
Learning Stable Pushing Locations

Tucker Hermans Fuxin Li James M. Rehg Aaron F. Bobick

Abstract— We present a method by which a robot learns
to predict effective push-locations as a function of object
shape. The robot performs push experiments at many contact
locations on multiple objects and records local and global
shape features at each point of contact. The robot observes
the outcome trajectories of the manipulations and computes a
novel push-stability score for each trial. The robot then learns
a regression function in order to predict push effectiveness as
a function of object shape. This mapping allows the robot to
select effective push locations for subsequent objects whether
they are previously manipulated instances, new instances from
previously encountered object classes, or entirely novel objects.
In the totally novel object case, the local shape property
coupled with the overall distribution of the object allows for
the discovery of effective push locations. These results are
demonstrated on a mobile manipulator robot pushing a variety
of household objects on a tabletop surface.

I. INTRODUCTION AND MOTIVATION

The ability to push objects purposefully can be of great utility
to robots in performing many tasks of daily life, whether
setting a table or searching through a cupboard or drawer.
When performing these pushing tasks in real homes and
other open, human environments a robot will often encounter
objects about which it has no or limited prior experience or
knowledge. The only guidance a robot has for manipulating
these objects is knowledge learned from prior experience
with previously manipulated objects. The goal of this paper
is to introduce a learning method by which a robot learns
how to predict the effect of pushing actions on novel objects
based upon object shape.

The approach developed here may be considered as an
alternative to complete physical simulation. Physical models
require specification of typically unobservable properties
such as support locations and friction distributions of the
object. For an unknown object these properties cannot be
deduced without interactive experimentation. Even if such
a model is available, simulation may not be sufficient in
solving the pushing control problem as efficient solutions re-
quire assumptions of uniform, stationary friction coefficients
of both the object and the supporting surface [1–3].

In contrast to this complete physical description a robot
can compute visual cues directly from camera input. Object
shape encodes especially rich information about effective
pushing locations. In this paper we develop a method for
autonomously learning a shape-based push-prediction func-
tion that can be easily applied to new objects and whose

Tucker Hermans, Fuxin Li, James M. Rehg, and Aaron F. Bobick are
affiliated with the Center for Robotics and Intelligent Machines and The
School of Interactive Computing, Georgia Institute of Technology, Atlanta,
GA. {thermans, fli, rehg, afb}@cc.gatech.edu

applicability can be quickly ascertained through a small
number of experimental manipulations.

As an example, consider the scenario depicted in Fig-
ure 1a and 1b where the robot is pushing a hair brush. If
it were to move its contact location a small amount to the
left or right it causes a significant rotation of the object.
Compare this to the example shown in Figures 1c and 1d.
In this case a small variation in contact position will cause
a relatively minor change in the pose of the object and it
will essentially continue along the current pushing direction.
The learning algorithm we develop allows a robot to predict
from the shape of a novel object the best contact location on
the boundary of the object for achieving a straight and stable
push. Each time the robot pushes an object it records both a
shape description relative to the push position and orientation
as well as a “push score” measuring the quality of the push,
essentially its ability to push the object along a straight path.
As the robot interacts with more objects in more conditions,
it uses non-linear regression to learn a prediction function.
The procedure for operating on a novel object or a previously
seen object is identical, allowing the robot to seamlessly deal
with new and old objects alike.

We organize the remainder of this paper as follows.
Section II gives an overview of our approach to push learning
and execution. We give details of the learning task, including
the shape features and scoring function in Section III. We
give details of the experimental procedure in Section IV
and present the results of these experiments in Section V.
Section VI discusses relevant related work in the robotics
community. Finally we conclude and discuss future exten-
sions of this work in Section VII.

II. APPROACH

We use a data-driven approach where the robot learns good
pushing locations by interacting with objects during explo-
ration. For a given object the robot chooses a location on
the boundary and attempts to push the object in a straight
line. While pushing the robot uses visual feedback control
attempting to drive the object to the goal position. The robot
performs a number of such push trials at various locations
on a given object. The trajectory of the object during each
push, obtained by the robot’s visual tracking system used for
feedback control, is recorded for each trial.

We derive a push-stability score from the observed tra-
jectories to characterize each trial with the goal being to
learn to predict this score from local and global shape
features of the object. These features are extracted in the
coordinate frame centered at the pushing location oriented
in the direction of the goal location. When presented with

(a) (b) (c) (d)

Fig. 1: Example pushing instances. The first two images are two consecutive frames captured while the robot pushes the
large hair brush from an unstable pushing location. The second two frames show the robot pushing a soap box from a
stable pushing location. In both examples the red line shows the vector from the estimated object center to the goal location
denoted as the red circle.

an object, whether new or previously encountered, the robot
can then extract these shape features from locations around
the object boundary, predict push-stability scores for each
location, and push at a location that scores well.

