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Abstract— Movement Primitives are a well studied and
widely applied concept in modern robotics. Composing prim-
itives out of an existing library, however, has shown to be
a challenging problem. We propose the use of probabilistic
context-free grammars to sequence a series of primitives to
generate complex robot policies from a given library of prim-
itives. The rule-based nature of formal grammars allows an
intuitive encoding of hierarchically and recursively structured
tasks. This hierarchical concept strongly connects with the way
robot policies can be learned, organized, and re-used. However,
the induction of context-free grammars has proven to be a
complicated and yet unsolved challenge. In this work, we exploit
the physical nature of robot movement primitives to restrict
and efficiently search the grammar space. The grammar is
learned applying a Markov Chain Monte Carlo optimization
over the posteriors of the grammars given the observations.
The proposal distribution is defined as a mixture over the
probabilities of the operators connecting the search space.
Restrictions to these operators guarantee continuous sequences
while reducing the grammar space. We validate our method
on a redundant 7 degree-of-freedom lightweight robotic arm
on tasks that require the generation of complex sequences
consisting of simple movement primitives.

I. INTRODUCTION

Movement primitives (MPs) are a well established concept
in robotics. MPs are used to represent atomic, elementary
movements and are, therefore, appropriate for tasks consist-
ing of a single stroke-based or rhythmic movement [1]. They
have been used in a large variety of applications, e.g., table
tennis [2], pancake flipping [3] and hockey [1]. However, for
more complex tasks a single MP is often not sufficient. Such
task require sequences of MPs for feasible solutions.

Considering a set or library of MPs, such sequences
can be generated in a variety of ways, including Hidden
Markov Models [4], Mixture Models [5] and other hierar-
chical approaches [6]. These approaches can be regarded as
mechanisms that produce sequences of MPs. This perspective
reveals a common, important downside: understanding these
mechanisms requires a significant amount of expert knowl-
edge. However, a declared goal of robotics is the deployment
of robots into scenarios where direct or indirect interactions
with non-expert users are required. Therefore, more intuitive
sequencing mechanisms for non-experts are necessary.
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Fig. 1: The robot executes a turn in the tic-tac-toe game,
represented as a sequence of movement primitives. The
sequence was generated by a probabilistic context-free gram-
mar learned from previously labeled observations.

This work proposes the use of formal grammars for the
sequencing of MPs. In particular, we focus on probabilistic
context-free grammars (PCFGs) and propose a method to in-
duce PCFGs from observed sampled sequences of primitives.
Formal grammars represent a formal description of symbols
and rules, representing the structure of a corresponding
language. They have been intensively studied in both natural
language processing and compiler construction but have also
been applied in a variety of fields, e.g., molecular biology
[7], bioinformatics [8], computer vision [9] and robotics [10],
[11]. PCFGs allow the implicit embedding of hierarchies
within the rules of the grammar associating every produced
sequence with at least one corresponding parse tree. Such a
parse tree represents the derivation of the produced sequence
in an intuitive way. Figure 1 shows a learned grammar for
placing a stone in a game of tic-tac-toe, including the parse
tree for a produced primitive sequence.

However, the understandability of the grammar itself de-
pends on the size of both the grammar, i.e., the number of
possible productions, as well as the length of each possible
production. The induction of concise but expressive gram-
mars is considered non-trivial and in the context of natural
language even an ill-posed problem. A common approach to
grammar induction is to formulate the problem as a search
problem where each possible grammar is a node in the search
space and a set of operators generate the edges between
those nodes. This search space can then be traversed through
different search methods where a scoring function determines
the quality of each grammar. Stolcke et al. [12] suggested



formulating the problem as a Maximum-a-posteriori estima-
tion where the scoring is defined as the posterior given the
observations. In order to reduce the possibility of getting
stuck in bad local optima, the search space was traversed
via beam search. In this work we formulate the search as a
Markov Chain Monte Carlo (MCMC) optimization similarly
to [13], where the scores are defined as posteriors over the
grammars given the observations.

Our proposed approach exploits the structure inherently
presented in the physical motions to ease the learning
of grammars. We assume each segment of the observed
sequences to be a sample from an underlying library of
movement primitives (e.g. [5], [14]). Due to the considerably
smaller size of a primitive library compared to the corpus of
a natural language, the observed sequences of even complex
tasks show a simpler structure than a natural language
sentence. Furthermore, the type of a movement primitive,
e.g., hand or arm movement, can be easier deduced than the
type of a word, e.g., verb, noun. In general, the different types
of primitives can be determined automatically by identifying
their principal components.

