tree nodes of a RRT, in the same way it handles set

point changes in a regulation problem.

The core idea is that gain scheduling (i.e., a series of

linear controllers for local regions of a nonlinear problem)

can be integrated to drive trajectory generation by informing

which regions of the state-space are “equivalent” since

they are within reach of a given controller. In contrast to

many feedback motion planning methods, particularly LQR-

Trees [6] and navigation function methods [7], there is

no intention to cover the greater state-space with control

laws as this paper is motivated by single-query nonlinear

control cases. The next section introduces and illustrates the

Gain Scheduled biRRT (GS-biRRT) using a (torque-limited)

inverted pendulum. The latter sections show results for the

case of a cart-pole amongst obstacles and indicates improved

scalability and efficiency of the method.

II. BACKGROUND AND RELATED WORK

Sampling-based motion planners have been proposed for

nonlinear dynamic control problems [5], [8] as an approach

for direct search of solutions in the state space. In this

context, RRTs [9] were used due to its ability in handling

kinodynamic and obstacle constraints.

For holonomic systems, the original RRT is modified

such that its EXTEND function (refer to [9] for details

of the algorithm) is replaced with a CONNECT function

[10]. While the RRT is expanded with a limited (often

fixed) step size towards a sample, in this case, the RRT

connects to the sample and only stops if an obstacle is

reached. However, this is a purely geometrical problem and

assumes a trivial inversion between initial and final states,

and does not consider dynamic constraints. The GS-biRRT
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uses a similar CONNECT function, but addresses dynamic

constraints trough a closed-loop controller.

A thread in feedback motion planning is the idea of rep-

resenting local stability regions of a controller. This concept

may be viewed as a funnel representing a Lyapunov image

[11], where a local controller is able to bring any state within

the borders of the funnel to the single minima representing a

local goal. With an image of a local stability, and using the

Lyapunov property as a local navigation function, strategies

based on experiments [7], and sampling [12] are applied

to create a sequence of funnels representing different states

and controller stabilities, whose final output is the single,

desired goal. Recently methods for approximating the basin

of attraction based on sum-of-squares optimization have been

proposed [3], [6]. This allows for the generation of a tree of

LQR controllers that are extended to cover the space with

the estimated basin of attractions. Such a tool brings the

opportunity to explore feedback motion planning strategies

in conjunction with sample-based planners.

The method proposed in [6] is used to verify the stability

region of a time invariant LQR controller with an infinite

time horizon to achieve a goal. As shown in Fig. 1, the funnel

(representing a Lyapunov function) illustrates the fact that

there is a certain amount of acceptable error during trajectory

tracking. If the tracking controller can bring the state xsim

inside the the basin of attraction, then an infinite horizon

controller can drive xsim to xgoal as time goes to infinity.

The proposed method is illustrated with swing-up tasks of

underactuated inverted pendulums, for which there is exten-

sive literature when the environment is obstacle-free. Under

the unconstrained assumption, particular solutions based on

energy control [13] and partial feedback linearization [14]

are potentially more efficient (in time and control) than a

RRT based control. This is due to the use of a discrete set of

random actions to expand the RRT, which will almost always

be non-optimal choices. However, the same random nature

allows the proposed algorithm to find a control solution in

a constrained/obstacle-populated workspace, where such par-

ticular methods do not apply and where robotics applications,

like motion planning and control of a legged robot tend to

fall.

III. MOTIVATION AND INTRODUCTION OF THE

METHOD

Under differential constraints, a bidirectional RRT

(biRRT) works by generating a set of paths, starting from

an initial state, each attempting to connect to a goal state.

At each iteration, a random state (xrand) is sampled, and the

closest node on the forward tree (xnear) is identified. Next a

series of pre-defined open-loop actions starting from xnear

generates a set of candidate states. The closest candidate

to xrand is selected as a new node xnew to be added to

the forward tree. The backwards tree is greedily extended

in the direction to xnew. The trees are then swapped when

xgoal

xsim

t infinite

tracking error

open-loop trajectory

finite horizon closed-loop trajectory

infinite horizon closed-loop trajectory

Fig. 1. For purposes of the algorithm propsed, there is no need to track a
trajectory perfectly, as long as the last state under a finite horizon controller
falls inside the basin of attraction of an infinite horizon controller.

the number of nodes in each tree is unbalanced. (Details in

[15]).

