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Abstract
This paper proposes a method to achieve fast and fluid human-robot interaction by estimating the progress of
the movement of the human. The method allows the progress, also referred to as the phase of the movement,
to be estimated even when observations of the human are partial and occluded; a problem typically found when
using motion capture systems in cluttered environments. By leveraging on the framework of Interaction Probabilistic
Movement Primitives (ProMPs), phase estimation makes it possible to classify the human action, and to generate a
corresponding robot trajectory before the human finishes his/her movement. The method is therefore suited for semi-
autonomous robots acting as assistants and coworkers. Since observations may be sparse, our method is based
on computing the probability of different phase candidates to find the phase that best aligns the Interaction ProMP
with the current observations. The method is fundamentally different from approaches based on Dynamic Time
Warping (DTW) that must rely on a consistent stream of measurements at runtime. The phase estimation algorithm
can be seamlessly integrated into Interaction ProMPs such that robot trajectory coordination, phase estimation, and
action recognition can all be achieved in a single probabilistic framework. We evaluated the method using a 7-DoF
lightweight robot arm equipped with a 5-finger hand in single and multi-task collaborative experiments. We compare
the accuracy achieved by phase estimation with our previous method based on DTW.
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1 Introduction

Assistive and collaborative robots must have the ability
to physically interact with the human, safely and
synergistically. However, pre-programming a robot for a
large number of tasks is not only tedious, but unrealistic,
especially if tasks are added or changed constantly.
Moreover, conventional programming methods do not
address semi-autonomous robots—robots whose actions
depend on the actions of a human partner. Once deployed,
for example in a domestic or small industrial environment,
a semi-autonomous robot must be easy to program, without
requiring the need of a dedicated expert. For this reason,
this paper proposes the use of interaction learning, a data-
driven approach based on the use of imitation learning
(Schaal 1999) for learning tasks that involve human-
robot interaction. In this paper, we exploit the benefits of
augmenting the interaction learning method with a temporal
model of the distribution of phases of a human movement.

An important aspect of collaborative robots is the ability
to recognize the action of the human, and to quickly

generate a corresponding robot trajectory that matches the
predicted human trajectory. As illustrated in Figure 1, by
observing the movement of the human, a robot partner must
not only decide if it should hand over a screw, a plate, or
hold a screwdriver; but once the action is recognized, the
robot must spatially coordinate its trajectory w.r.t the human
movement. Probabilistic models have been used to address
either action recognition or trajectory generation, but for
their realization, many methods require the time alignment
of training data such that the spatial correlation can be
properly captured (Calinon et al. 2007; Ye and Alterovitz
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Figure 1. A robot coworker must recognize the intention of the human before deciding which action to take. In this case, to hand
over a screw, to hand over a plate, or to hold the tool for the human partner. Once the action decision is made, the robot must
then coordinate its trajectory with the trajectory of the human, such that a handover of a plate is successful, for example. The
goal of this paper is to allow the robot to quickly take such actions at the early stages of the human movement, possibly under
partial occlusion of the human movement.

2011; Dong and Williams 2012; Ben Amor et al. 2014;
Perez-D’Arpino and Shah 2015). Under severe changes in
the duration of human trajectories, such models require
reliable measurements of positions for online alignment
of the observations before the interaction model can be
queried. This requirement poses a problem of practical
importance since occlusions and interrupted streams of
position are prone to occur in many of the collaborative
environments of interest such as hospitals, homes and
factories. Other methods will be discussed in the related
work section.

Instead of systematically computing distances between
trajectories for an exact time-alignment as in dynamic
time warping (DTW), the principle of our proposed
method is to test phase candidates by computing the
likelihood of models with different durations. This
approach allows for querying the model with a minimum
number of observations. The general idea is illustrated
in Figure 2 where training data collected with different
durations are first normalized to a single nominal
duration. A probabilistic representation of movement
primitives (Paraschos et al. 2013) is used to learn the
parameters of the distribution under the normalized time.
During execution, the method then computes temporal
variations of the model, which are governed by the phase.
From Figure 2, it is clear that given the same observations,
the model with duration T1 is more likely to represent the
current human motion than the model with duration T2.

To achieve coordination with a robot partner, the method
of Interaction ProMPs are used (Maeda et al. 2016), which
allows the robot trajectory to be generated in conjunction
with the prediction of the human motion. Basically, an
Interaction ProMP provides a model that correlates the

T2

T1
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T

Execution

Figure 2. A cartoon of the phase estimation problem: under
sparse observations there may be many ways in which the
observation can be explained by variants of a model that differ
by a temporal scaling. Each variation leads to different human
prediction and collaborative robot trajectories. The most
probable time scaling is assumed to generate the correct
human-robot coordination.

parameters that describe elementary trajectories of a human
and a robot when executing a task in collaboration. Using
a probabilistic treatment, the trajectory of the robot is
generated by inference, where the Interaction ProMP is
conditioned on the observations of the human. The robot
states are subsequently sampled from the resulting posterior
distribution.
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The contribution of this paper is a single probabilistic
framework that allows a robot to estimate the phase of the
human movement online, and to associate the outcome of
the estimation to address different tasks and their respective
robot motions. Phase estimation not only allows the robot
to react faster—as the trajectory inference can be done with
partial and even occluded observations—but also eliminates
the need for time-alignment. An initial version of this paper
was presented in Maeda et al. (2015) where the algorithm
for phase estimation was introduced. Here, we provide a
more elaborated an extended version with new experimental
results and a significant number of additional evaluations.
The full probabilistic framework including its relation with
Interaction ProMPs is also explained in more detail.

This paper is organized as follows. Section 2 addresses
the relevant literature related to the framework with an
emphasis on phase and time representations. Section 3
describes the proposed method with a brief background
on ProMPs, followed by Interaction ProMPs, phase
estimation, and action recognition. Finally, Section 4
provides experiments and discussions on the application of
the method in a single-task handover experiment and in a
multi-task assembly scenario.