An important restriction, improving the induction of gram-
mars for movements is that any produced sequence has to
result in a continuous trajectory inside the state space. There-
fore, any grammar that would produce a jump in the state
space is invalid and has to be removed from consideration.
In this work we avoid such grammars directly by restricting
the operators to only produce valid grammars.

The contributions of this work are the induction of
probabilistic context-free grammars for the sequencing of
movement primitives. The posteriors are computed using a
novel prior distribution that avoids many pitfalls of existing
methods based on minimum description length and Dirichlet
distributions (refer to Section II). The search is formulated
as a Markov Chain Monte Carlo optimization where the
proposed distributions are defined through restrictions put
upon the operators connecting the grammar search space.
These restrictions include physical constraints presented in
the domain of movements. Differently from methods based
on greedy beam search (e.g. [12]), MCMC is a global
optimizer.

II. RELATED WORK

Movement primitives are usually used to solve tasks
consisting of single, atomic stroke-based or periodic move-
ments [1]. For more complex tasks, however, a sequence of
primitives has to be applied. An example of such a task is the
grasping, positioning, and cutting of a vegetable [15] with
Dynamical Movement Primitives (DMPs) [16]. However, in
that work the sequences were not learned, but predefined. An
approach combining the segmentation of observations and
the learning of a sequencing mechanism is presented in [4].
The primitives are encoded using Hidden Markov Models
and a graph structure is learned during the segmentation. This
graph can be used subsequently to sequence the primitives.
Another approach featuring a sequence graph was presented
in [17]. The graph is learned from demonstrations through

an agglomerative clustering scheme. In [18] a hierarchical
version of the Relative Entropy Policy Search algorithm
[19] is introduced, capable of learning gating-policies to
sequence DMPs. In this work, we propose probabilistic
context-free grammars as a means of sequencing movement
primitives. Grammars bring the advantage of being a general
method capable of representing hierarchies in a principled
and intuitive manner.

Motion grammars [10] are extensions of context-free
grammars modeling the discrete and continuous dynamics
of hybrid systems. The grammars introduced in [10] are
predefined and aim at fast task verification. In [11] a proba-
bilistic context-free grammar is used to sequence discrete
actions. Analogously to [12] the grammar is learned by
applying a beam search for the maximal posterior inside the
grammar space. The grammar space is traversed by applying
the merge and chunk operators [12] of observed sequences
(these operators will be defined in detail in Section III). In
contrast to [12] a n-gram like frequency table is used to
determine reoccurring patterns in the observations, hence,
identifying candidate productions for the chunk operator.
To avoid unintuitive, compact grammars the prior definition,
originally defined solely by the minimal description length,
was extended by a log-Poisson term similar to [20].

While sharing the motivation of learning intuitive, prob-
abilistic context-free grammars for primitive sequencing,
our work differs in several ways from [11]. We use a
stochastic movement primitive representation and actively
take advantage of its properties to induce the grammar. We
deviate from the common structure prior definition as an
exponential distribution over the minimal description length
and define the entire prior as a combination of several
Poisson distributions. Furthermore, we use a Markov chain
Monte Carlo optimization to find the grammar maximizing
the posterior, similarly to [13], which is more robust to local
optima than a beam-search.

The grammar induction approach described in [13] uses
the Metropolis-Hastings algorithm [21] to learn grammars
describing designs in various domains, such as websites and
geometric models. The prior is defined using the description
length and the grammar learning is not used in any robotics
context. Our proposed approach differs significantly in the
structure of the observed sequences. In [13], the observations
and, hence, the starting points of the grammar induction
are already hierarchical structures. Therefore, it is sufficient
to traverse the grammar space using solely the merge and
split operators. These operators allow the generalization and
specialization of grammars, but are not able to introduce
new hierarchies like the chunk operator [12]. In this work,
we apply all three operators. To achieve the required irre-
ducibility of the Markov chain we additionally introduce the
insert operator, negating the effects of the chunk operator.
The meaning of the operators shall become clear in the next
section.
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Fig. 2: The grammar space G contains all valid grammars
G0 . . .G∗. The space is traversed by applying operators op ∈
O = {merge, split, chunk, insert} on the current grammar.
For every operator op generating G′ from G, there exists an
op that generates G from G′, e.g., merge = split, chunk =
insert.

