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Abstract— Learning sequential force interaction tasks from
kinesthetic demonstrations is a promising approach to transfer
human manipulation abilities to a robot. In this paper we
propose a novel concept to decompose such demonstrations
into a set of Movement Primitives (MPs). The decomposition is
based on a probability distribution we call Directional Normal
Distribution (DND). To capture the sequential properties of
the manipulation task, we model the demonstrations with a
Hidden Markov Model (HMM). Here, we employ mixtures
of DNDs as the HMM’s output emissions. The combination
of HMMs and mixtures of DNDs allows to infer the MP’s
composition, i.e., its coordinate frames, control variables and
target coordinates from the demonstration data. In addition,
it permits to determine an appropriate number of MPs that
explains the demonstrations best. We evaluate the approach
on kinesthetic demonstrations of a light bulb unscrewing task.
Decomposing the task leads to intuitive and meaningful MPs
that reflect the natural structure of the task.

I. INTRODUCTION

Imitation learning of robot manipulation tasks is a promis-
ing research area with many potential application domains.
These range from industrial applications such as assembly
to service robotics. Intuitive learning approaches can be a
tool to speed up the programming process, as well as a
means to realize tasks with higher complexity. This paper’s
contribution is a concept to improve the human-to-robot
skill transfer of sequential force interaction tasks. Such tasks
may involve physical contact between the robot and its
environment. Examples are assembly problems where a robot
may exert a force on an object such as pushing a button, or
rotating a handle while pulling it. Naturally, such tasks can
be decomposed into a set of elementary movements, often
called movement primitives (MPs). In the remainder of the
paper, we define an MP as an elementary movement that is
composed of a spatially represented dynamical system with
attractor behavior ẋ = f(x). Vector x is composed of a set
of task-space control variables, which may be represented
in different coordinate frames [1]. Control variables may
for instance be a spatial position or orientation of an end-
effector in object coordinates, or a force of the end effector
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in world coordinates. The dynamical system behavior f(x)
is assumed to have a convergent attractor behavior, making
the MP eventually converge to the target coordinates of
the control variables. We further assume that the compo-
sition (control variables and coordinate frames) for an MP
are constant.

To avoid defining a specific MP for each subtask by
hand, the learning from demonstrations paradigms suggests
to learn them automatically from demonstrations of the task.
Our focus is on learning from kinesthetic demonstrations.
In a kinesthetic demonstration, a teacher guides the robot
physically through a task, similar to a parent teaching a task
to his or her child. Such demonstrations allow to record both
kinematics and force sensor data in the robot’s embodiment,
hence circumventing the correspondence problem. Further,
the force measurements are an important source of infor-
mation when inferring which control variable to use, e.g.,
force and/or position-control. The aim of our approach is
to decompose a set of kinesthetic demonstrations of a force
interaction task into its generating MPs. We present a concept
to infer the composition of each MP, i.e., its control variables,
target coordinates and coordinate frames. In addition, we do
not assume to know the number of involved MPs beforehand,
but will infer them from the data.

A. Related Work

Decomposing a task based on kinesthetic demonstrations
has received a lot of attention in robotics research over
the past years. Many researchers concentrate on segment-
ing demonstrations on a trajectory level, mainly neglecting
forces. Niekum et al. [2] segmented demonstrations using
an auto-regressive Hidden Markov Model. In order to find
a task-decomposition that does not only explain the data
well but is also semantically meaningful for the task, they
afterwards split up states of the resulting model to build a
Finite State Machine representation based on prior knowl-
edge. Lioutikov et al. [3] assume an initial guess for potential
cut points between successive MP segments. They then try
to prune out false positive cut points and find the MPs
responsible for generating the data of each segment in a
probabilistic way using an Expectation-Maximization (EM)
algorithm. Both approaches do not consider different coor-
dinate frames and neglect forces.

