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Abstract— Disturbances that arise in material removal by
repeated attempts to track the same path have the partic-
ular characteristics of non-repetitive magnitudes, but nearly-
repetitive or gradual gradient transitions. This paper proposes
and validates Iterative Learning Control (ILC) with a PD-type
learning function for this class of disturbance as a predictive
controller for autonomous excavation. However, parameters of
the PD learning function may require different tunings for
different excavation conditions, and convergence can be slow
when compared to changes in excavation dynamics. In order
to improve convergence, a plant inversion learning function is
reinterpreted as a disturbance observer in the iteration domain,
effectively rendering a disturbance learning controller (DLC).
A hydraulic mini-excavator was used to evaluate experimentally
the performance of the conventional ILC and the DLC against a
robust controller. ILC achieved a desired cut profile with non-
monotonic transients and DLC converged faster by learning
disturbances directly from command discrepancies.

I. INTRODUCTION

Heavy equipment automation is one of the key enabling
technologies of the mining industry as demand increases and
mine locations move to remote areas [1]. Autonomous haul
trucks [2] and drills [3] have recently become part of the pro-
duction cycle in some mines, due principally to technological
progress in areas related to perception, localisation and path
planning. The deployment of autonomous excavators is yet
to be seen, however, as in addition to the aforementioned
technologies autonomous excavation requires encoding, pre-
dicting and counteracting large forces that approximate the
machine’s capability.

Control methods for autonomous excavation usually focus
on single-pass position or force control based on prediction
and generation of actions that are feasible under the manip-
ulator constraints. These approaches tend to rely on soil-tool
interaction models and their performance is usually limited
by the quality of the predictions. Moreover the majority of
approaches do not take in consideration that excavation is
by its very nature an iterative process. Iterative learning
methods can provide low-level controllers with the ability
to learn and adapt to varying soil conditions while relaxing
the dependence on explicit soil-tool interaction models.

The problem in iterative autonomous excavation is that of
maintaining convergence towards a desired cut profile [4]. In
this view, not every pass (here also termed an iteration) needs
to be feasible with respect to actuator force limits. In fact,
only the last pass needs to be feasible so that the final cut
profile can be tracked without error. Individual passes with
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Fig. 1. A sequence of eight excavation passes executed by a conventional
computed-torque feedforward controller, iteratively tracking the same dotted
path. As soil compacts due to consecutive passes the convergence rate
decreases and—in this case—eventually vanishes due to insufficient control
authority.

potentially large position deviations caused by actuator force
saturation are not considered as failures but as intermediate
stages in reaching the goal. The control problem is then to
generate and to adapt actuator commands to achieve the final
cut profile with a minimum number of iterations.

In an ideal world, high-gain control strategies would be
the easiest way to maintain a desired rate of dig con-
vergence. The reality is that the open-loop bandwidth of
heavy hydraulic machinery is severely limited by the inherent
compliance of the flexible hydraulic lines and deterioration
of the effective bulk modulus of the hydraulic fluid through
entrapment of air or water in the circuit [5]. High gains can
excite the low resonant modes of an hydraulic arm, which
can have catastrophic consequences due to the large inertias
involved. Fig. 1 shows eight iterative excavation passes with
feedback controller gains bounded to avoid exciting the res-
onant modes of the arm. Note that the convergence decreases
since the bounded gains effectively generates a low–stiffness
controller, evidencing the need for control improvement.

This paper proposes maintaining convergence and improv-
ing the controller actions by learning better feedforward
commands between iterations using Iterative Learning Con-
trol (ILC) [6]. If the first feedforward iteration is initialised
reasonably (e.g. from the free-motion inverse dynamics of
the arm), useful removal of material starts immediately
without the need for explorative or learning passes. One
expected issue is that ILC typically needs several iterations
to converge, which can be too slow in comparison to the
rapid changes that can occur in soil-tool dynamics.

The remainder of this paper is organised as follows. Sec. II

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 2599



discusses the suitability of ILC for overcoming disturbances
that occur during material removal and Sec. III proposes an
iterative method for achieving faster convergence. Validation
is carried out by experiments with an hydraulic excavator in
Sec. IV and the results are discussed in Sec. V.

II. BACKGROUND

Improving a low-stiffness excavation controller requires
adapting actuator commands to compensate for soil-cutting
reactions without relying on the low gain feedback loop.
Obtaining such adaptive actions through a model-based
approach requires predictions from complicated soil-tool
interaction models. These models are unavailable except for
simple cases that can be approximated using flat blade theory,
or are too complex for real-time compensation purposes [7].
Despite comprehensive work analysing and comparing sev-
eral models available for resistive force prediction [8], [9]
there is a lack of consensus and practical validation of such
models for control purposes.