III. BACKGROUND

Before showing how to induce the probabilistic language
of movements, this section briefly presents the general
concept of probabilistic context-free grammars (PCFGs). A
PCFG is a 4-tuple G = 〈A,V,R,S〉, consisting of a set of
terminals A =

{
a1, a2, a3, . . . , a|A|

}
, a set of nonterminals

V =
{
A1, A2, A3, . . . , A|V|

}
, a set of starting symbols S ⊆

V , and a set of production rules R = {(A,RA,ρA)|A ∈ V}.
The ordered set RA ∈ ((A∪V)+)|RA| is referred to as the
productions of the nonterminal A ∈ V and the elements ρ ∈
ρA of the multinomial ρA ∈ ∆|RA|−1 are the probabilities
or parameters of A. A common example grammar is the one
describing the language anbn

G = 〈A,V,R,S〉 ,
A = {a, b} , V = {A} , S = {A} ,

R =
{(

A, (ab, aAb) , [0.7, 0.3]
T
)}

.

This grammar describes the language of all sequences that
consist of any number of as followed by the same number
of bs. A more common but less formal notation for the rule
set is

R = {A→ ab [0.7],

A→ aAb [0.3]},

which illustrates, the function of a rule. The nonterminal on
the left hand side, A, can produce the sequences ab and
aAb on the right hand side with a probability of 0.7 and 0.3
respectively.

Learning formal grammars from sequences of terminals
is referred to as grammar induction. Commonly the task
is formulated as a search through a grammar space G,
where the connections between grammars are represented
as different operators. Such operators manipulate the set of
production rules R and the set of nonterminals V accord-
ingly. Starting from an initial grammar G0 these operators
are used to traverse the grammar space, searching for the
optimal grammar G∗. Various search strategies have been

suggested, e.g. beam search [12], [11] and Markov chain
Monte Carlo optimization [13].

IV. INDUCING A PCFG FOR MOVEMENT PRIMITIVES

Given a set of primitives Θ =
{
θ1,θ2,θ3, . . . ,θ|Θ|

}
and a set of labeled demonstrations D ={
d1,d2,d3, . . . ,d|D|

∣∣di ∈ Θ+
}

, the goal is to learn
the PCFG G∗ that maximizes the posterior

G∗ = argmax
G

p (G|D) . (1)

In this work, we define the set of terminals as the set of prim-
itives A = Θ . During the learning of the grammar the ter-
minals, and, hence the primitives are considered immutable,
implying that the search space consists of grammars that only
differ in S, V or R. Each grammar represents a node in the
grammar space G, while the directed edges between nodes
are defined by operators. Operators manipulate the rule set
R of a grammar G and consequently create a new grammar
G′. The grammar space G is illustrated in Figure 2. In this
work we apply four different operators spanning G, that are
described in more detail below. Furthermore, a Markov chain
Monte Carlo optimization is used to find the grammar G that
maximizes the posterior p (G|D).

A. Learning grammars through posterior optimization

The posterior p (G|D) describes how probable a given
grammar G is given the observed sequences D. By applying
Bayes theorem we can reformulate the posterior, and, hence
the maximization as

G∗ = argmax
G

p (G|D) , (2)

= argmax
G

p (D|G) p (G) , (3)

where p (D|G) is the likelihood of the labeled demonstra-
tions D given the grammar G, as presented in Section IV-A.1.
In Section IV-A.2 we discuss common choices for the prior
p (G). We finally introduce a novel grammar prior based on
Poisson distributions in Section IV-A.3.

1) The likelihood p (D|G): is computed for each demon-
stration independently, yielding

p (D|G) =
∏
d∈D

p (d| G) . (4)

Depending on the grammar G the sequence d could have
been produced in multiple ways. Considering every possible
derivation results in the sum-product formulation

p (d |G ) = 1

|parse (d,G)|
∑

τ∈parse(d,G)

∏
(A,r,ρ)∈τ

ρ,

where τ represents a single parse tree and parse (d,G)
denotes a function producing all feasible parse trees. The
3-tuple (A, r, ρ) represents an edge in the parse tree τ
connecting the nonterminal A and its production r ∈ RA

with a probability of ρ ∈ ρA. In this work the function parse
creating all possible parse trees for a given demonstration d
is implemented by the Earley parser [22]. While the Earley
parser suffers from a higher complexity compared to other



parsers, it has the advantage that the parsed grammars do not
have to be in any particular form.