2 Related Work
This section initially discusses approaches that address
the problem of robot movement generation or human
action recognition under temporal variations. The usual
approach is based on time alignment of trajectories. Other
works, however, address time as transition probabilities,
or consider phase as a dynamical system. An important
difference with our work, is that the great majority
either address the problem of movement generation or
action recognition, thus lacking a principled, unified way
to connect these two problems. Due to the practical
application, this section also briefly discusses the handover
literature.

Dynamic Time Warping (DTW) (Sakoe and Chiba
1978) has been used in many robotics applications for
temporally aligning trajectories. For example, as part of
an algorithm that estimates the optimal, hidden trajectory
provided by multiple expert demonstrations (Coates et al.
2008) or as a pre-processing step for the generation of
probabilistic representations, notably Gaussian Mixture
Models (GMM) (Calinon et al. 2007; Ye and Alterovitz
2011) but also other forms of representations (Dong and
Williams 2012; Perez-D’Arpino and Shah 2015). Although
DTW is suitable for off-line processing of data, its online
application is challenging as its principle mechanism
relies on systematic distance computations between full
trajectories. Dong and Williams (2012) and Ben Amor
et al. (2014) presented DTW formulations for online
applications useful when the stream of data is consistent.

Under partial/occluded observations, as illustrated in Figure
2, the use of DTW becomes impractical.

Calinon et al. (2007, 2012) propose explicitly encoding
time dependency in a mixture model. Thus, by directly
conditioning the model on time, smooth temporal solutions
using Gaussian Mixture Regression can be achieved. In our
work, however, observations are provided by the human—
as opposed to the movements of a controlled robot. Due
to the many ways the human can change the speed, the
time index does not reflect the phase of the movement,
hindering the possibility to condition the model directly. In
fact, an important difference of our work is the coordination
between human and robot, rather than the single agent
robot scenario. Hidden Markov Models (HMMs) have also
been used in (Calinon et al. 2006) and in (Lee and
Ott 2011) particularly to avoid the pre-processing of data
during online execution. While the temporal information
is addressed by the transition probabilities of the HMM,
HMMs alone does not suffice to completely represent
continuous distribution of trajectories, often requiring
additional mechanisms to overcome its discrete nature.

The temporal alignment or the phase estimation problem
can be alleviated when velocities or the goal of the human
trajectory are known. The measurement or estimation of
velocity, for example, by differentiation of a consistent
stream of positions, eliminates the ambiguity illustrated
in Figure 2 and allows for the realization of online
algorithms that cope with very fast dynamics (Kim
et al. 2010, 2014). Such methods, however, rely on
a planned environment free from occlusions and fast
tracking capabilities; requirements difficult to achieve in
environments where semi-autonomous robots are expected
to make their biggest impact, such as in small factories,
hospitals and home care facilities. Englert and Toussaint
(2014) presented a method to reactively adapt trajectories
of a motion planner due to changes in the environment.
This was achieved by measuring the progress of a task with
a dynamic phase variable. While this method is suited for
cases where the goal is known—as the phase is estimated
from the distance to the goal—a semi-autonomous robot
is not provided with such information: the goal must be
inferred from the observation of the human movement,
which in turn requires an estimate of the phase.

Dynamical Movement Primitives (DMPs) have the
ability to modulate temporal variations with a phase
variable (Ijspeert et al. 2013). The phase variable is used
to govern the spread of a fixed number of basis functions
that encode parameters of a forcing function. Recently, a
modified form of DMPs where the rate of phase change
is related to the speed of movement has been presented
by Vuga et al. (2014). The method uses Reinforcement
Learning and Iterative Learning Control to speed up the
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execution of a robot’s movement without violating pre-
defined constraints such as carrying a glass full of liquid
without spilling it. A similar form of iterative learning
was used to learn the time mapping between demonstrated
trajectories and a reference trajectory (Van Den Berg et al.
2010). With their approach, a robot was able to perform a
surgical task of knot-tie faster than the human demonstrator.
Although such methods exploit phase or durations to adapt
a velocity profile, they do not address the inverse problem
of estimating the phase itself. ProMPs use the concept of
phases in the same manner as DMPs, with the difference
that the basis functions are used to encode positions. This
difference is fundamental for the tractability of Interaction
Primitives since estimating the forcing function of the
human (a DMP requirement) is nontrivial in practice.

Several works have addressed the action recognition
problem. Graphical models, in particular, have been widely
used. In human-robot interaction, HMMs have been used
hierarchically to represent states and to trigger low-level
primitives (Lee et al. 2010). HMMs were also applied to
predict the positions of a coworker in an assembly line
for tool delivery (Tanaka et al. 2012) while in Koppula
and Saxena (2013), Conditional Random Fields were
used to predict the possible actions of a human. The
prediction of actions and movements of human coworkers
have been addressed by many authors using probabilistic
approaches to model trajectories (Dong and Williams 2012;
Mainprice and Berenson 2013; Perez-D’Arpino and Shah
2015). In common, the cited methods do not explicitly
address robot trajectory generation as part of the model,
usually treating the design of the robot motion as an
independent step that must be executed once the action is
recognized. Robot trajectories were pre-programmed for
the recognized actions Koppula and Saxena (2013), or
generated with motion planners Mainprice and Berenson
(2013); Hayne et al. (2016). We exploit the use of correlated
movement primitives to generate the robot trajectory such
that action recognition and movement generation are both
given by the same probabilistic model and solved by similar
computations.

