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Abstract— Many Stochastic Optimal Control (SOC) ap-
proaches rely on samples to either obtain an estimate of the
value function or a linearisation of the underlying system model.
However, these approaches typically neglect the fact that the
accuracy of the policy update depends on the closeness of the
resulting trajectory distribution to these samples. The greedy
operator does not consider such closeness constraint to the
samples. Hence, the greedy operator can lead to oscillations
or even instabilities in the policy updates. Such undesired
behaviour is likely to result in an inferior performance of the
estimated policy. We reuse inspiration from the reinforcement
learning community and relax the greedy operator used in SOC
with an information theoretic bound that limits the ‘distance’ of
two subsequent trajectory distributions in a policy update. The
introduced bound ensures a smooth and stable policy update.
Our method is also well suited for model-based reinforcement
learning, where we estimate the system dynamics model from
data. As this model is likely to be inaccurate, it might be
dangerous to exploit the model greedily. Instead, our bound
ensures that we generate new data in the vicinity of the current
data, such that we can improve our estimate of the system
dynamics model. We show that our approach outperforms
several state of the art approaches on challenging simulated
robot control tasks.

I. INTRODUCTION

In stochastic optimal control (SOC), see [1], [2], [3], [4],
we want to compute the optimal control policy for a finite
horizon of time steps. The SOC problem can be solved
efficiently by dynamic programming, i.e., by iteratively com-
puting the value function backwards in time. The value
function estimates the expected future reward for a given
state and time step. However, analytical solutions only exists
in few cases, such as for discrete systems, and for linear
systems with quadratic cost functions and Gaussian noise
(LQG). For more complex systems, we typically need to rely
on approximations of the value function and/or linearisations
of the underlying system. All these approaches rely on data
in terms of state transitions, needed either for approximating
the value function or linearizing the system. However, the
policy updates used in these approaches neglect the fact that
the accuracy of the update depends on this state transition
data — if after the update, the policy ends up in regions
of the state-action space where no data has been generated,
the quality of the resulting policy might be arbitarily bad.
To solve this problem, we limit the distance between two
subsequent trajectory distributions [5], [6]. Using this bound
for SOC results in a new sample-based information theoretic
SOC (ITSOC) algorithm that enjoys smooth and stable policy
updates. We will further discuss the application of ITSOC
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Fig. 1. For the real robot experiments we used a tendon driven
arm called BioRob. His biologically inspired architecture makes
controling it a very challenging task.

for model-based reinforcement learning [7], [8] where we
simultaneously estimate the system model from data. In this
case, our bound provides us with the additional benefit that
we avoid exploiting the possibly inaccurate model greedily.
Instead, the transition data generated by the new policy will
stay close to the current data, and, hence, can be used to
improve the estimate of the model in this area of the state
space.

Approaches based on linearisation, such as differential
dynamic programming [9], the iLQG [10] or the AICO [3]
algorithm, linearise the system at the current estimate of the
trajectory. Subsequently, the optimal controller is computed
analytically on the linearised system and the resulting tra-
jectory is used as a new linearisation point. However, as
the linear dynamics model is only accurate at the point of
linearisation, such an update of the controller might result
in jumps in the resulting trajectory. These problems can
be alleviated by using heuristics, such as regularizing the
LQG solution [10] or using a learning rate on the estimated
trajectory [3]. A disadvantage of linearisation approaches
that for small deviations from the nominal trajectory, the
linearisation of the model becomes less accurate, which
degrades the robustness of the resulting policy.

Other approaches are based on approximate dynamic
programming (ADP) [11], [12], [13]. These approaches
iteratively collect data with the currently estimated policy.
The data set is subsequently used to improve the estimate
of the value function. A challenging problem when using
ADP for SOC to compute the optimal action in a continuous
action space, which is a very expensive operation. One way
to circumvent this problem is to replace the max-operation
with a soft-max operator [14] that can be more efficiently
implemented. Alternative approaches to continuous actions



are using the approximate inference [4] or the path integral
formulations [15] of SOC. A severe drawback is that the
approximation of the value function may ‘damage’ the
resulting trajectory distribution of the policy, causing jumps
and oscillations between subsequent iterations. This effect is
caused by the greedy exploitation of the value function and
it is not clear how the approximation affects the resulting
trajectory distribution.