2) Commonly the grammar prior p (G): is modeled
as a joint distribution over the grammar probabili-
ties ρG = {ρA|A ∈ V} and the grammar structure
GR = {(A,RA)|A ∈ V} [12], [20], [13], [11],

p (G) = p
(
ρG
∣∣GR) p (GR) . (5)

The conditional p
(
ρG
∣∣GR) itself can be modeled as an

independent joint distribution over the parameters of each
nonterminal A ∈ V ,

p
(
ρG
∣∣GR) = ∏

ρA∈ρG

p (ρA) . (6)

The dependency on the grammar structure is implicit, since
the probabilities ρA ∈ ρG depend on both the set of
nonterminals V and the productions for each nonterminal
RA. The parameters for each nonterminal ρA ∈ ρG form
a multinomial distribution, i.e.,

∑
ρ∈ρA

ρ = 1. Therefore,
a Dirichlet distribution would be an obvious choice for
the probability distribution over the parameters p (ρA) for
a single nonterminal A ∈ V . A significant drawback of
using a Dirichlet distribution is its factorial growth in the
dimensionality of the multinomial. In fact, using an uninfor-
mative Dirichlet distribution, i.e. setting the concentration
parameters to 1.0, will result in a probability density of
p (ρA) = (dim (ρA)− 1)! for any ρA ∈ ρG .

To compensate for this growth, the structure prior p (GR)
is usually modeled as an exponential distribution over the
minimal description length (MDL) of the grammar structure
GR. Every symbol in the production rules, terminal and
nonterminal, contributes to the MDL with log2 (|A|+ |V|)
bits, yielding the over all description length

MDL(GR) =
∑

(A,RA)∈GR

∑
r∈RA

MDL(r) ,

MDL(r) = (1 + |r|) log2 (|A|+ |V|) .

A prior p (GR) defined as an exponential distribution over the
MDL(G) will prefer small and concise grammars. However,
such a prior can lead to grammars that are too compact to
be intuitive for non-experts. In order to prefer grammars
with a desired production length, ηr, the MDL has been
extended with the log of a Poisson distribution with mean
ηr[20], [11]. Because of the factorial growth of the parameter
prior p

(
ρG
∣∣GR) the structure prior is often additionally

amplified with an exponential weighting term [13] to remain
of significance for the overall grammar prior p (G) and,
hence, the posterior p (G|D).

The likelihood p (D|G) is defined as a product over the av-
erage of probabilities, which always results in p (D|G)≤1.0.
However, the described grammar prior p (G) is the product
of two probability densities, which will very quickly result
in p (G)� 1.0 and therefore dominate the posterior.

3) The novel prior: presented in this paper aims at induc-
ing PCFGs which are easily understandable for non experts.
The key to achieving this goal is the grammar structure,

rather than the grammar parameters. Therefore, we suggest
a grammar prior, that does not explicitly model a Dirichlet
distribution over the parameters but instead implicitly con-
siders the parameters in the overall grammar prior p (G).
We model the parameter prior and the structure prior jointly
p (G) = p

(
ρG ,GR

)
as

p
(
ρG ,GR

)
=

p (|R||ηR)

|R|
∑

(A,RA,ρA)∈R

γ (A,RA,ρA)

(7)
γ (A,RA,ρA) = p (|RA||ηR) p (RA|ρA, ηr) , (8)

where the probabilities over the number of rules p (|R||ηR)
and the size of each rule p (|R||ηR) are modeled as Poisson
distributions with means ηR and ηR. The probability of each
rule is modeled as a weighted average

p (RA|ρA, ηr) =
∑

r∈RA,ρ∈ρA

ρ p (|r||ηr) , (9)

over the probabilities of the corresponding productions. The
weighting is given by the grammar parameters ρ ∈ ρA and
the probability of each production corresponds to the Poisson
distribution over its length p (|r||ηr), given a desired produc-
tion length ηr. Since all components are defined as discrete
probabilities, the prior is always p (G) ≤ 1, eliminating the
need for hard to tune weighting terms to cope with difficult
scaling properties. Furthermore, the prior p (G) will now
prefer grammars with ηR productions per nonterminal with
an average length of ηr symbols per production. The hyper-
parameters ηR, ηr can be set to achieve a desired simplicity
of the grammar. By weighting each production r ∈ RA with
the corresponding grammar parameter ρ ∈ ρA the prior gives
more significance to production which are more likely to
occur.