Although some of the scenarios here presented ultimately
lead to the handover of objects, handovers are not the
only application of Interaction ProMPs and our method
is not intend to be a self-contained solution to the whole
handover problem. A handover is comprised of a complex
series of combined physical and social interaction steps.
As previously investigated by Strabala et al. (2013), these
steps range from (1) the social-cognitive cues that establish
the connection between the giver and the taker, (2) the
coordination of the location and the resulting trajectory as a
function of preferences and socially acceptable movements
(Sisbot and Alami 2012), and (3) the final physical
transfer that comprises interaction forces and compliances

(Kupcsik et al. 2015). While Interaction ProMPs does not
encode or output trajectories based on such vast amount
of information, as an imitation learning method, they
implicitly encode user preferences from demonstrations
which appears to be more suited for human interaction than
pure motion planning approaches (Cakmak et al. 2011).
Human-robot handover offers an interesting application for
methods that emphasize the fast response of the robot, and
therefore, it suits our investigations in phase estimation.
In the handover context and under the assumption of a
single task, this paper shares similar challenges faced in
Yamane et al. (2013) where the robot trajectory had to
be coordinated according to the observation of the human
partner during the passing of an object. Yamane et al. (2013)
encoded the demonstrations in a tree-structured database as
a hierarchy of clusters, which then poses the problem of
searching matching trajectories given partial observations
using a sliding window. In contrast, our method uses a
flat representation which requires less computation while
allowing the recognition of different tasks.

This paper uses Gaussian distributions to encode the
joint distribution of human and robot movement primitives
over entire trajectories. This makes action recognition
straightforward since each Gaussian represents one task.
Also, this representation allows to quickly infer the most
appropriate robot movement primitive by conditioning the
joint distribution on the human task. Note that this is
fundamentally different from the GMMs approach that
encode local variations across demonstrated trajectories
(e.g. Calinon et al. (2012)). In the body of work of Calinon
et al., the flexibility provided by multiple components
can be exploited, for example, by a stiffness controller
which adapts the robot behavior as a function of the
local uncertainty over the distribution of demonstrated
trajectories.

This paper consolidates our recent efforts in different
aspects of semi-autonomous robots. It leverages on our
developments in human-robot interaction (Ben Amor et al.
2014) and the ability to address multiple tasks (Ewerton
et al. 2015b; Maeda et al. 2016). While our previous
interaction models were explicitly time-dependent and
reliant on DTW, here, we introduce a phase-dependent
method that is free from time alignment processing and
allows for fast robot action recognition and trajectory
generation.

3 Probabilistic Movement Primitives for
Human-Robot Interaction

This section introduces the basic concepts of ProMPs on a
one dimensional case, followed by the multi-dimensional
ProMP case. As it will become clear, there is a natural
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transition from a multi-dimensional ProMP to the human-
robot case with Interaction ProMPs. This section also
addresses how to compute the probabilities of a task when
many Interaction ProMPs are used to represent different
tasks. This section finishes by introducing phase estimation,
which also provides means to recognize human actions in
multiple-task scenarios under partial human observation.

3.1 Probabilistic Movement Primitive for a
Single Dimension

For each time step t a position is represented by yt
and a trajectory of T time steps as a sequence y1:T . A
parameterization of yt in a lower dimensional weight space
is proposed as

yt = ψTt w + εy, (1)

p(y1:T |w) =

T∏
1

N (yt|ψ
T
t w, σy), (2)

where εy∼N (0, σy) is zero-mean i.i.d. Gaussian noise,
w ∈ RN is a weight vector that parameterizes the
trajectory, and ψt = [(ψt)1, ...(ψt)N ]T ∈ RN×1 has the
values of each of the basis function at time t. The weights
are computed with linear regression with a time-dependent
design matrix

w = (ΨT
1:TΨ1:T )−1ΨT

1:Ty1:T (3)

where

Ψ1:T =


(ψ1)1 . . . (ψ1)N

...
. . .

...
(ψT )1 . . . (ψT )N

 , (4)

The number of Gaussian bases N is often much lower
than the number of trajectory time steps∗. The number of
bases is a design parameter that must be matched with
the desired amount of detail to be preserved during the
encoding of the trajectory.

Assume M trajectories are obtained via demonstrations;
their parameterization leading to a set of weight vectors
W = {w1, ...wi, ...wM} (the subscript i as inwi will be
used to indicate a particular demonstration when relevant,
and will be omitted otherwise). Define θ as a parameter
to govern the distribution of the weight vectors in the set
W such that w∼p(w;θ). The model p(w;θ) is assumed
as a Gaussian with mean µw ∈ RN and covariance Σw ∈
RN×N , that is θ = {µw,Σw}. This prior model allows us
to sample trajectories with

p(yt;θ) =

∫
p(yt|w)p(w;θ)dw

= N (yt|ψTt µw,ψ
T
t Σwψt + σy).

(5)

The Gaussian assumption is restrictive in the sense that
the training data must be time-aligned, for example by
DTW, such that the spatial correlation can be captured
appropriately. In Section 3.4 we will introduce a method
to avoid such alignment.

3.2 Correlating Human and Robot
Movements with Interaction ProMPs

Interaction ProMPs model the correlation of multiple
dimensions, here each dimension given by each of the
degrees-of-freedom (DoFs) of multiple agents. Let us
define the state vector as a concatenation of the P number
of observed DoFs of the human, followed by the Q number
of DoFs of the robot

yt = [ yH1,t, ... y
H
P,t, y

R
1,t, ... y

R
Q,t ]T , (6)

where the upper scripts (·)H and (·)R refer to the
human and robot DoFs, respectively. Similar to the
one dimensional case, trajectories of each DoF are
parameterized as weights such that

p(yt|w̄) = N (yt|HT
t w̄,Σy), (7)

where HT
t = diag((ψTt )1, ..., (ψ

T
t )P , (ψ

T
t )1, ..., (ψ

T
t )Q)

has P+Q diagonal entries. Each collaborative
demonstration now provides P+Q training trajectories.
The weight vector w̄i of the i-th demonstration is now a
concatenation of all weight vectors involved in the i-th
demonstration. Thus, the many DoFs involved in the
interaction will be correlated

w̄i = [ (wH
1 )T , ..., (wH

P )T , (wR
1 )T , ..., (wR

Q)T ]T . (8)

A normal distribution from a set of M demonstrations
W̄ = {w̄1, ...w̄M} with µw ∈ R(P+Q)N and Σw ∈
R(P+Q)N×(P+Q)N can be computed.