Other comparable approaches use different methods and
models, but also try to find a segmentation without taking
into account the measured forces. Examples for other meth-
ods are Inverse Reinforcement Learning [4], [5], Transition
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Fig. 1: Overview of our task-decomposition approach using a simple 1D toy example. Plot (a) shows two demonstrations (blue and red) in two different
coordinate frames. Our approach first (pre-)segments the data by finding zero-velocity crossings and contact changes (b). The different segments are
illustrated using different colors. Then, the segments are assigned to MPs using a Hidden Markov Model (HMM) (c). Here, we use mixtures of Directional
Normal Distributions (DNDs) as output emissions of the HMM. DNDs are introduced in this paper and allow us to to extract the the MP parameters (coordinate
frame, control variables, target) after training the HMM. An illustration of the extraction can be seen in (d) for MP1. The upper plot shows the mean (target)
of the distribution after training for the first coordinate frame (the first mixture) and the lower plot shows the mean for the second coordinate frame. The
ellipsoids indicate the uncertainty of the mean. As the uncertainty is much larger for the second frame, the first coordinate frame is more likely for this MP.
Additionally, the force converges to zero, which is why our algorithm chooses position as control variable for this MP.

State Clustering [6], Bayesian Binning [7], Hidden Markov
Models [8]–[10], or Conditional Random Fields [11], [12].

An approach that explicitly deals with coordinate frames is
that of Rozo et al. [13]. The authors use a task-parametrized
Gaussian mixture model (TP-GMM) as trajectory represen-
tation. A TP-GMM is a hierarchical GMM with two layers,
meaning that each mixture is again a GMM. For each mixture,
the nested GMM is weighting the importance of the different
coordinate frames. In addition, they learn to vary the con-
troller stiffness dynamically, so that the robot can physically
interact with a human co-worker. Abu-Dakka et al. [14] adapt
the dynamic movement primitives (DMP) framework so that
the robot follows a desired force profile. Yet, they predefine
if an MP is position or force-controlled. Steinmetz et al. [15]
learn a desired position and force profile with a DMP from a
single demonstration. They present a control framework that
is able to transition between phases of pure impedance con-
trol and force control based on the measured external force.
The approach is not able to handle multiple demonstrations
or sequences of MPs.

Ureche et al. [16] extract the coordinate frames and
control variables based on the variance of the data. If the
variance of a variable is large within a time window for
all demonstrations, they consider it to be significant for the
task. The reason is that the variable changes its value and
does that in a systematic way across all demonstrations.
Kober et al. [17] showed that this assumption leads to an
over-segmentation of the data. Therefore, they suggested to
incorporate the convergence behavior of the motion as well.
In order to choose the coordinate frame, they compute a
scoring function that reinforces if a variable is converging
to a target for a given segment. The main disadvantage of

both approaches is that for computing the statistics, they
need to know a priori which segments of the demonstrations
represent the same MP. For their experiments this knowledge
is not necessary, as the MP sequence necessary to perform
the task is always the same. Therefore, they can align the
data over time with Dynamic Time Warping, allowing a
comparison of the data over the different demonstrations.

Many approaches (e.g., [16]–[18]) require demonstrations
with identical sequential ordering of the employed MPs. Our
approach does not rely on aligning the demonstrations in
time and is therefore capable of decomposing demonstrations
with varying sequential MP orders (e.g., unscrewing tasks).
Furthermore, our approach is able to simultaneously infer
the MP sequence as well as the composition of the MPs. We
will show that decomposing kinesthetic demonstrations of a
force interaction task with our approach leads to meaningful
and intuitive MPs.

The remainder of this paper is organized as follows. We
give an overview of our approach in the following Section II.
In Section III, we introduce the probability distribution that is
used within our task-decomposition approach. In Section IV,
we evaluate our method on real data from kinesthetic demon-
strations of a light bulb unscrewing task. Finally, we conclude
and give a short outlook on future work in Section V.

II. PROPOSED TASK-DECOMPOSITION APPROACH

Before we describe our approach in detail, we introduce
the notation that will be used throughout the paper. For
each time step of a demonstration i with length NTi

, we
record the NJ joint angles Q(i) ∈ RNJ×NTi , the six forces
and torques from the force-torque sensor at the wrist of
the robot F (i) ∈ R6×NTi , and the 3D positions and 3D



orientations of all NO objects in the scene O(i,j) ∈ R6×NTi .
The joint angles also include the joints of the end-effector.
Here, O(i,j) is the matrix containing the positions and
orientations of the jth object. Each object and the world are
associated with a coordinate frame, forming a set of NTS =
NO + 1 task-spaces. After the demonstrations, the data
are projected on the task-spaces, resulting in the matrices
X(i,k) ∈ RNXk×NTi , where NXk is the dimension of the kth
task-space.