B. Traversing the grammar space G

To find the optimal grammar G∗, it is necessary to define
mechanisms that generate new grammars. A common choice
is to define operators op ∈ O, where O denotes the set of all
operators. Each operator op manipulates the rule set R and
consequentially the nonterminal set V of a given grammar G,
therefore, creating a new grammar G′. For each operator op
we define a domain Ωop that op can act upon. The elements
in Ωop depend on the operator itself and can be for instance
nonterminals, pairs of nonterminals or productions.

Each grammar represents a node in a grammar space
G. The operators op ∈ O represent directed edges in G
between two grammars. The grammar space G is illustrated
in Figure 2. After a grammar G′ was created by applying an
operator op on grammar G, the grammar parameters usually
have to be recomputed. In this work, the parameters are re-
estimated for every new grammar G′ via the Inside-Outside
algorithm [23].

Not every possible grammar G is suitable for sequencing
movement primitives. Every sequence produced by G has to
guarantee a smooth, continuous trajectory within the state
space of the MPs. In general, this means that a possible next



primitive has to begin close the to the end of the preceding
primitive.

We restrict the grammar space G to only contain gram-
mars that fulfill this continuity requirement. The restriction
is achieved by limiting the domain Ωop of each operator
op∈ O, such that if grammar G fulfills the continuity re-
quirement any grammar G′ resulting from an application of
op on G also fulfills the requirement. We incorporate the
continuity requirement into the definition of the two common
operators merge and split.

1) split: divides the nonterminal Ai ∈ Ωsplit into two
new nonterminals Aj , Ak. The productions RAi

are separated
randomly into two corresponding, disjoint sets RAj

and
RAk

, where none of the two resulting sets is empty. Each
occurrence of Ai is randomly replaced by either Aj or Ak,
where both Aj and Ak have to be selected at least once.
The domain Ωsplit contains all nonterminals with at least
two productions. Furthermore, every nonterminal in Ωsplit

has to occur at least twice across all productions, including
its own.

2) merge: combines two nonterminals (Aj , Ak) ∈
Ωmerge into a new nonterminal Ai. Correspondingly, the pro-
ductions of Ai are defined as the union RAi = RAj ∪RAk

.
Every occurrence of Aj and Ak is replaced by Ai. If
Aj and Ak contain productions that begin or end in very
different MP state spaces a merging would endanger the
continuity requirement. We avoid this problem by restricting
the domain Ωmerge. The domain Ωmerge contains only pairs
of nonterminals (Aj , Ak), where all productions RAj ∪RAk

begin and end around a similar MP state space.
The split and merge operators negate each other and

are capable of generalizing exiting hierarchies in grammars,
however they lack the important ability to create new hierar-
chies. Therefore, we additionally utilize the chunk operator
[12] and define the new insert operator that negates the
effects of chunk.

3) chunk: creates a new nonterminal A with productions
RA = {r} , r ∈ (A∪V)+ ∧ r ∈ Ωchunk. Every occurrence
of the sequence r in and production in R is replaced by A.
The domain Ωchunk contains all possible subsequences of all
productions in R.

4) insert: selects a nonterminal A ∈ Ωinsert and replaces
each occurrence of A with its production r ∈ RA. The
domain Ωinsert contains all nonterminals with exactly one
production.

Given these four operators, we define the set of all
possible operators as O = {merge, split, chunk, insert}.
Furthermore, the operators in O are not exchangeable i.e., if
a grammar G′ was created by applying the operator op on
grammar G, there exists no operator in O\{op} that is able
to produce G′ from G.

C. Finding G∗

Similarly to [13] we search for the optimal grammar
G∗ = argmaxG p (G|D) using an Markov chain Monte
Carlo optimization. However, the inputs are expected to
already be hierarchical, restricting the grammar search to a

reorganization of already existing productions by applying
solely the merge and split operators. Given that our inputs
are flat sequences, that is, pure sequences without hierarchy,
of observed primitive samples, we additionally apply the
chunk operator, that is capable of creating hierarchies [12].
The insert operator ensures the irreducibility of the Markov
chain. Analogously to [13], we apply the Metropolis Hastings
algorithm. However, since [13] solely uses the split and
merge operator, the paper directly defines the proposal dis-
tributions q

(
G′
∣∣G) as the probability of a split or a merge.