III. LEARNING TASK

Our learning task is to estimate a function f : Rm →
R, given n training example pairs (xi, yi), i = 1, . . . , n,
xi = [xi1, . . . , xim] ∈ Rm, yi ∈ R. We can estimate
this function using kernel support vector regression. The
regression function has a form of:

f(x) =

n∑
i=1

αiK(x, xi) + b (1)

with K(x, xi) a positive semidefinite kernel comparing the
similarity between the test example x and training examples
xi, and b is a constant offset.

One can see that the prediction is largely based on
similarity. In the extreme case that a testing example is only
similar to one training example, such a function would be
similar to nearest neighbor: predicting the test example by
the value of the training example most similar with it. In
general cases, the prediction is smoothed by the weighted
average of similarities with multiple training examples, thus
reducing the chance of overfitting to a particular example and
achieving provably better performance than nearest neighbor
approaches.

The parameters α are found through a quadratic program-
ming formulation. This quadratic programming formulation
is proven to be equivalent to the functional minimization
problem in the reproducing kernel Hilbert space [4]:

min
f∈HK

∑
i

Lε(f(xi), yi) + λ‖f‖2HK
(2)

where HK is the reproducing kernel Hilbert space spanned
by the kernel K, ‖f‖2HK

is the Hilbert space norm of f
which encodes the smoothness of f , λ is a regularization
parameter on this smoothness norm (denoted C in the dual
quadratic programming formulation and in Section IV), and

Lε(f(xi), yi) =

{
0, |f(xi)− yi| ≤ ε

|f(xi)− yi| − ε |f(xi)− yi| > ε
(3)

is called the ε-insensitive loss function.
Support vector regression essentially finds a function that

both fits the training data well, and is sufficiently smooth, as
constrained by the Hilbert space norm term ‖f‖HK

. Since
such kernel methods are very flexible estimators that can fit
almost all smooth functions, the Lε loss function is designed,
so that the function does not have to fit exactly to the training
data. This reduces the chances of overfitting and improves
generalization performance. In our experiments we observed
that the ε-insensitive loss outperformed traditional L1 and
L2 loss functions.

The kernel we used in this paper is the exponential χ2

kernel [4]:

K(xi, xj) = exp

(
−γ

d∑
k=1

(xik − xjk)2

xik + xjk

)
(4)

a proven excellent kernel for comparing histogram features
that has been widely used in computer vision [5]. The
parameter γ controls the width of the kernel, necessary
when combining multiple kernels. This kernel corresponds
to a symmetric version of the Pearson χ2 test to determine
whether a histogram comes from a certain probability dis-
tribution and has nice properties such as striking a good
balance between large and small bins in the histogram, as
well as being well-defined everywhere (as opposed to the
commonly used KL-divergence).

A. Pushing Scoring Function

We wish to penalize pushes which deviate from the desired
straight-line trajectory. As such our push-stability score is
computed as the average distance of the observed object
trajectory from the desired pushing trajectory. Equation 5
precisely defines this score:

y =
1

K

K∑
k=1

dist(X[k], `p) (5)

where X[k] is the estimated (x, y) location of the object in
the table frame, `p is the line passing through the objects
initial location X[0] and the desired goal location X∗, and
dist is the Euclidean distance.

(a) (b) (c)

Fig. 2: Local boundary selection and local feature descriptor extraction. The red points correspond to the 2D boundary of
the object in the table plane. The magenta point shows the currently selected pushing location. The blue lines in 2a denote
the dominant orientation of the local coordinate system towards the center of the object, as well as the distance in local
y-direction used in selecting the green boundary points. We center a 2D histogram in this local frame and compute the
distribution of the local boundary points.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 3: Two synthetic push trajectories going from initial
location in the bottom left to the goal location (star) in the
top right. The red trajectory receives a push-stability score of
3.94cm while the straighter green trajectory receives a score
0.62cm.