The overview of our proposed task-decomposition ap-
proach can be found in Figure 1. In order to decompose
the task, our approach performs three basic steps that will
be explained in detail in the following subsections.

A. Segmentation

In the first step of the approach, we detect potential
cuts between successive segments (see Figure 1b). A cut
is defined at a point where the robot stops or if a contact
event occurs (e.g., robot gets into contact or loses contact
with an object). Flanagan et al. [19] showed the relevance
of this definition for dexterous manipulation from the bi-
ological point of view. We detect if the robot moves or
stops by finding the zero-velocity crossings (ZVCs) of the
end-effector position and/or orientation in world coordinates.
Additionally, a cut is added for ZVCs of the finger joint
angles. Contact events are found by detecting the zero-
velocity crossings of the measured forces and torques. The
segmentation splits the task-space data into a sequence of
segments X(i,k,l) ∈ RNXk×NTl , where NTl is the length of
the lth segment of demonstration i.

B. Assignment of Segments to MPs

In the second step, we assign each segment to an MP as
illustrated in Figure 1c. Since we assume a convergent attrac-
tor behavior of the MPs, we argue that segments (sequences
of data points) converging to the same target (in at least one
task-space) should be assigned to the same MP. Therefore,
we introduce a probability distribution we call Directional
Normal Distribution (DND). Intuitively, a DND works as fol-
lows. As for a Gaussian distribution, the parameters of a DND
are a mean µ and a covariance matrix Σ. Given at least
one segment, its mean is defined as the point the segment
is converging to and the covariance matrix describes the
uncertainty of the mean. Thus, the mean can be interpreted
as the most likely target of an MP corresponding to a given
segment (or given segments). In Section III, we explain in
more detail how the learning algorithm for the DNDs works.
For now, it is sufficient to know that given some segments,
we can estimate the target of an MP in a probabilistic way
by using a DND.

For finding the most likely assignment of segments to MPs,
we train a Hidden Markov Model (HMM) with mixtures of
DNDs as output emissions. For the HMM, each segment cor-
responds to an observation and each hidden state corresponds
to an MP. While the HMM takes into account the sequential
properties of the demonstrations, the mixtures are used to
represent the demonstrations in the different task-spaces. For

estimating the number of hidden states (the number of MPs),
we use the Bayesian Information Criterion (BIC), a standard
model selection criterion for probabilistic models. The HMM
training algorithm is initialized with a varying number of MPs
and the model with the lowest resulting BIC value is selected
in the end.

C. Extraction of MP Parameters

In the last step of our approach, the MP parameters are
extracted from the HMM after training, as illustrated in
Figure 1d. For each hidden state of the HMM, we can extract
the parameters of the corresponding MP from the mixtures of
DNDs. The highest mixture weight indicates the most likely
coordinate frame. The MP target can be extracted from the
mean of the corresponding DND. Finally, if the task-space
of an MP is composed of forces and positions along the
same axis, we explicitly decide whether force or position
are chosen as control variable. Here, we use of a simple
heuristic. Force is only chosen if the desired attractor force
of the MP is higher than a threshold and the velocity mean
of the segments assigned to this MP is below a threshold.
Thus, if a force was measured along a certain axis and the
robot was not moving in this direction, we assume the teacher
wanted the robot to apply a force.

III. DIRECTIONAL NORMAL DISTRIBUTION

We introduce the DND as we want to estimate the most
likely target of an MP for a given a set of segments.
Therefore, a DND has a mean µ (a target) and a covari-
ance matrix Σ (indicating the uncertainty of the target)
as parameters. Our basic assumption is that for each data
point x ∈ Rd×1 from one of the segments, the corresponding
velocity vector v ∈ Rd×1 roughly points towards the target
of the MP. The target is then defined as the point that is most
consistent with all velocity vectors. Please note that a DND
has no notion of a segment. Instead, it assigns each data
point of a segment a probability. Therefore, we will omit
the notion of a segment in the following and assume that
we work on a set of N data points instead. The idea behind
the DND and the learning algorithm that will be explained in
the following sections are illustrated in Figure 2.