Robust and impedance control methods have been applied
in excavation providing an alternative to detailed mod-
elling [10], [11]. The assumption of linear mass–spring–
damper dynamics as a soil-tool interaction model can be
restrictive since there are no guarantees that parameter iden-
tification methods can properly fit the linear structure for all
possible excavation conditions [8].

A. Disturbances in Excavation

Material removal processes are very often characterised
by repetition of similar movements where each pass (itera-
tion) causes partial removal of material, thus decreasing the
tracking error at the next iteration. This strategy occurs in
tasks as diverse as excavation, CNC machining and scooping
ice-cream.

The stability of learning algorithms for processes similar
to excavation, that is large disturbances caused by removal
of material, has been investigated with 2-D systems theory
in [12]. In the refereed work the theoretical stability analysis
for multipass processes (motivated by long-wall coal cutting
and metal rolling) was presented. The stability issue seems to
be related to increasing oscillations from pass-to-pass, as if
the damping of the systems decreases iteratively. A common
practice in ILC is to low-pass filter the learned signal in order
to eliminate those possible exciting inputs [13].

Forces required to cut and drag the material may vary
from pass to pass due to the different ways that a material
can fail, friction between the tool and medium and within the
medium, compaction caused by pushing the tool through the
medium and rocks. In spite of these confounding effects, our
experimental results show that attempting to track the same
path so that excavation occurs over several passes leads to
near-repetition of the tool velocity profiles, as disclosed by
the servo valve commands shown in Fig. 2. The figure shows
the evolution of the disturbances at each of the three servo-
valves of an excavator arm for the eight passes shown in
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Fig. 2. Disturbances at the three servo-valves of the excavator arm during
field experiments. The light gray curve shows the first pass in undisturbed
soil. The same controller iterates eight times towards a 60 cm deep cut.
From pass to pass, the direction of the disturbance is roughly consistent,
offering a structure that can be learned.

Fig. 1, where the closed-loop controller is given only the
final desired path.

B. Iterative Learning Control and Disturbances

Iterative Learning Control takes advantage of the fact that
past experience is encoded in the form of tracking error
due to disturbances. Disturbances are mapped into control
actions by some learning rule that can completely eliminate
the need for models. Despite the simplicity and effectiveness
of ILC, strict assumptions on repeatability give little hope
of disturbance compensation under non-repetitive exogenous
signals.

Repeatability has been assumed since the inception of
ILC [6] for proving convergence. ILC methods proposed to
deal directly with non-repetitive exogenous signals include
identifying and learning only the segments that are repeat-
able [14] and using disturbance observers or selecting the
proper compensation signal through categorising the pattern
of the disturbance [15].

The following analysis is based on the work in [16],
except that here feedforward input is added as actuator
commands rather than by adjusting the position reference
(Fig. 3). The arm is considered to be composed of three
independent SISO systems. The SISO linear treatment holds
if one assumes that the controller starts from the first iteration
with the compensating feedforward commands obtained from
an inverse arm dynamics. The goal is not to learn the arm
dynamics but the external disturbance forces.

The errors ek = r−yk to a constant reference input r over
two consecutive iterations are related to the outputs by

ek+1 = ek + yk − yk+1 , (1)

where the bold notation is used to indicate that, for example,

yk = [yk(1) yk(2) yk(3) ... yk(N)]T
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Fig. 3. ILC with feedforward actuator input; C is the feedback gain, G is
the plant transfer function, r is the reference input, y is the output, uk is
the feedforward input updated by ILC and d is the exogenous disturbance.

is a vector of N equi-spaced sampled output values at
iteration k; this notation is used similarly for other variables.

At iteration (k + 1) the controller in Fig. 3 has outputs

yk+1 = T (dk+1 + uk+1) + Trr , (2)

where

T =
G

1 + CG
(3)

Tr =
CG

1 + CG
. (4)

Consider the learning rule

uk+1 = uk + Lek, (5)

and substituting (5) into (2)

yk+1 = Tdk+1 + T (uk + Lek) + Trr , (6)

where L is the learning function. Substituting (6) into (1)
yields, after some manipulation,

ek+1 = (1− TL) ek − T (dk+1 − dk) . (7)

Equation (7) shows that the error at the next iteration is a
function of the difference between the current disturbance
dk and the next disturbance dk+1. Thus, when two con-
secutive disturbances are identical their contribution to the
error is zero. The disturbance fluctuation dk+1 − dk dictates
the “baseline error” [15] and the error does not vanish if
disturbances change between iterations.