In this paper, we are interested in learning locally optimal
feedback controllers for certain types of movements, e.g., a
stroke in a squash game. We are only interested in locally
optimal policies, so we focus on the traditional setup of
stochastic optimal control, i.e., we assume a squared value
function and that the system dynamics can be linearised
in the vicinity of the optimal solution. Our approach is
model-based. The required models can be obtained from
data as we only require models that are accurate in the local
vicinity of the data. Hence, our algorithm can be extended
to model-based reinforcement learning (RL). In this paper,
we will focus on learning simple models, i.e., time-varying
linear models. Other model-based RL approaches, such as
the PILCO framework [8] exploit the learned model greedily,
and therefore require the usage of more complex models with
more accuracy, such as gaussian process (GP) models [16].

One disadvantage of ITSOC is its computational com-
plexity. ITSOC defines a constraint optimization problem
with several thousands of parameters. While using standard
constrained optimizers failed due to the large scale of the
problem, we present an iterative optimization procedure, that
can, under soft relaxations of the constraints, be computed
more efficiently, outperforming state of the art model-based
RL algorithms such as PILCO [8] in terms of computation
time. We compare our method to several state of the art
SOC and model-based RL methods and show its superior
performance. We evaluate our approach on a simulated four-
link non-linear pendulum and a tendon driven robot arm.

II. INFORMATION THEORETIC STOCHASTIC OPTIMAL
CONTROL

Many problems in stochastic optimal control (SOC) or
reinforcement learning (RL) can be defined as finite horizon
problems. We consider systems with continuous state and
action spaces such as robotic systems. We denote the state
of the robot at time step t as xt and the control action as ut.
The state transitions of the system dynamics pt(xt+1|xt,ut)
that define the probability of reaching xt+1 after being in
state xt and taking the action ut. Due to the finite horizon,
the optimal control policy of this problem is time dependent.
The goal is to find such an optimal time-dependent control
policy π∗k (u|x) which maximizes the accumulative reward
for a given time horizon H

Jπ = Epπ(τ )

[
H−1∑
t=1

rt (xt,ut) + rH (xH)

]
, (1)

where τ = (x1:H ,u1:H−1) denotes a trajectory and pπ (τ )
the trajectory distribution that is generated by policy π. The

function rt (x,u) denotes the immediate reward for time
step t and rH (xH) the final reward for reaching xH at the
horizon H . The expectation of the reward is performed with
respect to the trajectory distribution

pπ (τ ) = p1(x1)

H−1∏
t=1

pt(xt+1|xt,ut)πt (ut|xt) ,

of the policy π, where p1(x1) is the initial state distribution.

A. Formulation as Constrained Optimization Problem

We will now formulate SOC as a constraint optimization
problem. Such a formulation allows us to add additional
constraints such as information theoretic bounds on the tra-
jectory distribution. By introducing the state-visit distribution
µπt (xt) for time step t, we can restate the objective function
as

Jπ,µ =

H−1∑
t=1

∫∫
µπt (x)πt (u|x) rt (x,u) dxdu

+

∫
µπH(x)rH (x) dx, (2)

where the maximization is performed over πt (u|x) and
µπt (x). In order to keep the notation uncluttered we will
drop the index t of x and u wherever the context is clear.
By adding several constraints, Equation (2) is equivalent to
the original SOC problem.
First, we have the normalization constraints which ensure
that the policy πt (u|x) and the state distribution µπt (x)
jointly define a distribution for each time step,∫∫

µπt (x)πt (u|x)dxdu = 1,

∫
µπH(x)dx = 1. (3)

Moreover, the state distributions µπt (x) must respect the
policy and the system dynamics, i.e., we can not choose
µπt (x) arbitrarily but the state distributions need to comply
with the constraints

µπt+1(x
′) =

∫∫
µπt (x)πt (u|x) pt (x′|x,u)dxdu

for 1 ≤ t < H and the initial state distribution constraint
µπ1 (x) = p1 (x). These constraints have to be satisfied for
all states x. Thus, in continuous state and action spaces,
we would end up with an infinite amount of constraints.
Therefore, we match the distributions by matching only the
feature averages of two subsequent state distributions. This
approach leads us to the following feature constraints∫