Given a single data point and its velocity, the probability
density function of a DND is defined as

p
(
[x,v]

∣∣t,µ,Σ) = ke−
1
2 (x+tv−µ)

TΣ−1(x+tv−µ), (1)

k =
1√

(2π)d |Σ|
.

The scalar parameter t determines how far a point is pro-
jected along its velocity vector. The parameter t has to be
zero or positive. We assume that t is distributed according
to a normal distribution. The constraint t ≥ 0 leads to a
truncated normal distribution, a normal distribution whose
lower tail is truncated at zero

p
(
t
∣∣µt, σ2

t

)
=

1√
(2π)σt

1

1− Φ(−µtσt )
e
− (t−µt)2

2σ2t . (2)
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Fig. 2: Illustration of the DND and the learning algorithm. The black arrows indicate the data points and the velocity vectors. The data points are drawn
uniformly from the shown grid. The direction/velocity is determined by drawing points from the black normal distribution and scaling the difference vector
to the current position to a fixed value. The EM algorithm for learning the DND parameters estimates a target on the grid that fits best to all data points
and the corresponding velocity vectors. The red ellipsoid shows the initial and current guesses for the target. In the E-step of the algorithm, for each data
point a projection along the velocity vector is computed that fits best to the current estimate of the target (blue dashed lines). In the M-step, a new guess
for the distribution parameter is estimated.

Here, Φ is the cumulative distribution function of a normal
distribution with standard deviation one and mean zero.
By rearranging (1), the equation can also be interpreted as
posterior distribution of t

p
(
t
∣∣ [x,v] ,µ,Σ) = 1√

(2π)σt

1

1− Φ(−µtσt )
e
− (t−µt)2

2σ2t , (3)

µt =
vTΣ−1(µ− x)
vTΣ−1v

,

σt = (vTΣ−1v)−
1
2 .

The joint probability is defined as

p
(
[x,v] , t

∣∣µ,Σ, µt, σ2
t

)
= p

(
[x,v]

∣∣t,µ,Σ)
p
(
t
∣∣µt, σ2

t

)
. (4)

We omitted to explicitly state that (2) and (4) are zero for
t < 0. For learning the parameters of the distribution for a
given set of N points X ∈ Rd×N and the corresponding
velocities V ∈ Rd×N , we use a maximum likelihood
approach. The distributions of the scale parameters ti for data
points i are not a part of the data and therefore unknown.
The log-likelihood function for the data set is defined as

log p
(
[X,V ]

∣∣µ,Σ)
=

N∑
i=1

∫ ∞
0

log p
(
[xi,vi] , ti

∣∣µ,Σ, µ(i)
t , σ

2(i)
t

)
dti.

Here, we assumed that the values ti are independent of each
other. The integration over ti is intractable as the variables
depend on the unknown parameters µ(i)

t and σ(i)
t . Therefore,

we treat them as latent variables and derive an EM algorithm
for inferring the parameters of our distribution.

A. Expectation-Maximization

In the Expectation step of the algorithm, we use the
current parameter values θold = {µold,Σold} to estimate the
posterior distribution of the latent variables p(t

∣∣X,V ,θold).
As the ti’s are independent of each other, the estimation
can be done for each data point separately as in (3). In the
Maximization step, we estimate the new parameters θnew by

maximizing the expectation of the complete-data loglikeli-
hood under the posterior of the latent variables

θnew = argmax
Θ

Et
[
log p

(
[X,V ] , t

∣∣θ,µt,σt)] ,
= argmax

Θ

N∑
i=1

∫ ∞
0

p
(
ti
∣∣ [xi,vi] ,θ)

log p
(
[xi,vi] , ti

∣∣θ, µ(i)
t , σ

2(i)
t

)
dti. (5)

As the integral is evaluated for each data point separately,
we omit the indices for the solution of the integral in the
following. The integral evaluates to∫ ∞