An empirical observation during excavation experiments
is that if the robot is allowed to repeat passes indefinitely,
disturbance reactions stabilise either because the required
final profile is achieved or because convergence vanishes.
The latter may occur when soil reactions iteratively increases,
equalizing the controller stiffness (e.g. due to compaction
caused by previous passes). In either case these effects min-
imize the baseline error caused by the difference dk+1 − dk

As discussed in subsection II-A, disturbances in material
removal have structure insofar as the direction of the dis-
turbances is constant: the tool-soil interaction is dissipative.
In ILC, learning excavation reactions from one pass and
applying them to the next pass is unlikely to predict the
exact compensation required. Since the direction of the
correction does not change, however, subsequent actions can
be expected to tend towards the correct compensation. A
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Fig. 4. DLC: an iterative version of a disturbance observer where C is a
feedback controller, G is the plant and F is a feedforward compensator. The
feedforward command is composed of a free motion inverse dynamics com-
ponent (when F = G−1) plus a component to overcome the disturbance
estimated from the previous iteration.

feedforward update for this type of non-repetitive disturbance
will lead to over- or under-shoot, depending on whether the
disturbance increases or decreases relative to the previous
pass. Although the tool-soil interaction is dissipative, mono-
tonic transients can not be expected since disturbances are
non-repetitive, in contradistinction to classical ILC.

III. LEARNING DISTURBANCES FROM INVERSE MODELS

Inverse models are useful not only to compute expected
torques (as in computed-torque control), but also to assess
disturbances without requiring a model of the interaction
dynamics through examining the difference between ideal
and actual commands; this is the essential feature of all
disturbance observers (DOB) [17].

The ideal DOB implementation requires the inversion of
a plant model whose output is compared with the actual
actuator command. Assuming that the plant model is perfect,
the cause of the difference is attributed to unmodelled
disturbances that act on the plant.

Thus, the immediate difficulty in implementing a dis-
turbance observer is on obtaining an inverse plant model
that is sufficiently accurate to allow decoupling of external
disturbances from internal dynamics. Lack of accuracy can
cause compensation commands from the observer to interfere
with the feedforward/feedback actions. In the worst case the
plant can be destabilised, for example by generating negative
damping or by exciting resonant modes. A second difficulty
is that plant inversion requires acceleration inputs which
are not adequately recovered by differentiation and causal
filtering of position encoder signals, especially at the low
range of excavation velocities.

Based on plant inversion for disturbance estimation and
with the insight of the semi-structured disturbances found in
excavation an ILC with inverse dynamics learning function is
presented as a disturbance observer in the iteration domain.
The implementation block diagram in Fig. 4 explicitly sep-
arates the commands from the inverse dynamics of the arm
uff from the learned disturbance commands uk+1 in order
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to make clear that the learning accounts only for external
disturbances.

The second inverse dynamics block F calculates, off-
line, the free motion commands of the resulting disturbed
motion. In the case of modelling error, mismatches between
the model and the real plant are compensated iteratively since
they are not different from exogenous signals as seeing from
the learning perspective.

The DLC update rule is

uk+1 = (uactual)k − Fyk
uk+1 = Cek + F r + uk − Fyk
uk+1 = (F + C)ek + uk , (8)

and, following a similar derivation as for the ILC, the
evolution of the error becomes

ek+1 = [1− T (F + C)] ek − T (dk+1 − dk) (9)

ek+1 =

[
1− G

1 + CG
(F + C)

]
ek − T (dk+1 − dk) .

If the feedforward compensator F is set to be the plant
inverse dynamics G−1, the error is simply

ek+1 = −T (dk+1 − dk) . (10)

Note that the feedforward term is the sum of torques to
drive the arm free dynamics (the first F block in Fig. 4) and
to counteract terrain reactions (estimated from (8)).

While conventional PD-type learning rules make the ILC
update dependent on the tracking error, the use of the inverse
dynamics makes the learning rule dependent on commands
only. This difference has an important consequence on the
evolution of the error. By comparing the conventional ILC
error (7) with the DLC error (10) it is clear that DLC error is
independent of the previous tracking error, while ILC needs
extra steps to decrease the residual error that is propagated
to future iterations.