µπt+1(x
′)φ (x′) dx′ =∫∫∫

µπt (x)πt (u|x) pt (x′|x,u)φ (x′) dxdudx′, (4)

for all 1 ≤ t < H and the initial state constraint∫
µπ1 (x)φ (x)dx = φ̂1, (5)

where φ̂1 are the observed averaged features of the initial
state. The original SOC problem is now represented by the



objective function from Eq. (2), the normalization constraints
from Eq. (3) and the feature constraints from Eq. (4). The
formulation as a constraint optimization problem also offers
a new type of approximation for SOC. Instead of approximat-
ing the optimal value function as done by ADP approaches,
in this formulation, we approximate the constraints on the
state distributions µπt (x).

B. Relaxing the Greedy Operator by Information-Theoretic
Bounds

The advantage of the constrained optimization formulation
of SOC, is that we are now able to introduce new constraints
to the problem. Inspired by the policy search community [6],
[5], we add information theoretic constraints to bound the
‘distance’ between the state action distribution pt(x,u) =
µπt (x)πt (u|x) of the new policy and the old policy qt(x,u)
for each time step t. As in [6], [5], we will use the Kullback-
Leibler divergence (KL)

KL(pt(x,u)||qt(x,u)) =∫∫
µπt (x)πt (u|x) log

µπt (x)πt (u|x)
qt (x,u)

dxdu (6)

as distance measure between the two distributions. Due to
this constraint, the agent only explores locally and we avoid
jumps in two subsequent state distributions µπt (x) and qt(x).
The aforementioned information-theoretic constraints can be
formalized as

KL(pt(x,u)||qt(x,u)) ≤ ε for 1 ≤ t < H,

KL(pH(x)||qH(x)) ≤ ε. (7)

Combined with the reformulated SOC from the previous sub-
section, these constraints result in the Information-Theoretic
Stochastic Optimal Control (ITSOC) algorithm. Note that all
of those constraints are always satisfiable, since qt (x,u)
has been generated by following the system dynamics,
and therefore, a trivial sub-optimal solution is given by
πt (u|x)µπt (x) = qt (x,u).

C. Estimating the New Policy

In practice, we will use samples xt,i,ut,i, i = 1 . . . N ,
to approximate the integrals in the objectives as well as
in the constraints of ITSOC. However, solving directly
the primal form of ITSOC is undesireable as the problem
contains non-linear constraints and the number of parameters
is given by the amount of samples, which is typically a
high number. However, we can solve the dual formulation of
this optimization problem [6]. The dual is obtained by apply
the method of Lagrangian multipliers. From the Lagrangian
of the optimization problem, we can obtain a closed form
solution for the new state action distribution πt (u|x)µπt (x)
that is given by

πt (u|x)µπt (x) ∝ qt(x,u) exp
(
At(x,u)

ηt

)
, (8)

µπH(x) ∝ qH(x) exp

(
AH(x)

ηH

)
.

The functions At(x,u) and AH(x) are denoted as advantage
function and they are given by

At(x,u) = rt(x,u) + Ept(x′|x,u)[vt+1(x
′)]− vt(x)

AH(x) = rH(x)− vH(x), (9)

where vt(x) = θTkφ (x) is denoted as a value function. The
parameters θ1:H and η1:H are the Lagrangian multipliers of
the feature constraints and the KL-constraint respectively.
Setting Equation (8) back into the Lagrangian results in the
dual function g (θ1:H , η1:H) [5] which is omitted here for
space reasons.

As the original optimization problem was maximized,
we need to minimize the dual function. Moreover, each
inequality constraint in the original problem results in an
inequality constraint in the dual [17] that is given by ηk > 0.
Hence, solving the primal is equivalent to solving

[θ∗1:H , η
∗
1:H ] =argminθ1:H ,η1:H

g(θ1:H , η1:H), (10)

s.t.: ηk > 0,∀k

By using the dual form of ITSOC the amount of optimization
parameters is now reduced to Ndual = H(#features+1) and
we eliminated all non-linear constraints.
The dual function is convex in θ1:H and η∗1:H and can be
easily optimized for small scale problems. It can also be effi-
ciently approximated by samples that have been generated by
following the old policy. By optimizing the dual function, we
obtain the values for the Lagrangian multipliers [θ1:H , η1:H ]
that again determine the distribution µπt (x)πt (u|x). Given
our samples, we can evaluate the probability

pt,i ∝ exp

(
At(xt,i,ut,i)

ηt

)
(11)

of each sample. However, in order to create new roll-outs
with the current policy πt (u|x) we need a parametric model
π̃t(u|x,ωt), where ωt denote the parameters of the policy.
We obtain ωt by a weighted maximum likelihood estimate
where the probabilities pt,i serve as weight of the data points.