In this work we define the proposal distribution as a mixture
over the four operators O = {merge, split, chunk, insert},

q
(
G′, op′

∣∣G) = ∑
op∈O

p (op′| G, ηop′) qop
(
G′
∣∣G, op′) ,

with mixture components qop
(
G′
∣∣G, op′). The mixture prob-

ability is defined as

p (op′| G, ηop′) =
ηop′

(
1− δ∣∣Ωop′

∣∣)∑
op∈O, ηop

(
1− δ|Ωop|

) (10)

where ηop ∈ R is a weighting for the operator op, δ|Ωop|
denotes the Kronecker delta over the size of the domain
Ωop for operator op. Given that the operators in O are not
exchangeable, a mixture component qop

(
G′
∣∣G, op′) should

not contribute any probability mass if op 6= op′. This
restriction is achieved by the Kronecker deltas δop′,op in the
following mixture components.

1) qsplit
(
G′
∣∣G, op′): Given that the split operator was

applied to produce G′ from G, there exist Ai ∈ V and
Aj , Ak ∈ V ′. The chance of randomly selecting Ai ∈ Ωsplit

is 1/ |Ωsplit|. Additionally, every production r ∈ RAi

was randomly assigned to either RAj
or RAk

, while
each of those two sets had to be selected at least once,
resulting in the hypergeometric probability H∣∣∣RAj

∣∣∣ =

H
(∣∣RAj

∣∣∣∣2 (|RAi
| − 1) , |RAi

| − 1,
∣∣RAj

∣∣+ |RAk
|
)
.

Finally, the NAi
occurrences of Ai across all

productions in R have been replaced by NAj

and NAk
occurrences of Aj and Ak in R′,

contributing yet another hypergeometric probability
HNAj

= H
(
NAj

∣∣2 (NAi
− 1) , NAi

− 1, NAj
+NAk

)
. The

overall probability of G′ being produced from G by using a
split operator is given as:

qsplit
(
G′
∣∣G, op′) = δop′,split

|Ωsplit|
H∣∣∣RAj

∣∣∣HNAj
. (11)

2) qmerge

(
G′
∣∣G, op′): The only stochastic part in the

merge operator is the decision which pair (Ai, Aj) ∈ Ωop is
selected, therefore the probability for merge is given as

qmerge

(
G′
∣∣G, op′) = δop′,merge

|Ωmerge|
. (12)

3) qchunk
(
G′
∣∣G, op′): Given that the domain Ωchunk al-

ready contains all possible subsequences of all productions
in R, the probability for choosing one sequence at random



(a) pick near (b) pick far (c) place left (d) place right (e) home

Fig. 3: The five arm primitives used in the sequences, representing turns in the tic-tac-toe game.

START → DEMO1 (0.25) | DEMO2 (0.25) |
DEMO3 (0.25) | DEMO4 (0.25)

DEMO1 → pick far close place right open home (1.00)
DEMO2 → pick near close place right open home (1.00)
DEMO3 → pick far close place left open home (1.00)
DEMO4 → pick near close place left open home (1.00)

(a) Initial grammar. Grammar index 0 in Figure 5

START → MOVE (1.00)
MOVE → pick near TO (0.40) | pick far TO (0.60)
TO → LEFT home (0.47) | RIGHT home (0.53)
LEFT → close place left open (1.00)
RIGHT → close place right open (1.00)

(b) Induced grammar. Grammar index 171 in Figure 5

Fig. 4: (a) The initial grammar for learning a tic-tac-toe turn.
(b) The grammar with the best posterior after 400 iterations
of the MCMC optimization.

is

qchunk
(
G′
∣∣G, op′) = δop′,chunk

|Ωchunk|
. (13)

4) qinsert
(
G′
∣∣G, op′): The domain Ωinsert is already re-

stricted to nonterminals with a single production, therefore
the probability of insert is simply

qinsert
(
G′
∣∣G, op′) = δop′,insert

|Ωinsert|
. (14)

At every iteration of the Metropolis-Hasting algorithm a
random new grammar is sampled from the proposal distri-
bution G′, op′ ∼ q

(
G′, op′

∣∣G). This new grammar is then
accepted with a probability of

acc
(
G′, op′

∣∣G) = min

(
1,

p
(
G′
∣∣D)1/T q

(
G, op′

∣∣G′)
p (G|D)1/T q

(
G′, op′

∣∣G)
)
,

(15)

where T denotes a decaying temperature and op′ denotes the
complementary operator to op′, i.e. split = merge, chunk =
insert. If the new grammar was accepted it is set to the
current grammar G← G′ and the next iteration begins. After
a defined number of iterations, the grammar with the highest
posterior is returned.