In summary, assuming that disturbances are repetitive and
are independent of the trajectory, the DLC update theoreti-
cally achieves convergence in one step. The price to pay is
that an inverse model must be available. In relation to an on-
line disturbance observer, DLC can be seen as a compromise
between implementing a stable inverse dynamics model
off-line and being able to accept partial correction in the
feedforward action.

IV. EXPERIMENTS

A. Platform

The experimental platform is a 1.5 tonne Komatsu PC05-7
mini-excavator. The arm links and cylinders weigh a total of
110 kg and the arm reaches 3 m from the boom base. The
hydraulic cylinders are flow controlled by servo-valves. All
cylinders are supplied from the same accumulator, which is
charged to 70 bar by a hydraulic pump driven by a diesel
engine. Command signals sent to the servo-valves are spool
position references; these are controlled by high-bandwidth

analog feedback loops internal to the servo-valves. More
details on the platform can be found in [11]; issues related
to hydraulic compliance and friction are described in [18].

B. Procedure

Quantitative validation and comparison of controllers in
excavation is difficult to achieve due to the high variability
of the soil conditions. Variations in moisture content, com-
paction and inclusions such as rocks and vegetation roots can
cause significant disturbances.

In order to compare controllers under deterministic and
reproducible experimental conditions a method similar to
vehicle suspension track replay was used. The initial experi-
ments were carried out in the field under different excavation
conditions while recording controller commands and exca-
vator responses. The disturbances at each pass were then
estimated as

(udist(t))k = (uactual(t))k − Fyk(t) , (11)

where F is the inverse arm dynamics. The first term on the
right side of the equation is the sequence of recorded control
inputs during iteration k and the second term represents
what should be the free motion commands of the arm
for the recorded motion yk(t). The estimated disturbances
(udist(t))k are vectors at 100 Hz. Fig. 5a) shows the se-
quence of extracted disturbances for four different cuts; Fig.
5b) shows one of those cuts.

The values (udist(t))k obtained from (11) are repeated
in the same order of the field experiments for each cut:
that is, k = 1, 2...M where M is the last pass of each
cut. Those values contaminate the controller signal as an
additional input to the servos (input d in Figs. 3 and 4).
The controllers under evaluation do not have direct access
to the disturbance signal (udist(t))k but have to learn a better
compensation command for the next iteration by observing
the current input commands and the arm response. Using this
procedure a side-by-side quantitative comparison is possible
since all controllers are subject to exactly the same sequence
of disturbances values.

C. Controller Settings

The development of the DLC assumes that an accurate
inverse dynamics model of the arm is available, so it is
sensible to initialise the first feedforward commands of all
evaluated controllers with

u0 = M(qr)q̈r + v(qr, q̇r) + g(qr) , (12)

where u0 is the vector of required torques for the free motion
of the arm, M is the inertia matrix, v is the vector of
centrifugal and Coriolis forces, and g is the gravity vector.
The desired joint positions qr are obtained from the inverse
kinematics of the path that defines the desired shape of the
cut to be excavated.

This work adopts a PD learning rule for the ILC update

uk+1 = uk + q̃kP + ˙̃qkD ,
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Fig. 5. a) Disturbances recovered from four cuts are used in playback mode to evaluate the controllers (showing only the values for the first joint). The
first pass is shown in light grey and progresses gradually until the last pass in black. b) One of the cuts opened during field experiments showed that the
soil consisted of clay and scattered pieces of bricks and roots.

where q̃k is the joint tracking error, P and D are the
proportional and derivative gains and ˙̃qk is the joint velocity
error, filtered by a moving-average smoothing method.

D. Benchmark

A conventional disturbance observer shown in Fig. 6
is implemented as a benchmark. Amongst several imple-
mentations of disturbance observers, a variable structure
observer (VSO) has been experimentally validated [19], [20]
as providing superior performance with different types of
hydraulic machinery. The suitability for hydraulic systems
arises in part because VSO induces a sliding mode in the
estimated variable, making the compensator robust to error
and variations in its internal parameters. These are usually
difficult to identify in heavy hydraulic equipment.

The disturbance observer has the following transfer func-
tion

X1 =
X2

s
+

σ

ms
(13)

X2 = (−U + Udist + L1σ)
1

ms+ d
(14)

Udist =
−L2σ

s
(15)

σ =Wtanh

(
y −X1

γe

)
, (16)

where U is the control input, y is the position; X1, X2,
and Udist are estimates of position, velocity and disturbance
torques; m, L1, L2, W and γe are design parameters, σ is the
function that induces the sliding mode and d is the servo-
valve gain. Implementation required only the position and
control inputs since velocity is estimated internally.