III. LEARNING FEEDBACK CONTROLLERS WITH ITSOC

A typical approach in SOC is to approximate the optimal
policy by a time-dependent linear feedback controller as
well as to approximate the value function by a quadratic
function [3]. Using such approximation, locally optimal
controllers can be obtained that work well in practice. The
main contribution of this paper is to adapt the general ITSOC
algorithm to this specific SOC formulation and to present
efficient ways of solving the optimization problem.

A. Representation of the Policy

As in many traditionally SOC formulations, we use a
linear representation of the policy πt (u|x) at each time
step t

πt (u|x) = N (u|st + Stx,Σt) , (12)

where the parameters st,St and Σt are obtained by a
weighted maximum likelihood (ML) estimate on the current



set of samples. For the used linear models, the weighted ML
estimate is given by[

sTt
STt

]
= (XT

t DtXt)
−1XT

t DtU t (13)

and

Σt =

∑
i pt,i(µt,i − ut,i)(µt,i − ut,i)T∑

i pt,i
, (14)

where Xt is the input matrix containing the states xt,i for
time step t1, Dt = diag([pt,i]i=1...N ) is the weighting matrix
and U t contains the actions ut,i in its rows. The predicted
mean for the ith sample is given by µt,i = st + Stxt,i.

B. Estimating the Expected Feature Vector

The information-theoretic formulation requires estimating
Ept(x′|x,u)[vt+1(x

′)] for each sample, i.e., we require a
model. In this paper, we assume that the system dynamics
are given in form of a time varying linear system

pt(x
′|x,u) = N (x′|at +Atx +Btu,Ct). (15)

Moreover, we choose a quadratic representation of the state
feature vector, such that vt can be written as

vt(x) = x
TV tx + vTt x,

with θt = {V t,vt}. Under these assumptions, the ex-
pectation of the value of the next state can be performed
analytically by

Ept(x′|x,u)[vt+1(x
′)]

=

∫
pt(x

′|x,u)
(
x′TV tx

′ + vTt x
′) dx′ (16)

= µTt,xuV tµt,xu + trace(CtV t) + v
T
t µt,xu

with µt,xu = at + Atx + Btu. Equation (16)
can be rewritten in the feature vector representation
Ept(x′|x,u)[φ(x

′)T ]θt+1 which we omit due to space con-
straints.

C. Learning Local Models for Reinforcement Learning
Our approach is easily extensible to model-based rein-

forcement learning by learning the system dynamics model
pt(x

′|x,u) from our generated samples. We will use again
simple linear Gaussian models for each time step, i.e., and
obtain the parameters at,At,Bt and Ct of the models from
our sampled data points (xt,i,ut,i) by a maximum likelihood
estimate. In the RL formulation of our algorithm, we assume
that the reward function rt is known as prior knowledge and
only the system dynamics need to be learned. In difference to
other state of the art model-based policy search methods [8],
we focus on learning simple models as they are easy to learn.
The information-theoretic bound ensures that we generate
more data in the neighbourhood of the already existing
data, and, hence, we are likely to improve the estimate of
our model. Competing methods such as PILCO [8] would
greedily exploit the model, and hence, risk to get unstable
policy updates due to inaccurate model estimates.

1A constant of 1 was prepended to the states x to account for the offset
term of the linear policy.