An example of the biRRT used for control is shown in

Fig. 2(a). Consider a torque limited pendulum. The figure

on the left shows a biRRT search as a phase plot [θ × θ̇]
where the state space is defined by X = [θ, θ̇]. For clarity of

explanation, the figure on the right illustrates an equivalent

biRRT search drawn with few elements. The goal of this

nonlinear control problem is to bring the pendulum from

the stable position Xstart = [0, 0]T to the upright position

Xgoal = [±π, 0]T . The limited actuator torque imposes

a swing-up action before the pendulum acquires enough

momentum to reach the upright position.

One characteristic of the RRT is that its convergence is

solely driven by open-loop actions starting from random

initial states. In practice, this means that a solution (if it

exists) is sought by the algorithm by continuously sampling

until a node in one of the trees is pulled close enough to a

node on the other tree, regardless if:

• (1) a certain pair of states (i.e a shortcut connection to a

solution) is easily connected by a closed-loop controller,

• (2) connecting nodes do not need to be close, because

under feedback control these “jumps” in states can be

easily handled by a feedback controller.

Figs. 2(b)(c) show the proposed feedback approach incor-

porated to a biRRT. Fig. 2(b) shows an attempt to connect

the trees during the first iterations of the biRRT. A local

linear feedback controller is used to track the path starting

from xclose, but because of the nonlinearities and differential

constraints involved, the connection between the trees is be-

yond the robustness of the linear controller and the tracking

fails. The “jump” of states is too large and the system states

finished at xsim, whereas the ideal tracking (without jumps)

should bring it to xgoal. As the trees expand in a direction
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a) In a conventional biRRT, a solution is found when the trees contain approximately two coincident states, generating 

smooth transitions between nodes.

b) An attempt to track a distant connection between nodes by feedback control fails. The final state of the finite horizon 

controller is is out of the stability boundaries of the infinite horizon controller at            (gray area).
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c) As the biRRT expands, the connection causes less disturbance for the tracking controller. The feedback was able to 

bring the final state inside the basin of attraction, despite the tracking error.
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Fig. 2. While a biRRT must sample until nodes on each tree are close to each other, the proposed algorithm tries to generate and track connections,
verifying the feasibility by observing that the final state is stabilizable by the controller at the goal. (Notice that the angles in radians are shown unwrapped).

towards each other, the connection distance decreases, to the

point that a closed-loop control succeeds in bringing xsim

inside the basin of attraction of an infinite horizon controller

designed to keep xgoal stable (refer to Fig. 1). This situation

is shown in Fig. 2(c), where the total number of nodes (or

states) is 63 compared to 202 nodes for the conventional

biRRT (Fig. 2(a)).

From a classical control theory perspective, the forced

connection in Fig. 2 using a feedback controller is similar to

a large trajectory disturbance (or step input) where the refer-

ence changes from xclose to xnew. If the reference change is

too large, then the controller will fail to track and eventually

destabilize. If the reference change is within the range of the

controller action, the RRT search is terminated because the

goal is reachable by an infinite horizon stabilizing controller.

A comparison of the exploration required in each case

shows the potential of feedback control within a sampled

based motion planning structure. Certainly, the very efficient

solution of the last example comes at the expense that at each

iteration, a local linear feedback controller must be designed

and simulated for every iteration of the RRT. While a RRT

trajectory can be generated with any kind of forward (black
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blox) simulator, in the feedback approach, explicit handling

of the dynamics (i.e., a model) is required depending on the

method used for feedback design and the verification of the

basin.

This paper is motivated by the following features of

feedback motion planning:

• avoid oversampling of states;

• allow the termination of the RRT exploration as soon

as it is made possible by feedback means;

• feedback controller is designed as the RRT expands;

and,

• partially optimal trajectories at the neighborhood of the

connection are achieved (by using optimal regulators)

IV. THE GAIN SCHEDULED RRT

This section introduces a feedback controller and a ver-

ification method for the feasibility of connection of states.

This informs the GS-biRRT design.

A. Feedback controller

For systems with a quadratic reward function, optimal full

state feedback solutions may be found by solving the Riccati

equations to generate LQR gains for both the infinite horizon

(via the algebraic Riccati equation) and the finite horizon (via

the differential Riccati equation, typically solved by dynamic

programming) [2]. These solutions are used for a stabilizing

controller at the goal and a tracking controller during the

trajectory following phase, respectively.