0

p
(
t
∣∣ [x,v] ,θ) log p ([x,v] , t∣∣θ, µt, σt) dt

=

∫ ∞
0

c1e
− (t−µt)2

2σ2t

(
c2(Θ)t2 + c3(Θ)t+ c4(Θ)

)
dt

= c1 (c2(Θ)d2 + c3(Θ)d3 + c4(Θ)d4) . (6)

The values of the constants can be found in the Appendix.
Note that c2, c3, and c4 are constants only for the integration,
as they depend on the parameters µ and Σ which we want to
estimate. Now that the integral has been evaluated, the result
can be used to find the parameters according to (5). As the
constants c2 to c4 depend on our parameters, we compute
the derivatives of (6) with respect to µ and Σ−1 and set
them to zero. Now we work again on the entire data set, so
we will use the indices again.

∂Et
[
log p

(
[X,V ] , t

∣∣θ,µt,σt)]
∂µ

=

N∑
i=1

c
(i)
1

(
d
(i)
2

∂c
(i)
2

∂µ
+ d

(i)
3

∂c
(i)
3

∂µ
+ d

(i)
4

∂c
(i)
4

∂µ

)

= Σ−1
N∑
i=1

c
(i)
1

(
d
(i)
3 vi − d

(i)
4 µ+ d

(i)
4 xi

)
= 0.

Multiplying by Σ from the left and rearranging leads to the
solution

µ =

∑N
i=1 c

(i)
1 d

(i)
4 xi + c

(i)
1 d

(i)
3 vi∑N

i=1 c
(i)
1 d

(i)
4

. (7)



Note that the cumulative distribution function Φ is closely
related to the error function erf by the relation

Φ

(
−µt
σt

)
=

1

2

(
1− erf

(
µt√
2σt

))
.

Therefore, all constants c1dj could be further simplified. For
example, c1d4 equals one (proof skipped here) and so (7)
can also be written as

µ =
1

N

N∑
i=1

(
xi + c

(i)
1 d

(i)
3 vi

)
.

For estimating the covariance matrix Σ, we compute the
derivative with respect to its inverse Σ−1.

∂Et
[
log p

(
[X,V ] , t

∣∣θ,µt,σt)]
∂Σ−1

=

N∑
i=1

c
(i)
1

(
d
(i)
2

∂c
(i)
2

∂Σ−1
+ d

(i)
3

∂c
(i)
3

∂Σ−1
+ d

(i)
4

∂c
(i)
4

∂Σ−1

)

=
1

2

N∑
i=1

c
(i)
1

(
− d(i)2 viv

T
i + d

(i)
3 vi(µ− xi)T

+ d
(i)
3 (µ− xi)vTi − d

(i)
4 (µ− xi)(µ− xi)T

+ d
(i)
4 Σ

)
= 0.

Rearranging then leads to the solution

Σ =
1

N

N∑
i=1

c
(i)
1

(
d
(i)
2 viv

T
i − d

(i)
3 vi(µ− xi)T

− d(i)3 (µ− xi)vTi + d
(i)
4 (µ− xi)(µ− xi)T

)
.

B. Extension for Orientations

Equation (1) contains a distance vector between the current
data point projected along the velocity vector x + tv and
the mean of the target µ. As such a distance vector is
not a suitable distance measure for 3D orientations, we
have to explicitly derive a DND for orientations. Let us first
neglect the uncertainty and assume that we know the target
orientation. Given a current data point (a start orientation)
and an angular velocity, we want to rotate the start orientation
following the angular velocity so that the distance to the
target orientation becomes minimal. The rotation matrix RFI

describes the target orientation in the inertia frame. The
rotation matrix RVI(t) = RVS(t)RSI describes the start
orientation rotated with the angle t around the angular
velocity axis, also given in the inertia frame. The distance
between both orientations is defined as the axis angle θ(t)
of the relative transformation RFV = RFI(RVI)

T

θ(t) = cos−1
(
1

2
(Tr(RFV)− 1)

)
= cos−1

(
1

2
(a cos(t) + b sin(t) + c− 1)

)
. (8)

The constants a, b and c can be derived straightforwardly
and are omitted here due to space constraints. To find the

minimum angle, we compute the derivative of (8) with
respect to t and set it to zero