D. Optimizing the Dual

A major challenge in applying ITSOC is the minimization
of the dual function. While in [5] a strongly related
formulation has been used to optimize parameters of
high-level decisions where an episode consisted only of
a small number of decisions, we want to cope with large
time horizons of H = 50 to H = 100. With the quadratic
feature representation, we easily reach 40 to 60 parameters
per time step, resulting in several thousands of parameters
for the optimization. Therefore an efficient and reliable
optimization is crucial. In this subsection we will elaborate
on different techniques for the optimization. In all cases
we provided the algorithms with the analytic gradients and
Hessians.

a) Constrained optimization: An intuitive approach
is to use a constrained optimizer, such as a trust-region-
reflective algorithm [17], [18]. Unfortunately the optimizer
did run in numerical instabilities and did not find reliable
solutions in a suitable time.

b) Unconstrained optimization: Another approach is to
use the exp-trick [19] to transform the constrained problem
into an unconstrained one. We now optimize for a non-
negative substitute function ζ = log(η). As optimization
method we choose a large-scale algorithm [18]. Again we
did not achieve satisfactory results. The cause might be the
introduction of additional non-linearities in combination with
numerical instability.

c) Iterative optimization: An inspection of the dual
reveals, that the η and θ can be optimized separately using
a coordinate descent like method. First, we fix the θ pa-
rameters and optimize for each η individually. Subsequently,
we optimize for all θ vectors, which is an unconstrained
optimization. We iterate over these two steps until a solution
is found. The θ-optimization was performed by a large-scale
method [18] and each of the η-optimizations by a trust-
region-reflective method [18]. This approach reliably found
good solutions in a suitable amount of time. It can take a
considerable amount of time until the dual function is fully
optimized. But most of the constraints do not need to be
fulfilled perfectly in order to achieve a good performance.
Therefore, we relax the KL and feature constraints and
stop the optimization if both are approximately satisfied.
For the KL-constraints, we compute at each iteration of
our optimization the maximum derivation of the KL’s for
the single time steps to the desired KL ε and consider the
KL constraints as satisfied if this deviation is smaller than
ε · dε. Simillarly we compute the fmax maximum normalized
deviation of the average feature vectors and conider the
constrained fullfilled if a threshold is met.

E. Algorithm

We create K real roll-outs using the currently estimated
policy π̃t(u|x,ωt) and use these samples to replace the
distribution qt(x,u) in the dual function of the optimization
problem. To increase our data-efficiency, we will define
qt(x,u) not just as the samples from the previous iteration



Input: KL-bound ε, number of iterations K, samples N and virtual
samples M , L last iterations to reuse
Initialize π̃0

t using Gaussians with zero mean and high variance.
for h = 1 to L . . . # iterations

Collect data on the real system following π̃h−1
t :

Dk = {xt,i,ut,i}i=1...N,t=1...H

Re-use last L iterations: D = {Dl}l=max(1,h−L)...k

Estimate time-varying linear models using D
Collect data on the learned system following π̃h−1

t :

D̃h = {x̃t,i, ũt,i}i=1...M,t=1...H

Minimize dual function on D̃k:

[η1:H ,θ1:H ] = argminη′
1:H

,θ′
1:H

g
(
η′1:H ,θ

′
1:H ; D̃h

)
Estimate new policy π̃ht for each t:

Compute Weighting:

pt,i = exp

(
At(x̃t,i, ũt,i)

ηt

)
, for all i and k.

Compute policy parameters (weighted ML estimate),
Equation (13) and (14).

Output: Policies π̃Ht (u|x) for all t = 1, . . . , T

TABLE I
THE INFORMATION-THEORETIC SOC ALGORITHM.

but from the last L iterations. Hence, qt is defined as a
mixture of the last L trajectory distributions. We use the
samples from qt solely to learn the local models. These
models are later used to generate a large number M of
virtual roll-outs. These virtual samples are then used in the
dual function to determine the new policy. The resulting
algorithm is summarized in Algorithm I. At each iteration,
the policy is moving a small, controlled step towards the
(locally) optimal policy. We start the algorithm with a rather
large variance for the initial policy π0

t . Subsequently, the
exploration is automatically decreased in each iteration by
the information theoretic SOC algorithm and will, finally,
collapse to a deterministic policy.