The use of time variant linear quadratic regulators is

suitable in the biRRT framework because the gains can be

designed incrementally according to the growth of the back-

wards tree, as hinted in [6], when the LQR gains are designed

as a continuous sequence of gains on each branch of the

backwards tree finishing at xgoal. In the proposed approach,

because the LQR gains must be designed incrementally, for

each node, the differential Riccati equation is solved based

on the value of the controller on the previous node with:

−Ṗ = PA + AT P − PBQ−1
u BT P + Qx (1)

where A, B are the system dynamics linearized at the states

of the tree node and Qx, Qu are the penalty matrices for

state error and control usage, respectively. Feedback control

is given by:

δu(t) = −Q−1
u BT P (t)x (2)

where the K = Q−1
u BT P (t) is the finite horizon LQR

gains. Fig. 3 illustrates the process in which the LQR gains

are designed backwards incrementally by integrating Eq. 1

starting with the value of P(tn−1) of the parent node.

For the final expected cost, the value of P = P(tf ) is

given by the infinite horizon LQR. This not only allows the

calculation of the gains at the goal by solving the algebraic

Riccati equation [2] in Eq. 3, but also makes it possible to

x  , P(t ),2         2  

x  , P(t ), 1         1  

x       , P(t )goal           f

x  , P(t )3         3  

K3

K2

K1

Kf

Fig. 3. Incremental generation of LQR gains along the backwards tree
(direction represented by the arrow).

Trajectory 

generation

(...x3, x2, x1, 

xgoal)

Plant

Feedback 

compensator

(...K3, K2, K1, 

Kgoal)

xd

ud

u

u x

Fig. 4. Two degree of freedom controller. The feedback controller has a
sequence of LQR gains scheduled at each tree node that is part of the RRT
open-loop trajectory.

verify the basin of attraction for the time invariant controller

(detailed in sec. IV-B).

ṖA + AT P − PBQ−1
u BT P + Qx = 0 (3)

For simulating the closed-loop control, a conventional two

degree-of-freedom controller [2] is gain scheduled for trajec-

tory tracking shown in Fig. 4. The feedforward compensator

(trajectory generation) outputs are defined by an interpolated

sequence of states and actions registered in each node of

the biRRT. The feedback compensator is scheduled with

the interpolated gains of the respective node. The feedback

control law is given as:

u(t) = K(x − xd) + ud (4)

where K is the scheduled gain for the corresponding state.

B. Verification of the Connection

Consider again the biRRT in Fig. 2(c). The feasibility of

the forced connection between xclose in the forward tree with

xnew in the backwards tree is verified with a forward integra-

tion to simulate the closed-loop tracking task. The scheduled

controller, drives the states to follow the open-loop trajectory

starting from xclose and passing through xnew, x2, x1, xgoal,

respectively; tracked by scheduled controllers designed in

section IV-A. Because the connection xclose−xnear does not

address the system dynamics, a tracking error is generated
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and the final simulated state xsim is not expected to be

at xgoal. However, if the tracking controller is properly

designed, the final integrated state xsim approximates xgoal

as the greedy biRRT expands and the trees get closer (in a

L2 metric sense).

Lyapunov stability [16] gives the property that if the finite

horizon tracking controller brings xsim inside the basin of

attraction, then the infinite time horizon controller (Eq. 3) at

the goal will drive xsim to xgoal. Conversely, if the final state

is outside the basin of attraction (shown in Fig. 2(b)), then

the forced connection has generated disturbance beyond the

tracking ability of the controller, rendering a failed attempt.

Reasoning that a state is inside the basin under a finite

horizon control, provides an elegant way of estimating

successful connections under a fixed simulation time. This

is more efficient than a brute force solution which would

consider simulating connection attempt until the system

reaches steady-state regime and verifying if it reached xgoal.

Estimation of the basin of attraction of the controller (as

proposed in [6]) provides a method for the direct computation

of Lyapunov functions for both the time invariant LQR (at

xgoal) and for the states in the vicinity of the open-loop

trajectory that falls within the boundaries of the basin at

the goal. The method proposed uses the positive definite

structure of V (x) = xT Px as a Lyapunov function at the

goal (for the local linear system) and find the maximum value

of ρ which delimits the boundaries of the stable region:

BG(ρ) = {x|0 ≤ V (x) ≤ ρ} (5)

and the property that V̇ is negative definite within the bound-

aries of B is verified using convex optimization based on

sum-of-squares method (detailed explanation of the method

is found in [6], [17]).

C. The Algorithm

BiRRTs are chosen as the basis for implementing the al-

gorithm because their greedy nature that attempts to connect

one tree to each other, which makes the exploration shorter.

However, the algorithm can be easily reduced to a single

forward RRT by simply fixing the backwards tree to a single

xgoal node with no further adaptation.

The gain scheduled biRRT (GS-biRRT) algorithm is ini-

tiated by designing an infinite time LQR at the origin and

verifying its basin of attraction, similar to the procedure in

[6]. The forward and backwards tree are then expanded as

in an ordinary biRRT algorithm.