The fundamental operation to infer the robot trajectory
is to compute a posterior probability distribution of
the weights w̄∼N (µneww ,Σnew

w ) conditioned on the
observations of the human. Since the robot is not observed
we denote the observation vector as

yot = [ yH1,t, ... y
H
P,t, 0R1,t, ... 0RQ,t ]T. (9)

To contrast with a complete sequence [t : t′] we use
the notation [t− t′] ∈ RS×P to indicate that the sequence
of S observations in the interval is incomplete, that
is, some measurements in between are missing. The

∗In the particular case of the experiments here reported, trajectories have
an average time of 3 seconds, sampled at 50 Hz. We used 20 basis functions
and thus, for a 1 DoF case the dimensionality is decreased from 3 × 50 =

150 samples to a weight vector w ∈ R20.
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Interaction ProMP is updated with yot−t′ using closed-form
conditioning

µneww = µw +K(yot−t′ −Ht−t′µw),

Σnew
w = Σw −K(Ht−t′Σw),

(10)

where K = ΣwHT
t−t′(Σ

o
y + Ht−t′ΣwHT

t−t′)
−1 and Σo

y

is the measurement noise. The upper-script (·)new is used
for values after the update. The observation matrix Ht−t′ is
obtained by concatenating the bases at the corresponding
observation steps, where the Q unobserved states of the
robot are represented by zero entries in the diagonal. For
a single observation at time t,

Ht =



(ψT
t )1 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0

0 . . . (ψT
t )P 0 . . . 0

0 . . . 0 0P . . . 0

0
. . . 0 0

. . . 0
0 . . . 0 0 . . . 0Q


(11)

with Ht ∈ R(P+Q)×(P+Q)N .
Trajectory distributions that predict human and robot

movements are obtained by integrating out the weights of
the posterior distribution

p(y1:T ;θnew) =

∫
p(y1:T |w̄)p(w̄;θnew)dw̄. (12)

3.3 Multiple Interaction Patterns
To address multiple tasks we repeat the procedure described
in Section 3.2 for each task. The set of demonstrated
trajectories for each type of collaboration is labeled for
action recognition purposes and are trained independently.
Given that aK number of tasks are presented, and given the
observation vector as defined in (9) the probability of each
task k can be computed with

p(k|yot−t′) ∝ p(yot−t′ |k)p(k)

∝ p(yot−t′ |θk)p(k),
(13)

where p(k) is a prior probability of the task. The action
is recognized by selecting the posterior with the highest
probability

k∗ = arg max
k

p(k|yot−t′), (14)

whose corresponding model is θnewk∗ .
To compute the likelihood in (13) note that each

component k is governed by θk, therefore

p(yot−t′ ;θk) =

=

∫
p(yot−t′ |HT

t−t′w̄,Σ
o
y)p(w̄;θk)dw̄

= N (yot−t′ |HT
t−t′µw,H

T
t−t′ΣwHt−t′ + Σo

y).

(15)

The most likely robot trajectory given the human action
is inferred by conditioning the most probable interaction
model θnewk∗ with (10) on yot−t′ and by integrating out the
weights

p(y1:T ;θnewk∗ ) =

∫
p(y1:T |w̄)p(w̄;θnewk∗ )dw̄. (16)

3.4 Estimating Phases on Multiple Tasks

Previous works (Ewerton et al. 2015b; Maeda et al.
2016) have only addressed spatial variability, but not
temporal variability of demonstrated movements. However,
when demonstrating the same task multiple times, a
human demonstrator will inevitably execute movements
at different speeds, thus changing the phase at which
events occur. Previously, this problem was mitigated during
the training phase by time-aligning the demonstrated
trajectories using a DTW method. Time alignment ensures
that the weights of each demonstration can be regressed
using the same feature ψ1:T for all demonstrations. As a
consequence, during execution, the conditioning (10) can
only be used when the phase of the human demonstrator
coincides with the phase encoded by the time-aligned
model, which is unrealistic in practice.

Under temporal variability and unobserved velocities,
the problem is to retrieve the corresponding basis ψt
for an observation yot such that the conditioning can be
computed correctly. While time alignment allows for the
encoding of spatial variability during training, it poses a
difficult problem during execution since the observations
must be aligned while the human is moving. Dong and
Williams (2012) and Ben Amor et al. (2014) have proposed
online variants of DTW given stream of positions. Such
approaches, however, are not suitable when only a few
sparse points are measured as the estimation of distances
between trajectory segments is compromised. A practical
solution to the alignment problem is to condition only at the
final position of the human movement, since only for this
particular case, the corresponding basis function is known
to be the last one ψT . This, however, causes a significant
lag on the robot response as the robot has to wait for the
human to finish his movement first.

To solve this problem, we propose incorporating the
temporal variance as part of the model by learning a
distribution over phases from the same demonstrations
previously used to create the Interaction ProMP. This
enriched model not only eliminates the need for time-
alignment, but also allows for faster robot reactions as the
conditioning (10) can be applied before the end of the
human movement. Initially, we replace the original time
indexes of the basis functions with a phase variable z(t).
Thus, a trajectory of duration T is now computed relative
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to the phase

p(y1:T |w) =

T∏
1

N (y(zt)|ψT(zt)w,Σy). (17)

Define a nominal sequence {1 : Tnom}, for example,
by taking the average final time of the demonstrations.
Assuming that each of the i-th demonstrations has a
constant temporal change in relation to the nominal
duration, we define a scaling factor

αi = Ti/Tnom, (18)

such that all demonstrations can be indexed by the same
nominal time index. We then define fixed Gaussian bases
spread over the nominal duration ψ1:Tnom

. The weights
of all demonstrations can then be regressed from the
same bases to obtain the parameters of the distribution
θ = {µw,Σw} using a single design matrix with nominal
duration Ψ1:Tnom

.
Given a time step t from the nominal sequence, a

trajectory with different duration is found by using zt =
αt in (17). This temporal model implicitly assumes that
the human movement is governed by a single phase and
therefore, we will refer to α as a phase ratio. Note from (18)
that each i-th demonstration in the training set provides a
value of αi. We will assume that the phase ratios of different
demonstrations vary according to a normal distribution, that
is, α∼N (µα, σ

2
α), where

µα = mean({α1, ... αi, ... αM}),
σ2
α = var({α1, ... αi, ... αM}),

and M is the number of demonstrations. Despite the
simplicity of this model, experiments have shown that
these assumptions (single phase, normal distribution) hold
in practice for simple, short stroke movements typical of
handovers†.