Note that implementing the VSO for each joint required
hand-tuning of five parameters plus system identification
of the servo-valve gain; a total of 18 design parameters.

C∑
r

∑

F

y

d

∑ G
e

VSO

udist

u

Fig. 6. Controller with VSO for disturbance compensation; C is the
feedback gain, G is the plant transfer function, r is the reference, y is
the output, u is the command input and udist is the estimated disturbance.

Although the robustness given by the sliding mode is worth
the design effort1, VSO has been notoriously hard to tune in
practice [20].

V. RESULTS

Fig. 7 shows the evolution of the ILC, DLC and the VSO
as they are subjected to the same sequence of disturbances.
During the initial passes disturbances show large changes in
magnitude and the controller with VSO tracks more consis-
tently than the other controllers. In some passes both the ILC
and the DLC showed the expected overshoot/undershoot be-
haviour depending on the changes in disturbance magnitudes,
however both controllers maintained convergence towards
the desired reference path.

Fig. 8 shows a comparison of the three controllers under
the four disturbance data sets in the form of root-mean-
square (RMS) error of the distance between the bucket tip
and the reference trajectory during each pass. The iterations
marked with an asterisk are passes where the disturbance of
the last pass without the asterisk is repeated. This is useful
to observe how many extra iterations the DLC and the ILC

1At least for three joints, but probably not for seven or more.
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Fig. 8. RMS error distance between the bucket tip and the reference trajectory of the three controllers. The asterisks denote iterations where the previous
disturbance vector is artificially repeated to observe convergence under repetitive conditions.

would require to achieve the same performance as the VSO.
In all cases both the DLC and the ILC achieve better final
accuracy than the controller with VSO since they do not
suffer from estimation delays.

Table I summarises the results by comparing the number
of iterations that the DLC and the ILC required to achieve an
error less than or equal to the minimum error achieved by the
VSO. For example, with disturbance data set A, the controller
with VSO achieved the minimum RMS error of 2.5 cm at the
5th iteration. DLC took 6 iterations since at the 5th iteration
the RMS error value was 3.4 cm. In general the convergence
of DLC and VSO were very similar, with the DLC usually
delayed by one pass; the ILC required approximately three
extra passes when compared to the VSO.

Finally, the DLC controller was evaluated under real
excavation conditions where it was deployed on undisturbed
sandy-clay-loam soil. The DLC controller was not only used
to cut single profiles but also to open long trenches of 4
meters in length and 0.8 meters deep (Fig. 9 a)). As shown
in Fig. 9 b), the excavator dug under a variety of rocks

distribution that increased in frequency according to the
depth of the cut. Fig. 9 c) shows the average error per pass,
where the DLC and VSO controllers dug seven different cuts
each. The convergence of the DLC was comparable to the
VSO controller.

VI. CONCLUSIONS

This paper proposed and analysed the use of ILC for
a particular class of non-repetitive disturbances found in
material removal processes. A parameter-free iterative Dis-
turbance Learning Control (DLC) that approximates an ideal
disturbance observer implementation was introduced. While
a conventional PD-type ILC learns disturbances by iteratively
decreasing the tracking error, DLC learns disturbances di-
rectly in the command space; independent of the tracking
error. Both control methods were validated by disturbing
servo commands of a mini-excavator with commands due
to excavation reactions in field experiments. Experimental
results showed that DLC achieves faster convergence than
ILC during the non-repetitive disturbances passes. During
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b) The trench wall showing the heterogeneous 
conditions of the soil

a) Excavating a long trench (depth: 0.8 m) c) Average RMS error comparison between the DLC 
and VSO controllers
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Fig. 9. Validating and comparing the proposed disturbance learning controller against the disturbance observer controller under real excavation conditions.

TABLE I

ILC AND DLC ITERATIONS REQUIRED TO ACHIEVE
LESS THAN THE MINIMUM VSO ERROR

cut iteration extra passes RMS(cm)

VSO min. error 5 2.5

DLC 6 1 1.5

ILC 8 3 2.0

VSO min. error 6 3.5

DLC 5 -1 2.2

ILC 8 3 2.8

VSO min. error 7 2.8

DLC 8 1 1.8

ILC 10 3 2.6

VSO min. error 9 2.8

DLC 11 2 2.3

ILC 13 4 2.3

A

B

C

D

field trials, the DLC achieved the same cut accuracy and
convergence when compared with a disturbance observer
controller.
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