V. EXPERIMENTS

We evaluated the proposed approach on two real robot
tasks. First, we induced a grammar producing turns of the
tic-tac-toe game. Second, we learned a grammar that assists
a human with the assembly of a simple toolbox. In both
tasks the necessary primitives were encoded as Probabilistic
Movement Primitives [1]. For each of the tasks we compare
the posterior resulting from our proposed prior, Grammar
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Fig. 5: The posteriors and the likelihood for the tic-tac-toe
turn grammar. The vertical, dashed line indicates the index
of the highest posterior (171), given the presented Poisson
prior.

Poisson, with the one resulting from three common structure
prior choices, MDL, Poisson + MDL, Avg. Poisson. The
MDL prior is simply defined as an exponential distribution
with the MDL as its energy [13]. The Poisson + MDL prior
weights the description language for every production with
the Poisson probability over the length of the production [20].
Finally, the Avg. Poisson prior discards the MDL completely
and is solely represented by a Poisson distribution over the
average length of all productions [11]. A major difference
of the Grammar Poisson prior to the other discussed priors
is that we do not model the distribution over the grammar
parameters as a Dirichlet distribution but rather use them as
a weighting for the average production length.

A. Learning a Grammar for Tic-Tac-Toe Turns

In this task we learned a grammar that allows the robot
to play tic-tac-toe against a human. Each produced sequence
corresponds to one turn of the game, i.e. picking a stone,
closing the hand, placing the stone on the field , opening the
hand and returning to the home position. The goal is not to
learn the logic behind the game but rather the induction of an
intuitive grammar producing valid turns. The segmentation of



(a) take board (b) take screw (c) give board (d) give screw (e) home

Fig. 6: The arm primitives of the box assembly task.
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Fig. 7: The posteriors and the likelihood for the box assembly
task. The vertical, dashed line indicates the index of the
highest posterior (160), given the presented Poisson prior.

the demonstrations and, hence, the learning of the primitives
was done beforehand via Probabilistic Segmentation [5]. The
five resulting arm primitives are shown in Figure 3, where
the green and blue highlighted areas mark the start and end
of the end-effector.

The grammar learning was initialized with 16 observations
of four unique sequences, each consisting of five terminals.
The initial grammar is shown in Figure 4a. We initialized
our approach with a desired number of rule ηR = 5, the
desired number of average productions per rule ηR = 2
and the desired average length of each production ηr =
3. The weights for each operator were set uniformly to
ηop = 1, op ∈ O. The MCMC optimization was run
for 400 steps and resulted in 324 accepted grammars. The
corresponding normalized posteriors are shown in Figure 5a
and the grammar with the highest posterior, grammar index
171 is shown in Figure 4b. The induced grammar intuitively
represents, that each produced sequence will move a near
or a far stone to either the left or the right side of the
playing field. Furthermore, after every closing of the hand
there will be a later opening of the hand. A possible sequence
produced by the grammar, including the corresponding parse
tree is seen in Figure 1. For simplicity the naming of the

START → ASSEMBLE SB (0.50) | ASSEMBLE BB (0.50)
BOARD → take board GIVE B home (1.00)
SCREW → take screw GIVE S home (1.00)
BSB → BOARD SCREW BOARD (1.00)
SBS → SCREW BOARD SCREW (1.00)
GIVE S → close screw give screw open screw (1.00)
ASSEMBLE BB → BOARD BOARD SBS BOARD SCREW SCREW (1.00)
GIVE B → close board give board open board (1.00)
ASSEMBLE SB → SBS BOARD SCREW BSB (0.50) |