IV. EXPERIMENTS

We evaluate ITSOC on a simulated 4-link non-linear
planar arm in two different scenarios and on the BioRob[20],
a five link tendon driven robot arm where we only control
2 links. We compare ITSOC against: a variant of advantage
weighted regression (AWR) [14], where we also use linear
policies and a quadratic value function, the AICO algorithm
[3], that is a state of the art linearisation-based algorithm
and a variant of the model-based policy search algorithm
PILCO [8], where we also use learned time dependent linear
models instead of Gaussian Processes. Instead of a gradient-
based optimizer, we use AICO as optimizer for PILCO. We
will denote this algorithm linear PILCO. While AICO uses
the real system dynamics, linear PILCO uses AICO with the
learned system dynamics. We evaluate the robustness of these
algorithms to system noise and the accuracy of the learned
models.

A. Illustration on a Two-Link Reaching Task

As a first illustration, we evaluated our approach on a
simulated two link robot arm which had to reach two via-
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Fig. 2. The plot shows the trajectory distributions for the last
joint q2 of a two link planar arm with ITSOC (left), linear PILCO
(middle) and AWR (right). The x-axis depicts the time steps while
in the rows we can see the distribution for subsequent iterations.
While the AWR approach shows a jumping behavior and a result-
ing limited learning progress, the information-theoretic approach
smoothly transforms the initial exploratory distribution into a goal-
directed movement. PILCO quickly jumps to a good solution, but
fails to further improve the policy. The average reward of ITSOC is
−11.2, while for AWR it is −52.4 and PILCO oscillates between
−3 and −2000.

points in task space. We use 50 time steps and a time interval
of dt = 0.066s. The reward function is given as squared
punishment term for the torques at each time step and a
via-point reward rv(x) at time steps t1 = 25 and t2 = 50.
The via-point reward rv(x) is proportional to the negative
squared distance in task space rv(x) = −(y−v)TH(y−v),
where H is set to 104 for all state dimensions which denote
a position. The state vector x is four dimensional containing
all joint positions and velocities of the robot. To illustrate
the behavior of different algorithms, we show subsequent
trajectory distributions during the iterations of the algorithms
in Figure 2. We show the distributions of ITSOC, AWR
and linear PILCO. We can see that the distributions change
smoothly for ITSOC allowing the algorithm to efficiently find
an optimal solution. For AWR the distributions jump and it
quickly converges to a deterministic, but sub-optimal policy.
Linear PILCO jumps early on to good solutions, however, the
greedy exploitation of the models can already cause jumps
in the trajectory distribution for small inaccuracies.

B. Four-Link Reaching Task

In this task, a four link robot has to reach two via-
points in task space. The same setup as described for the
previous experiment has been used. In addition to the control
noise used in some experiments, we always use a Gaussian
distribution for the intial state distribution p1(x). Hence, we
do not want to estimate a single nominal trajectory but a
controller which works well in a broader area of the initial
state. The state vector x of the robot is 8 dimensional
containing all joint positions and velocities. An d = 8
dimensional state vector results in a 44 dimensional feature
vector φ(x), consisting of 8 linear and d(d + 1)/2 = 36
squared terms. Hence, we had to optimize the dual function
for (44 + 1)50 = 2250 parameters.
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Fig. 3. Illustration of the resulting postures for the via-point task in task space. The non-linear planar arm has to reach the via-points at
t = 25 and t = 50 illustrated in green. The plot shows for each time step sample from the resulting distribution of postures. The mean of
the postures is shown in red. The robot manages to reach the via-point while exhibiting a significant amount of variance in joint space.
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Fig. 4. (a) Comparison of information-theoretic (IT) SOC with learned models and without learned models where we use a single sample
estimate for the expectation of the next features, which results in a bias in our optimization. Without models ITSOC is not able to learn
satisfatory policies, while the resulting policies with models can be considered good solutions, as can be seen in Figure 3. The evaluations
are done for different noise levels of additive control noise. (b) In addition we compare to advantage weighted regression (AWR) and
AICO. Model-based ITSOC clearly shows the best performance while the biased version of ITSOC quickly degrades with an increasing
noise level. Note that all plots are in log-scale for the y-axis. (c) Learning curve for the Biorob.

a) Comparison of Algorithms: We first compare our
approach to the AWR approach, the linear PILCO and the
AICO approach on this scenario. The results are shown in
Figure 4(b). The ITSOC approach significantly outperforms
all other methods in terms of learning speed and/or quality
of the final policy. Linear PILCO quickly jumps to a good
solution, but fails to find a solution of the same quality
due to the lack of exploration. A similar behavior could be
observed for the AICO algorithm that uses the known system
dynamics.