Given a sparse partial sequence of observations yot−t′ , a
posterior probability distribution over phases is given as

p(α|yot−t′ ,θ) ∝ p(yot−t′ |α,θ)p(α), (19)

where p(α) is the prior probability of the phase.
For a specific α value the likelihood is

p(yot−t′ |α,θ) =

∫
p(yot−t′ |w̄, α)p(w̄)dw̄

= N (yot−t′ |A(zt−t′)
Tµw,

A(zt−t′)
TΣwA(zt−t′) + Σo

y),

(20)

where

A(zt−t′) =


ψ(zt−t′)

T
1 . . . 0

0
. . . 0

0 . . . ψ(zt−t′)
T
P

 , (21)

is the partition of the full matrix H in (11) that contains the
basis functions of the observed positions of the human—
however, now indexed by the phase zt = αt.

Given the observations yot−t′ , the likelihood of each
sampled α candidate is computed with (20), and the most
probable value

α∗ = arg max
α

p(α|yot−t′ ,θ) (22)

is selected. Intuitively, the effect of different phases is
to stretch or compress the temporal axis of the prior
(unconditioned) distribution proportionally to α. The
method then compares which scaling value generates the
model with the highest probability given the observation
yot−t′ .Once the most probable scaling value α∗ is found,
its associated observation matrix H(z) can be used in (10)
to condition and predict the trajectories of both human and
robot. To efficiently estimate the phase during execution,
one approach is to sample a number of values of α from the
prior p(α) and precompute and store, for each of them, the
associated matrices of basis functions A(z1:T ) and H(z1:T )
beforehand.

Figure 3 summarizes the workflow of the Interaction
ProMP with phase estimation. During the training phase,
trajectories are scaled to a nominal time Tnom and the
distribution of the scaling values is encoded as a normal
distribution. The set of normalized trajectories are used
to learn the parameter θ = {µw,Σw} that correlates
the trajectories of human and robot. In the figure, the
distribution modelled by θ is abstracted as a bivariate
Gaussian where each of the two dimensions are given by
the distribution over the weights of the human and robot
trajectories. During execution, the assistive trajectory of
the robot is predicted by integrating out the weights of
the posterior distribution p(w̄;θnew). The operation of
conditioning is illustrated by the slicing of the prior, at the
current observation of the position of the human yot . The
conditioning requires finding the correct temporal scaling
of the prior model that best fits the observations in time.
Thus, the probability of many phase ratio candidates are
tested on the sparse human observations and the most
probable value is assumed to provide the optimal time
indexing of the observations.

In a multi-task scenario, we can now address the
recognition of the task given the positions yot−t′ and

†For problems where this assumption does not hold, e.g. when the
movement accelerates and decelerates along and between demonstrations,
the estimation of multiple phases must be addressed. Initial investigations
reported in (Ewerton et al. 2015a) show that movements with multiple
phases on synthetic data can be treated under the assumption that different
phases must be correlated along the motion. This assumption, however, is
too stringent for realistic purposes. We found that real human experiments
with short strokes are better addressed by the single phase method
presented here.
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distribution of human-robot parameterized trajectories is abstracted as a bivariate Gaussian. The conditioning step is shown as
the slicing of the distribution at the observation of the human position. In the real case, this distribution has more dimensions.

unknown phase ratio. Let the parameter θk represent a
collaborative task independently trained as an Interaction
ProMP. For each task k, the most probable α∗k is
first searched with (22) rendering the set {α∗k,θk}. The
task recognition is given by the procedure described in
Section 3.3 with the difference that the likelihood (13) is
now

p(k|yot−t′) ∝ p(yot−t′ |α∗k,θk)p(k). (23)

Since {α∗k,θk} is the solution of the phase search for
each task, task recognition demands only the computation
of (23). The two optimizations—to search for the correct
phase, and to recognize the task—lead to an algorithm that
scales linearly in the number of sampled α’s and in the
number of tasks.

4 Experiments with a Semi-Autonomous
Robot

Experiments were conducted using a 7-DoF lightweight
KUKA arm equipped with a 5-finger hand. To train the
primitives the joint encoder trajectories of the robot were
recorded by kinesthetic teaching. For each demonstration,
the set of human-robot measurements were stored with a
sampling rate of 50 Hz.

The first set of experiments evaluates the responsiveness
of the method in a single task scenario where the robot
tries to predict where the human will handover a cup.
The Cartesian coordinates of the cup were tracked with
a motion capture system by placing a marker directly on
it. In the second set of experiments, a multi-task scenario

of collaborative box assembly was used to evaluate the
problem of task recognition under partial observations. In
this case motion capture was used to track the Cartesian
coordinates of the wrist of the human.

4.1 Predictive Handover
An important characteristic for fluid human-robot interac-
tion is the capability of the robot to preemptively react to the
human partner. In this experiment we evaluate this capabil-
ity in an illustrative scenario of a cup handover. As shown in
Figure 4, initially, a set of paired trajectories was collected
by simultaneously moving the robot in kinesthetic teaching
mode while the human was bringing the cup towards the
robot. A total of 20 pairs of Cartesian trajectories of the cup
and robot joint encoders were recorded. The demonstrator
enforced temporal variability by changing the speed of the
demonstration, with fast trajectories taking approximately
2 seconds and slower trajectories taking approximately 3
seconds.