BOARD SBS BOARD SBS (0.50)
Induced grammar. Grammar index 160 in Figure 7

Fig. 8: The grammar with the best posterior for the box
assembly task after 400 iterations of the MCMC optimization

nonterminals was chosen manually after the grammar learn-
ing. An automated naming of the nonterminals corresponding
to the semantics of the productions is outside of the scope
of this paper and remains part of future work. Figure 5b-d
shows the normalized posteriors corresponding to the three
common priors. The x-axis corresponds to the different
grammars traversed during the MCMC optimization, i.e. the
grammar Gi, opi ∼ q

(
Gi, opi

∣∣Gi−1
)

was sampled from
the proposal distribution around Gi−1 by applying opi.
The spiky behaviour of the posteriors (b-d) is due to the
uninformative Dirichlet prior for the grammar parameters and
the exponential distribution over the MDL. Both of these
factors can change significantly with a small change in the
grammar, e.g. a merge creating a rule with many productions
or a chunk reducing the length of a long production.

Furthermore, it is noticeable that the likelihood of the
grammar p

(
Gi
∣∣D) does not play significantly into the pos-

teriors of (b-d), whereas our posterior (a) shows a much
stronger dependency on the likelihood. This behaviour, is ex-
plained by the fact that the likelihood as introduced in Equa-
tion (4) is a probability mass function, but the three priors
(MDL, Poisson + MDL, Avg. Poisson) are products of prob-
ability density functions. In contrast, our prior (Grammar
Poisson) is defined as a probability mass function, averaging
over multiple Poisson distributions. This definition prohibits
the prior from completely dominating the likelihood. As a
consequence, the proposed prior (Grammar Poisson) results
in a posterior (a) that takes the given observations much
stronger into account than the posteriors in (b-d).

B. Learning a Grammar for a Simple Toolbox Assembly

This task shows the abstraction capabilities of our ap-
proach. The demonstrations were again segmented before-
hand and resulted in the five arm primitives, shown in
Figure 6, and four hand primitives, closing and opening the
hand for both a board and a screw grasp. The set of demon-
strations contained three different sequences, consisting of



40 terminals each. Every observation showed the grasping
and handing over of four boards and four screws, either
alternating between the board and the screw or starting with
two boards and alternating subsequently. The approach was
initialized with ηR = 9, ηR = 2, ηr = 2. The weights for the
split and merge operators were set to 1 and the remaining
two were set to 2. The MCMC optimization ran for 400 iter-
ations and 303 grammars were accepted. The posteriors for
the accepted grammars are shown alongside the likelihood
in Figure 7. The posteriors show similar behavior as in the
previous task. Both the MDL and the Poisson + MDL have a
maximum at 162, indicating that the corresponding grammar
has the minimal description length of all accepted grammars.
The Avg. Poisson prior has its maximum at 44 due to an
average production length close to ηr. However, the corre-
sponding grammar contains 14 rules with one production
each. The grammar with the maximum posterior according
to the Grammar Poisson prior is given at index 160 and
presented in Figure 8. The grammar abstracts a full turn
from taking a board or screw until going back to the home
position. This subsequence was not marked in any way and
was detected as a consequence of the grammar learning. The
sequence occured multiple times during each observation.
Abstracting it into a nonterminal will therefore simplify the
grammar significantly. Furthermore, the grammar encodes
that a grasping of a board or a screw through the closing of
the hand has to be eventually followed by the corresponding
opening of the hand. The alternation between handing over
a board and a screw is represented in the two rules for SBS
and BSB and the rules for ASSEMBLE SB. The option of
starting with two boards is encoded in ASSEMBLE BB.

VI. CONCLUSION

In this work, we introduced probabilistic context-free
grammars as a mechanism to sequence movement primitives.
The paper presents an approach to induce such grammar
from flat sequences of movement primitive samples, i.e.,
no hierarchy in the observations, while taking advantage
of a stochastic primitive representation. The new introduced
grammar prior is defined over several coupled Poisson dis-
tributions, and eliminates the many complications that arise
from both Dirichlet parameter priors and minimal description
length based structure priors. In our method, the hyper-
parameters of the prior have an clear semantic interpretation,
namely the number of productions for each nonterminal and
the average length of each production. The optimal posterior
is learned using a Markov chain Monte Carlo optimization
where the proposal distribution is formulated as a mixture
model over four operators while avoiding local solutions.
The learned grammars are simple and intuitive as evaluated
in several experiments on a real robot platform.
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