At every new node xnew in the backwards tree, three

additional steps are made:

1) A set of finite time LQR gains are calculated based on

the previous values of the P matrix (Eq. 1) recorded in the

parent node of xnew. The resulting Pxnew
is then kept with

the new node.

2) A direct connection between the closest node xclose

in the forward tree to xnew in the backwards tree is made.

Similar to step 1), a set of LQR gains are calculated for xclose

based on the values of the xnew controller (refer again to Fig.

2(c)).

3) Forward simulation connecting xclose in the forward

tree to xnew in the backwards tree while following its parents

until xgoal. The final state is then checked to see if it is inside

the basin.

If the final state is outside the basin, conventional biRRT

expansion proceeds. If the final state is inside the basin,

the search stops and LQR gains are scheduled by back

propagating the solution of Eq. 1 from xgoal to xinit.

The algorithm outputs the sequence of LQR controllers for

feedback control, as well as the open-loop trajectory to be

tracked.

D. Implementation Details

An alternative to step 3) is to estimate the basins of

attraction for each new node on the backwards tree as

proposed for the LQR-trees algorithm in [6]. Then it is

enough to verify that the feedback controller can drive

the states from xclose to the basin of xnew. However, this

requires more computation than a direct forward simulation.

Moreover, there is no intention of covering the space with

basins of attractions since this work is motivated by single

query problems.

In step 3), starting the simulation from xclose and not from

xstart (see Fig. 2(c)) alleviates a full forward integration of

the trajectory during the verification of the connection. This

can be helpful for long trajectories where simulations are

computationally intensive. However, for stability verification

of systems with critical nonlinear dynamics, it may be

judicious to simulate the full trajectory, especially if the

system is stiff and there is concern about numerical error

integration during simulation.

The estimation of the basin of attraction does not consider

saturation of the actuators. A basin of attraction of a saturated

system is smaller than the basin of an unsaturated dynamics,

since there is less control authority for stabilization. One

way to alleviate this problem is to set a large penalty for

the control usage of the LQR controller at the goal (J =
xT Qxx + uT Quu, with Qu large). Since a large penalty

is not intuitive, tracking robustness of the saturated system

is increased by purposely allowing some margin for the

feedback control (δu in Fig. 4). The connection is verified

with a maximum actuator value that is slightly lower, (e.g.

5 to 25 %) than the real actuator limits.

V. RESULTS AND DISCUSSION

A. Single-Link Pendulum

The GS-biRRT is implemented for the single-link pendu-

lum described in section III. The pendulum has a mass of

5 kg concentrated at the tip, length 0.5 m and damping 0.1

kgm2/s. The biRRT is expanded and verified with control

actions u = [0 ,±1 ,±2 ,±3] Nm and the torque limit for
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Fig. 5. GS-biRRT expansion. Blue: forward tree, red: backwards tree,
black: integrated feedback dynamics, green: forced connected trajectory,
gray area: basin of attraction of the infinity horizon controller at the goal.
Sequence 1 and 2: connection attempts where the system does not achieve
the basin. At step 3 the system reaches the basin. Step 4: complete closed-
loop trajectory.

the final feedback controller is 3.75 Nm and 25% of control

margin for tracking error corrections.

Fig. 5 shows the result of the proposed GS-biRRT on

the phase-plane. In the first two sub figures, the closed-loop

controller tries to connect the forward and backwards tree

naively without success (note xsim does not reach the basin

of attraction). In subfigure 3, xsim finishes inside the basin.

Notice that the controller connects the still far xclose and

xnear states where in a normal biRRT approach, random

sampling would proceed until these states approximately

coincide. Fig. 6 shows the time response of the previous

simulation. Notice that forced connection xclose − xnear

creates a large trajectory discontinuity, that requires feedback

correction. In an average of ten simulations for each method,

the conventional biRRT finds a solution with a tree of

157±78 nodes, while the GS-biRRT needs in average 63±7
nodes (where ±σ is one standard deviation).

B. Cart and Pole Swing-Up

As the dimension of the search increases, the difference in

the size of the trees between the biRRT and the GS-biRRT

(and, the exploration required to find a solution) becomes

more obvious. In part, this is because the linear quadratic

regulator is indifferent of the size of the state vector.

The method is initially applied to swing-up task in an

unconstrained workspace (Fig. 7). This canonical nonlinear

control theory problem, consists of moving the actuated

cart backwards and forwards, so that the unactuated pole
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to afford the discontinuity in trajectory.

x

+

y

Fig. 7. Cart pole model.

is swung-up, from its stable position to the upright position,

with the cart resting at its start position.