We evaluated the effect of the number of candidates
of phase ratios α w.r.t the approximation error of the
true duration of the movement. Also, we evaluated the
variation of the same parameter in relation to the accuracy
of the prediction of the robot trajectory. To create a
sparse limited observation, only the first half of each test
trajectory was used, from which five states were randomly
drawn along the time axis as observations. One instance is
shown in Figure 5 (a) where ten phase ratios candidates
were evaluated. The plot at the left shows the Cartesian
coordinate of the marker on the cup and randomly drawn
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Figure 4. Collection of training data to create a single
Interaction ProMP for the handover of a cup. The marker is
placed on the top of the cup. Both cup and robot arm are
moved towards the same position, leading to pairs of
collaborative trajectories. This figure shows two of such
demonstrations at different positions.

observations represented as the circles. The blue patch
represents ± 2 standard deviations around the mean and
the traced curve represents the ground truth. The plot at
the right shows the predicted trajectory distribution of one
of the joints of the robot arm. The many gray curves at
the background show samples that were drawn from the
trained model to illustrate the variability in both time and
position. In (a), the fact that the predicted distribution has
roughly the same duration as the test trajectory indicates
that a reasonably good approximation to the true phase
ratio could be found. The bottom row shows the same
case, however when only two phase ratio candidates were
evaluated leading to a coarse approximation of the true
trajectory duration.

This procedure was repeated systematically with leave-
one-out cross validation (LOOCV) on 20 test trajectories.
The number of phase ratio candidates was varied from 1 to
15 for each test trajectory, resulting in a total of 15×20 runs.
To systematically evaluate the different number of phases
under repetitive conditions, we selected the candidates on
an equally spaced grid within the interval covering 95
percent (± 2 σ) of the normal distribution of phases. Figure
6 (a) shows the error in predicting the correct phase ratio
as the number of sampled candidates increases. The results
show that, on average, no improvement is achieved beyond
6 sampled candidates.

Due to the nature of the handover task, it is impractical
to evaluate the accuracy of the robot in online experiments
as the human will invariably adapt to the robot’s response.
Thus, we used the same LOOCV procedure to evaluate
the accuracy of the robot end-effector with respect to the
corresponding recorded human trajectory. This result is
shown in Figure 6 (b), which shows the error of the final
predicted positioning of the robot hand as the number of
sampled candidates increases. The final position error of the
robot hand was computed via forward kinematics of the arm
given the mean of the predicted joint angle distributions.
There is a lower limit of 3 cm in the accuracy of the robot
prediction. This value suffices for tasks such as handovers
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Figure 5. Examples of two different phase estimations under
the same test data and five observations up to 1 second of the
human movement. (a) Ten phase candidates evaluated. The
position error of the robot hand is 4.31 cm. (b) Two phase
candidates evaluated leading to a erroneous prediction of the
trajectory duration. The position error of the robot hand was of
5.20 cm.

.

of objects and may be affected by the quality of the setup,
such as the positioning of the markers and the non-ideal
demonstrations that invalidate the Gaussian assumption. As
it will be discussed in Section 5, direct feedback tracking
of the marker may be used to increase the accuracy of the
robot.

It is also important to evaluate the effect of the duration
of the observations of the human before the robot attempts
to infer its own trajectory. The sooner the robot can predict
the correct human trajectory, and as a consequence the
final handover position, the quicker it can react to provide
assistance. On the other hand, trying to predict the human
motion too early may lead to poor coordination between the
human and robot final positions. Figure 7 shows snapshots
where the robot observed only 0.2 seconds of the human
movement (approx. 8 % of the whole trajectory length)
before generating its own trajectory after evaluating ten
phase candidates. The final position of the robot hand does
not match the final position of the human hand. Empirically,
for this particular task we noticed that observing the human
for at least 0.5 seconds (approx. 20 % of the full trajectory
length) while evaluating ten phase candidates lead to quite
satisfactory coordination between the final positions of the
human and robot hands.

For a quantitative analysis, we used the same 20 test
trajectories of the previous analysis as ground truths and
fixed the number of phase ratio candidates to ten. Each
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1 2

3 43
Figure 7. Snapshots of a handover trajectory where the robot
reacts too early to predict the final human position accurately.
In this example the robot observed only the first 0.2 seconds of
the human movement before attempting to generate its own
corresponding trajectory.

of the test trajectories was used to generate ten randomly
drawn human observations. The span in which these
observations were drawn varied between the first 10 %
to 99 % of the total test trajectory length. Figure 8 (a)
shows two examples where the trajectory of the human
is predicted from different observation durations. On the
left, only 5 % of the trajectory was observed; on the
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Figure 8. Effect of the duration of the observation of the
human position on the cup handover task. (a) Prediction of the
human trajectory in the Cartesian space given ten randomly
sampled observations. Left: 5 % of the trajectory observed.
Right: 50 % of the trajectory observed. (b) Accuracy of the
final robot hand position as a function of increasing durations
of the human observation.

right, 50 % of the trajectory was observed. As expected,
the predicted human trajectory approximates the ground
truth as the duration of observation increases. As a full
state estimator, not only the trajectory of the human is
computed from the observations, but also the corresponding
robot trajectories. Figure 8 (b) shows the effect of different
observation durations—indicated in the horizontal axis as
the ratio between the observed length and the total length of
the trajectory—on the prediction of the location of the robot
hand. Similar to the previous analysis, the final position of
the robot hand was computed by using forward kinematics
of the arm given the predicted joint angles. As expected,
the longer the human is observed before the prediction is
attempted, the better the final accuracy of the robot, at the
expense of lag in responsiveness.