∂θ

∂t
=

0.5a sin(t)− 0.5b cos(t)√
1−

(
1
2 (a cos(t) + b sin(t) + c− 1)

)2
= 0 ⇒ t = atan2(b, a). (9)

As a next step, we want to define a difference vector that
can be written in the form x + tv − µ, so that we can
use the same EM algorithm as in the previous section for
estimating the target orientation. Due to the trigonometric
dependency on t, some approximations have to be made.
First, we write the matrices as vectors r ∈ R9×1. Then, we
define a difference vector

rVI(t)− rFI ≈ x+ tv − µ,
rVI(t) = d cos(t) + e sin(t) + f

≈ d(cos(α)− sin(α)(t− α))
+ e(sin(α) + cos(α)(t− α)) + f ,

x = α cos(α)(−d− e)
+ α sin(α)(−d+ e) + f ,

v = cos(α)(d+ e) + sin(α)(−d+ e),

µ = rFI.

Again, we do not explicitly derive the constants d, e and
f . We approximated the sine and cosine terms with a first-
order Taylor approximation around α. Now our difference
vector can be written in the form x + tv − µ and we can
estimate the target orientation with the same algorithm as in
the previous section. Still, some details have to be taken
care of. Firstly, the approximation can be arbitrarily bad
depending on how much α deviates from t. Therefore, we
make use of a trick. If we neglect the uncertainty Σ, we
can take the current estimate of the mean µ to compute t̃
according to (9). Then, t̃ can be used to recompute the
approximation constants at every iteration by developing the
Taylor series around it instead of making the approximation
only once. By doing that, we know that we develop the
Taylor series about a value close to the true t, leading to
a good approximation. Secondly, we ignored the constraint
that the resulting vector (reshaped to a matrix) has to describe
a proper rotation. Therefore, we have to find the closest true
rotation matrix to our matrix, which can be done for example
as in [20].

C. DNDs as HMM Output Emissions

Two things have to be considered when using DNDs as
HMM output emissions for the task decomposition. Firstly,
there is no noise considered in the model. As the trajectories
demonstrated by the teacher are usually no straight lines, this
may lead to an inaccurate estimation of the DND parameters.
We therefore suggest to weight data points according to
their position in a segment for learning. Points closer to the
end of a possible segment are assigned higher weights, so
that they have a larger influence on the resulting mean of
the distribution. Secondly, if the robot is not moving and
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Fig. 3: The three different experimental setups for the light bulb unscrewing
task. For each setup, the light bulb holder and box were put to different
locations on the two tables.

MP Description Frame Control Variables
 Approach Light Bulb Light Bulb Position xyz
 Pull Bulb Light Bulb Position xy Force z
 Lift Bulb Light Bulb Position xyz
 Approach Box Box Position xyz
 Approach Final Position Box Position xyz
 Screw World Axis Angles
 Unscrew World Axis Angles
 Open Fingers World Finger Joints
 Close Fingers World Finger Joints

TABLE I: Resulting coordinate frame and control variables for each MP.
The first three MPs control the end-effector relative to the light bulb position,
while the latter two at the end of the demonstration control the robot relative
to the box. Only the MP that is active during unscrewing applies a force, as
the teacher was pulling the light bulb during this phase of the task. Two MPs
control the orientation of the end-effector and the fingers, respectively.

the velocity is close to zero, the algorithm may run into
numerical issues. Therefore, we set t to zero if the norm of
the velocity is below a threshold.

IV. EXPERIMENTS

For evaluating our approach, we performed kinesthetic
demonstrations on a gravity compensated seven degrees of
freedom (DOF) Barrett WAM robot with a four DOF hand.
In previous work, we demonstrated the task of unscrewing
a light bulb on the same robot [21]. We segmented the
demonstrations manually and chose the task decomposition
beforehand. Then, we showed that our system successfully
learned how to sequence the MPs in order to reproduce the
demonstrated task. In this paper, we use data from these
previous experiments and show that our approach finds a task
decomposition that is similar to the one we defined manually.