The state vector is x = [x, θ, ẋ, θ̇]T , xinit = [0, (2k +
1)π, 0, 0], xgoal = [0, (2k)π, 0, 0], where k = 0,±1,±2,±
3.... The dynamics are based on the model in [18]:

θ̈t =
g sin θt + cos θt

[

−Ft−mlθ̇2

t
sin θt

mc+m

]

l
[

4

3
− − cos2 θt

mc+m

] (6)

ẍt =
Ft + ml

[

θ̇2
t sin θt − θ̈t cos θt

]

mc + m
(7)

where:

g = −9.8 m/s2, acceleration due to gravity

mc = 1.0 kg, mass of cart

m = 0.1 kg, mass of pole

lc = 0.5 m, position of center of mass of the pole

l = 1 m, pole length
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Fig. 8. Swing-up of a cart and pole in a free workspace. Blue: forward tree, red: backwards tree, black: closed-loop response, gray area: basin of attraction
of the infinity horizon controller at the goal.

The trees are expanded with the cart forces u = [0,±2,±
4,± 6,± 8,± 10] N and closed-loop maximum saturation is

12.5 N . Fig 8 shows the biRRT compared to the GS-biRRT

search. The state-space is shown in two separated phase plots

for clarity. For an average of ten simulations for each method,

the biRRT grew 1660± 1221 nodes to find a solution while

the GS-biRRT required only 144±85 nodes. Thus, much less

exploration was required to find the control sequence. The

average execution time of the open-loop swing-up trajectory

of the biRRT in the same set of experiments was 4.4±1.0 s
and the GS-biRRT 2.0± 0.5 s. For the sake of comparison,

a solution found by a trajectory optimization routine based

on collocation [19] shows that the optimal time swing-up

motion is 1.6 seconds.

The use of an RRT framework makes it natural for the GS-

biRRT to find control strategies among external constraints

(e.g., obstacles) as shown in Fig. 9. In this example, the task

is to start with the pole at the xinit = [0, (2k+1)π, 0, 0] and

finish at xgoal = [3.7, (2k)π, 0, 0], while passing under the

obstacle in the middle, and while avoiding the rail stoppers.

For comparison, 25 simulations were conducted. For all of

them, the GS-biRRT shows a consistent strategy (consisting

of accelerating the cart until it passes under the obstacle,

decelerating so that the pole goes up, and finally controlling

the balance and bringing the cart to the goal position).

Unless the greedy element luckily samples close to optimal

sequences, the biRRT case is more varied with the cart

generally having trouble passing around the obstacle, and

again during the final swing-up without hitting the stopper.

On average, the length of the curve traced by the poletip

(dotted line) for the biRRT and the GS-biRRT case was

11.2 ± 5.3m and 6.0 ± 0.8m, respectively. In the latter, the

small standard deviation is an indication that all solutions

generated are roughly consistent. This is an interesting result

because although the algorithm runs over a randomized

planner, the feedback controller finishes the search at the

first feasible opportunity, which tends to occur when the trees

are still simple in shape; and thus, the solutions generate a

similar trace in the workspace.

Although the GS-biRRT may not always lead to a faster

swing-up trajectories (because the disturbance caused by

connecting the trees generates an extra time to balance the

pole under feedback), it shows that the biRRT exploration

using only random samples leads to unnecessarily long

trajectories.

VI. CONCLUSION AND FUTURE WORK

A method to solve nonlinear control problems in con-

strained workspaces using a feedback motion planning strat-

egy is presented. The RRT framework is used to generate

random sampled states, and feedback control is used to

connect start and goal states at the first feasible opportunity.

The connection is made by attempts in tracking a large

disturbance caused by the unnatural connection of distant

states. The connections are verified with the use of an

estimated basin of attraction. The method avoids oversam-

pling of states and generates feedback gains as part of the

process. The optimal control is solved with simple linear

LQR controllers, whose design process – different from

other dynamic programming strategies – is not affected by

the dimension of the problem. While components of this

problem have been explored before, no prior work spans the

entirety of gain scheduling feedback and motion planning in

an integrated manner.

Future effort are looking to verify the feasibility of the

GS-RRT method for nonholonomic motion planning and

fully actuated mechanisms where feedback linearization may

avoid the use of scheduled controllers.
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Fig. 9. One of the control strategies for a cart and pole swing-up among obstacles (units in meters). The GS-biRRT shows a motion more natural than
the biRRT, consistent in 25 sets of simulation.
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