A side-by-side comparison between short and long
observations of the human movement and its effect on
the robot responsiveness and accuracy can be watched
in the accompanying video and also by following the
link https://youtu.be/bUVn0AwAb1U. To control the robot
motion, the mean of the posterior distribution over
trajectories for each joint of the robot was used, and tracked
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by the standard, compliant joint controller provided by the
robot manufacturer‡.

4.2 A Multi-Task Semi-Autonomous Robot
Coworker

As it was motivated at the introduction of this paper,
we applied our method on a multi-task scenario where
the robot plays the role of a coworker that helps a
human assembling a toolbox. This scenario was previously
proposed in Ewerton et al. (2015b). The assembly consisted
of three different collaborative interactions. In one of them,
the human extends his hand to receive a plate. The robot
fetches a plate from a stand and gives it to the human
by predicting the location of the marker on his wrist. In
a second interaction, the human fetches the screwdriver
and the robot grasps and gives a screw to the human as
a pre-emptive collaborator would do. The third type of
interaction consists of the robot receiving a screwdriver
such that the human coworker can have both hands free
(the same primitive representing this interaction is also
used to give the screwdriver back to the human). Each
interaction of “plate handover”, “screw handover” and
holding the screwdriver was demonstrated 15, 20, and 13
times, respectively.

The upper row of Figure 9 shows snapshots of the
training phase for each of the interactions and their
respective multiple demonstrated trajectories in Cartesian
space. The markers were placed on the wrist of the
human. The bottom row shows the execution of the learned
Interaction ProMPs from the demonstrations. On purpose,
all human demonstrations started roughly at the same
position in order to make the problem of action recognition
apparent.

We used the original training data previously presented in
Ewerton et al. (2015b). The original data set did not present
sufficient variability of phases and the correct phase could
be reasonably well estimated with only two to three sample
candidates. Thus, the durations of each demonstration was
scaled by sampling different final times out of a normal
distribution centered at the mean final time of the training
set and with a standard deviation of 0.5 seconds. This
perturbation acts as a surrogate of a demonstrator moving
at different speeds at each demonstration.

We evaluate the effect of observing different durations
of the human trajectory before attempting to recognize the
action. Similar to the experiments in Section 4.1, each
of the test trajectories was used to generate five, sparse
randomly drawn, human observations. A total of ten phase
ratio candidates were fixed. The duration from which these
observations were drawn varied between the first 5 % to
75 % of the total duration of the test trajectory. Figure 10
shows, as circles, the observations of the “plate handover”
trajectory drawn from the first 35 % of the trajectory length.

Note that while these observations clearly do not fit the first
task of holding the tool, they can incorrectly explain the
task of “screw handover”. Selecting the tasks by comparing
their probabilities provides a principled mechanism to make
such a decision.

Figure 11 (a) shows the action recognition accuracy
according to the ground truth trajectory labeled with the
corresponding action. The square marks represent the case
when the trajectory of the “hold tool” task was used as
a test data. The circle marks represent the case when
the trajectory of “plate handover” task was the correct
action, and cross marks represent the case when the “screw
handover” was the correct action. The data measured from
the motion capture system was used as a noiseless case.
From the plot it is observed that even when only 5 %
of the task was observed, the “plate handover” could be
correctly recognized in all tests. The subplot (b) repeats
the same procedure but Gaussian noise with zero mean
and standard deviation of 3.5 cm on the observed points
were added. As expected the recognition deteriorates as the
few noisy observations could overlap significantly onto the
incorrect distribution. Figure 11 (c) shows the case where
the Gaussian noise has a standard deviation of 7.0 cm, in
which case, practically the full human trajectory has to
be observed such that a proper action recognition can be
made. All cases in Figure 11 were evaluated using ten phase
candidates.

As mentioned in Section 3.4, in previous works (Ewerton
et al. 2015b), the training data had to be time-aligned
with a method based on DTW. During execution, the robot
was then conditioned at the final position of the human
as a way to overcome the problem of aligning partial and
sparse observations online. With phase estimation not only
considerable pre-processing effort is avoided—the use of
DTW on both training and observations is not needed—
but, the robot can now predict the collaborative trajectory
before the human finishes moving, leading to a faster robot
response. Figure 12 shows the difference in uncertainty and
accuracies between the time-aligned method using DTW
(a) with two cases of phase estimation that differ in regards
to the durations of observations (b-c) for the task of “plate
handover”. As shown in (a), since the Interaction ProMP
is conditioned at the final position of the human hand—the
principal state of interest for predicting the final position
of the robot—inference of the robot trajectory in this case
provides a baseline to compare with the phase estimation
method.

Using LOOCV over the training set, we quantified
the accuracy of the prediction of the phase estimation

‡Although not used in this paper, the ProMP framework also provides
means to compute the feedback controller and the interested reader is
referred to Paraschos et al. (2013).
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Figure 9. (a) Demonstrations of the three different interactions and their respective trajectories. (b) Human-robot collaboration
using the trained Interaction ProMP for each task. The robot actions are conditioned on the partial observations of the human
movement. The scenario and training data appeared previously in Ewerton et al. (2015b) and Maeda et al. (2016) where training
data had to be time-aligned by DTW.
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Figure 10. Each of the three tasks conditioned on the same observations sampled from the “plate handover” task. The same
observations can fit the task of “screw handover” with a lower probability. The thick solid line shows the predicted human
trajectory. The dashed lines is the “plate handover” ground truth, and the circles are observations.

method and the time-aligned model conditioned at the
end of the observation (as illustrated in Figure 12). These
results are summarized in Figure 13 where the proposed
method is represented as the circles and the previous
time-aligned method is shown by the square marker. The
results show that for the “plate handover” and “hold tool”
tasks the accuracy improves as longer observations are

made, as expected. At about 75 % of the observation,
the accuracy achieved by the phase estimation method is
comparable to the time-aligned trajectories using DTW.
This experiment show that the single phase assumption
is reasonably met, otherwise worst accuracy would be
expected in relation to the time-aligned trajectories. For the
task of “screw handover” no improvement is observed as
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Figure 11. Improvement in action recognition as the duration
of the observation increases under different amounts of noise.
(a) Clean observations. (b) Observations added with
zero-mean Gaussian noise and standard deviation 3.5 cm. (c)
Observations added with zero-mean Gaussian noise and
standard deviation 7.0 cm.

the trajectories of the human and robot are not correlated by
the demonstration. In this case, the robot brings the screw
to the mean of the unconditioned distribution (i.e. the prior
mean) regardless of the position where the human grasps
the screwdriver on the table.