b) Robustness to Noise: We also evaluate our algorithm
with learned time-varying models against the version without
the usage of models, that have been used in [5] for high-
level policy search, with different noise levels. For the
model-free approach, we do not estimate the expected next
features but use just a single-sample estimate. Hence, the
model free optimization is biased. We use additive control
noise with a standard deviation of 60% and 250% of the
maximum torques which can be applied by the robot. We
use N = 500 samples per iteration and do not keep samples.
The results are shown in Figure 4(a). The model-based
ITSOC method could estimate a high quality controller even
with the considerably increased noise level. In contrast, the
performance of the model-free method quickly degrades due
to its bias while model-based. We also illustrate the resulting

postures for different time points in Figure 3 for the setting
with 60% noise. The robot manages to reach the via-points
(illustrated in green) in task space while it still exhibits a
large variance in joint space. In between the via-points, the
variance in task space also grows.

C. Robot Squash

In this task we extend the 4-link arm scenario to the task
of playing robot squash. We add the position and velocity
of a ball into our state space. The ball starts with random
initial x-position and velocity, however, the initial y-position
and velocity are fixed. The initial y-velocity always points
away from the robot. The ball moves with constant velocity,
however, at time step 25 it returns to the robot. At the bounce,
the x-velocity is perturbed by a significant amount of noise,
changing the incoming position of the ball. The agent has
to hit the ball at time step 50. To do so, it has to be within
a vicinity of 20cm from the ball position at t = 50. If it
manages to do so, it gets a positive reward proportional to the
velocity of the end-effector in the y-direction. Otherwise, the
reward is proportional to the negative squared distance to the
ball location. As there is no variance in the y-positions, we
add only the x-position and the x-velocities in our state space,
resulting in a 10 dimensional state vector and 65 dimensional
feature vector which resulted in 3300 parameters for the
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Fig. 5. (Left) Illustration of the robot playing squash for two
different configurations of the incoming ball. The ball has been
simulated with constant velocity but bounces off the wall in a
stochastic way. The robot can react to this perturbation and reliably
hits the ball. (Right) Learning curve in the robot squash task for
the information theoretic SOC method.

dual function. We used 10 samples per iteration and use the
last 100 samples to learn time-varying models. The robot
learned to reliably hit the incoming ball at different positions
with a high velocity in the y-direction. An illustration of
the resulting postures for two different hitting movement is
shown in Figure (5).

D. Controller Learning on a Tendon-Driven Robot Arm

In this experiment, we want to learn a controller for
the BioRob robot, depicted in figure 1. The BioRob is a
biologically motivated, lightweight, and highly compliant
robot arm that is driven by tendons and springs. While its
mechanical design with springs, enables the execution of fast
movements, controlling it’s position accurately during the
movement is difficult, as the robot does not follow the rigid
body dynamics. We want to learn a fast upwards movement
with the shoulder and the elbow joints. Both joints should
reach a desired via-point at t = 30 where we reward high
velocities at the via point. At t = 60, the robot should again
be moving still. The state of the spring acts as unobserved
state, however, it can be inferred by using the difference
between the joint and the motor encoders. We use 4 state
dimensions per joint, the joint position, joint velocity and the
motor position and velocity. As we only control two motors,
the control action is 2 dimensional. We initialized the policy
by using 10 sub-optimal demonstrations and we collected 20
episodes per iteration.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel information theoretic
stochastic optimal control algorithm. The key idea of our
approach is that we want to stay close to the generated data
such that we can ensure a stable learning progress. To our
knowledge, this notion of closeness to the data is missing in
all other stochastic optimal control algorithms. We believe
it is a key ingredient for safe approximation of the value
function.

The information theoretic formulation provides several
advantages over traditional approaches. On a finite set of
samples, we can get a closed-form solution for the estimated
policy. We also can control the exploration of the policy in
a principled manner without heuristics or fine-tuning. More-
over, we can use the roll-outs to learn simple local models

which allow us to also use our algorithm for reinforcement
learning. For future work, we will investigate dimensionality
reduction techniques to reduce the dimensionality of the
feature space. We will also investigate the use of different
types of parametrized policies.
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