A. Experimental Setup

For the unscrewing task, the human teacher demonstrated
the following sequence of subtasks. First, he approached the
light bulb with the end-effector. Then, the robot’s hand was
closed by pressing a key on a keyboard. For simplicity, the
grasp was predefined, even though teaching grasps is possible
with our approach. Next, the teacher rotates the wrist of the
robot arm and unscrews the bulb. During this movement, he
also pulls the light bulb (by applying a force along the z-
axis), to test whether it is still in its holder. After turning
the light bulb, the fingers are opened (again, this movement
is started by pressing a key) and the wrist is rotated back.
This unscrewing cycle is repeated until the light bulb gets
loose. Then, the light bulb is pulled out of the holder and
the end-effector is moved to a box where the hand is opened
again.

0

0.5

1

1.5

y

x

z

Po
si

tio
n

[m
]

−4

0

4

8

y

x

z

Fo
rc

e
[N

]

−2

0

2

A
xi

s
V

ec
to

r

0.4

0.6

0.8

1

1.2

Jo
in

t
an

gl
e

[r
ad

]

0 1,000 2,000

Fingers

Orientation

Position

Time Step

A
ct

iv
e

M
P

Fig. 4: Task-decomposition over time for one of the nine demonstrations.
From the top, the plots show the position of the end-effector, the measured
forces at the wrist, the orientation of the end-effector and the finger joint
angles, respectively. The dashed lines indicate the zero-velocity crossings
and contact changes. The plot on the bottom shows the most likely MP
for each point in time. All MPs can be associated with a meaningful
description (see Table I).

For the demonstrations, we put the light bulb holder and
the box to three different positions and performed three
kinesthetic demonstrations for each setup. The setups are
depicted in Figure 3. We defined three coordinate frames.
The world frame, the light bulb frame and the box frame
and thus, the decomposition was performed with three task-
spaces (NTS = 3). The kinesthetic demonstration data was
recorded with 200Hz. As the force-torque measurements are
quite noisy, we filtered the data (also the joint angle data)
using a Hanning filter with a window size of 100.

As position/force of the end-effector, its orientation and
the fingers can be controlled independently of each other
and our MP framework allows the activation of multiple MPs
at the same time (see [1]), we also performed the decom-
position for each of them independently. The overall task-
decomposition therefore results in three active MPs for each
time step. For each decomposition, only the relevant ZVCs
where used as potential cuts between the segments (e.g.,
only the ZVCs of the finger joint angles were used for the
decomposition of the MPs controlling the fingers).
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Fig. 5: Task-space trajectories for all nine demonstrations. Plots (a) and (b) show the end-effector positions in the light bulb coordinate frame and box
coordinate frame, respectively. The colors indicate to which MP each segment is assigned to. The markers correspond to the mean µ of the MP targets and
the ellipsoids indicate their covariance matrices Σ. Note that the position target of the blue MP is hard to see because it coincides with the target of the
red MP. The targets are only plotted in the coordinate frame that was assigned to each MP. Plots (c) and (d) show the orientations of the end-effector and
the finger configurations, respectively (both in the world frame). As for this task all three fingers were aligned equally, only the joint angle of one finger
is shown in (d).

MP x y z
 0.08 -1.43 -0.51
 -1.08 0.30 7.12
 1.08 -1.35 0.02
 0.06 0.01 -0.17
 -0.24 -0.85 -0.88

TABLE II: Resulting target forces in Newton in the corresponding frames
of the position MPs. Only the red MP is force-controlled along the z-axis
because the desired force is large enough.

B. Results

Table I shows the MPs resulting from the decomposition of
the kinesthetic demonstrations. Our method found four MPs
controlling the position of the end-effector and one MP
that is controlling the position of the end-effector along
the x- and y-axes, while applying a force along the z-
axis. Additionally, two MPs control the orientation of the
end-effector and two MPs the finger configuration. Figure 4
depicts the most likely MP for each point in time for one
of the nine demonstrations. Except for small time gaps
between changes of position, orientation and/or finger MPs,
the MP sequences exactly reflect the subtask sequence the
teacher performed and thus we can associate each MP with a
meaningful description in Table I. Note that the time gaps are
not incorrect but instead reflect the behavior of the teacher.
For instance, it is not possible to unscrew the bulb before
closing the fingers. Therefore, the teacher usually waits for
a short moment until he or she is sure the fingers are closed
before starting to unscrew, causing the aforementioned time
gaps in the data.