5 Discussion of the Experiment and
Limitations

Since the experiments aimed at exposing the predictive
trajectory capability of the Interaction ProMPs no direct
feedback tracking of the marker on the human wrist
was made. However, even humans are prone to infer
the wrong location when attempting to grasp an object
from a partner too quickly. We naturally use visual
feedback for corrections. In the same way, the Interaction
ProMP framework may potentially benefit when used in

combination with a feedback controller that tracks the
markers directly. In this case, the predictive trajectory
generation that results from the method provides a rich
nonlinear behavior as a movement primitive learned from
demonstrations. Direct tracking of the marker could then
act in a corrective/reactive manner to account for the
mistakes in prediction. Note, however, that it is not
possible to completely replace an Interaction ProMP by
a tracking controller. In a multi-task scenario Interaction
ProMPs are essential for action recognition. Moreover, a
feedback controller does not easily provide the flexibility
and richness of the trajectories that can be encoded in a
primitive learned from human demonstrations.

The presented method scales linearly in the number of
tasks and in the number of phase ratio candidates to be
evaluated. In practice, this scalability imposes an upper
limit on the number of tasks and samples α’s that can
be supported, which can be empirically evaluated. The
constraint is that the total time required to compute the
probability of all sampled α’s for each possible tasks
must be less than the duration of the human movement.
Otherwise, one can simply use the final state of the human
trajectory, as it was done in previous works with time
aligned trajectories, to recognize the action and compute the
corresponding collaborative robot trajectory. Therefore, the
duration of the human movement and the implementation
efficiency dictate to which granularity the phases can be
estimated, and how many tasks can be recognized. In our
preliminary evaluations on the assembly scenario, a total of
25 candidates of phase ratios α for each of the three tasks
were used. This setting required 75 (25 samples × 3 tasks)
calls to the computation of the probabilities (19) while the
human was moving his arm. The whole process, from the
prediction of the full trajectory with (12), observed during
the first second of the human movement took in average
0.20 seconds using Matlab code on a conventional laptop
(Core i7, 1.7 GHz). In contrast, the duration of a handover
stroke can vary from 1 to 2.5 seconds.

In our previous work (Maeda et al. 2016), for the same
collaborative task, we evaluated the deterioration of action
recognition when the duration of the observation differed
from that of the time-aligned model. The frequency of the
correct recognition of a “plate handover” decreased from
100 % to 50 % when the observed trajectory had a duration
1.25 longer than the duration of the time-aligned model.
This sensitivity to temporal misalignments is an evidence
that, unless the human partner is very consistent in terms
of the speed of his/her movement, phase estimation is
essential for action recognition. In the same work, we also
compared the accuracy of a single-task Interaction ProMP
with a baseline nearest-neighbor (NN) method on the task
of plate handover. The Interaction ProMP presented twice
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Figure 12. The patch represents the posterior distributions (± 2 standard deviations) for different methods to condition on the
human observations. (a) Time-aligned trajectories (using DTW) conditioned at the final position. In (b) and (c), phase estimation
with an observation ratio of 10 % and 50 % relative to the total duration of the test data, respectively.

the accuracy of the nearest-neighbor given the same training
set.

Measurement setup systems that allow for reliable
velocity measurements, or its estimation via position
differentiation, can greatly simplify the problem of phase
estimation. On the other hand, to become widely accepted,
the deployment of semi-autonomous robots in the field must
cope with occluded and cluttered environments. Sparse

position measurements must be taken into account in
realistic scenarios, where noisy measurements are often
provided by low-cost sensors such as Kinect cameras.
The results in Figure 11 show promise in regards to the
robustness of the method to large amounts of noise.

When compared to representations based on multiple
reference frames such as Dynamical Systems (Calinon et al.
2012), and forcing functions as in DMPs, ProMPs have
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predicted accuracy of the final robot hand position for each of
the tasks. The time-aligned case represents the time-aligned
model conditioned at the final position of the human
measurement. In the “screw handover” case the position of the
human hand is not correlated with the location in which the
robot gives the screw.

the limitation to only operate within the demonstrated set.
Extensions to generalize ProMPs to other robot kinematics
and environments are currently being investigated.

6 Conclusion
This paper presented a method suited for collaborative and
assistive robots whose movements must be coordinated
with the trajectories of a human partner moving at different
speeds. This goal was achieved by augmenting the previous
framework of Interaction ProMPs with a prior model
of the phases of the human movement, obtained from
demonstrated trajectories. The encoding of phases enriches
the model by allowing the alignment of the observations
of the human in relation to the interaction model, under
an intermittent stream of positions. We experimentally
evaluated our method in an application where the robot acts
as a coworker in a factory. Phase estimation allowed our
robot to predict the trajectories of both interacting agents
before the human finishes the movement, resulting in a
faster interaction. The duration of a handover task could be
decreased by more than 50 % in the single task case, and
our current evaluation on the multi-task scenario decreases
time by 25 %.

A future application of the method is to use the estimated
phase of the human to adapt the velocity of the robot. A
slowly moving human suggests that the robot should also
move slowly, as an indication that a delicate task is being
executed. Conversely, if the human is moving fast, the robot
should also move fast as its partner may want to finish
the task quickly. This paper initially appeared in Maeda
et al. (2015), and here an extended version with additional
evaluations was presented.
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