Figure 5 shows the task-space trajectories of all nine
demonstrations. The plots indicate that even though the num-
ber of unscrewing repetitions varied over the demonstrations,
all demonstrations were decomposed in a similar way. As all
subtasks performed by the teacher can be described relative
to either the light bulb or the box, the world frame was
not chosen for any MP controlling the position of the end-
effector. During the demonstrations, the teacher was standing
at a fixed position and aligned the orientations equally
for all demonstrations. However, the objects and thus also
their corresponding coordinate frames were rotated for the
different setups. As a result, our algorithm chose the world
frame for all orientation and finger configuration MPs.

Table II shows the resulting target forces from the DNDs
for all position MPs. Only for the red MP the target force
along the z-axis is large enough so that the MP is force-
controlled along this axis. The MP corresponds to the teacher
pulling the light bulb while unscrewing. When reproducing
the task, this force leads to an acceleration of the robot’s
arm as soon as the light bulb gets loose, enabling the system
to detect the loose bulb without any external sensors. The
drawback is that we cannot detect whether the light bulb
is still in the hand of the robot or if it slipped during
reproduction.

After decomposing the demonstrations, we evaluated the
resulting MPs by activating them manually on the real
robot. In previous work [21], we learned the activations
for manually labelled demonstrations and a predefined task-
decomposition. We consider it future work to combine both
approaches. By activating the MPs in the correct order, we
were successfully able to reproduce the task on the robot.

C. Discussion

The results presented in the previous section show that
our method segments the demonstrations properly and finds
a meaningful task-decomposition. In fact, the resulting MP
sequences exactly reflect the necessary sequence of subtasks
we expected would be necessary to perform the task (see
task description in Section IV-A). BIC proved to be a reliable
criterion for choosing an appropriate number of MPs. Still,
we have to evaluate our method also on different tasks to
ensure that the criterion yields good results in general.

In the previous section, we did not mention that we
scaled the force data by a factor before training. The scale
factor reflects an important issue occurring in kinesthetic
demonstrations. While it is easy to guide a gravity compen-
sated robot to a desired position, applying desired forces is
difficult. In the demonstrations, we tried to apply always the
same force when pulling the light bulb. Still, the values were
roughly in a range of 5 to 15N. As a consequence, we state
that from the force data of a kinesthetic demonstration, it is
only clearly distinguishable whether the teacher wanted to
push or pull in a certain direction or did not apply a force at
all. We therefore scaled the forces to reduce their influence
on the decomposition. In the experiments, the factor was



set to 1/40, so that 4N difference correspond to a position
difference of 10 cm. We evaluated different scale factors and
observed that the segmentation result is robust for a broad
range of values (1/20 to 1/80 yield the same results). Hence,
our method requires, at least for this task, no accurate fine-
tuning of parameters. In general, the scale factor influences
the importance of the force. If the factor is too small, the
force is ignored completely (and, for example, the blue and
red MPs would be merged to one MP). If it is too large, the
force overpowers the position (e.g., it may happen that some
segments describing the unscrewing movement would be
assigned to different MPs). To avoid having a fixed threshold,
we consider it future work to estimate the importance of the
force from the demonstration data. A possibility is to learn
parameters weighting the importance of the force within the
hybrid force-position controller.

V. CONCLUSION AND FUTURE WORK

We presented a novel concept for decomposing kinesthetic
demonstrations of sequential force interaction tasks into a
set of MPs. To capture the sequential properties of the task,
we model the demonstrations with a HMM, where states
correspond to the individual MPs. The main contribution
of this paper is a novel probability distribution (DND).
Mixtures of this distribution are used as output emissions
of the HMM, which allows to simultaneously determine the
most likely sequence of MPs as well as their composition,
i.e., their coordinate frames, control variables and target
coordinates from the demonstration data. To the best of our
knowledge this is the first concept to do this simultaneously.
The resulting sequences resemble very closely the natural
structure of the task. While this paper’s focus was on the
decomposition of the kinesthetic demonstrations, future work
will target on combining this concept with previous work
on learning the MP transition behavior and reproducing the
learned skills [21], [22].
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