Figure 3 visualizes the scoring function for two synthetic
trajectories. While both trajectories reach the desired goal
location, the green trajectory follows the desired straight line
trajectory more closely. The computed scores y0 = 0.62cm
for the green trajectory and y1 = 3.94cm for the red
trajectory reflect our preference with the green trajectory
receiving the lower score. There are a number of reasons
to prefer this scoring measure to something simpler such
as final position error. First, it allows the robot to have a
more accurate prediction of how the object will behave when
pushed. This is important for collision avoidance, where
straight line push trajectories allow the robot to avoid pushing
an object into other objects in the environment or off of
the supporting surface. Additionally, the score allows the
robot to predict how an object should move, allowing the
robot to abort pushes early if they deviate significantly from

the straight line path. Finally, this score naturally extends
to arbitrary pushing trajectories. Given a suitable controller,
this could allow a robot to learn if certain locations are good
for pushing along other desired trajectories, such as causing
an object to rotate to a desired orientation.

B. Shape Features

Our feature extraction takes as input the point cloud asso-
ciated with the segmented object. We compute both local
and global descriptions of shape encoded in the coordinate
frame of the chosen pushing location. Given a 3D point cloud
of the given object we project all points to the 2D plane
defined by the supporting surface and extract the boundary
of this projected point cloud. One point on the boundary
corresponds to the evaluated pushing location. This point
defines the center of the local coordinate system. The positive
x-direction is oriented by the pushing direction, defined as
the vector from the pushing point to the object centroid.

To build the local feature descriptor we walk along the
boundary to the left and right sides, selecting all points
within 0.025m in the local y-direction. We visualize the
point selection in Figure 2. We select these local points as
they best define the object geometry with which the robot
end effector is most likely to interact while performing the
pushing operation. These local points are then encoded into
a 6× 6 2-dimensional histogram with uniform bin sizes. An
example histogram is shown in Figure 2c.

We encode global object shape using a slightly modified
version of the popular shape context feature [6]. We again
use the boundary of the object as extracted above, however
all points are kept as input to our shape context feature,
not simply those in the local area of the pushing location.
For the given set of boundary points we follow the standard
shape context extraction method: we compute the distance
and angle to all other points on the boundary and a build a
log-polar histogram of the distribution of all of the points.

In order to align the features with the pushing direction we
rotate the histogram so that the first angle bin is oriented
towards the 2D center of the original point cloud. Our global
histogram has 12 orientation bins and 5 radial bins for a final
histogram of size 60. Thus our final combined local-global
shape descriptor has 96 dimensions.

IV. EXPERIMENTAL PROCEDURE

We collected all pushing data using a Willow Garage PR2
robot. We performed all experiments using common house-
hold objects in the Georgia Tech Aware Home. All perception
was conducted using a Microsoft Kinect sensor mounted on
the head of the PR2. We segment the supporting table, robot
arm, and object of interest from the point cloud captured
from the Kinect and track the object throughout the course
of pushing. Pushing is performed using a feedback controller
which attempts to align the tip of the robot gripper with the
vector passing through the centroid of the object towards the
goal, while pushing towards the goal location. We visualize
this control law in Figure 4.

The robot achieves this behavior by using a feedback
control law that includes a velocity term to move toward the
goal and a second term that moves the end effector towards
the vector defined from the goal location through the object’s
centroid:

uẋ = kgcegoalx + kcecentroidx (6)
uẏ = kgcegoaly + kcecentroidy (7)

where egoalx and egoaly define the goal error for goal
locations (x∗, y∗):

egoalx = (x∗ − x̂), egoaly = (y∗ − ŷ) (8)

where (x̂, ŷ) is the visually estimated object centroid at the
current time step. All coordinates are defined in the table
frame. The second term in Equations 6 and 7 provides
the additional velocity term toward the goal-centroid line;
ecentroidx and ecentroidy are components of the perpendic-
ular vector from the presumed end effector contact point to
the goal-centroid line. The robot then pushes in the direction
of the goal attempting to maintain this collinearity relation.
In all experiments kgc = 0.1 and kc = 0.2.

The hand configuration used can be seen in Figure 1. We
orient the hand so that the closed fingertips of the robot
gripper are in contact with the broad side of the hand facing
up. We point the robot’s hand down to make contact with
the table in order to better manipulate low profile objects.
This is a slightly modified version of the fingertip push
behavior primitive discussed in our previous work [7, 8].
In the terminology of that work the controller used here is
the centroid alignment controller and the perceptual proxy is
the ellipse proxy. For more details on the pushing behaviors
and object tracking used in our experiments consult these
previous works.

To directly examine straight line pushing for a given object
boundary location we generated a goal location on the table
30cm past the center of the object along the vector formed by

Fig. 4: Visualization of the feedback control policy. The
green arrow depicts the goal oriented term of the controller
from the object centroid to the goal (red star). The blue
arrow show the term used to align the end effector (blue)
with the center of the object. These two vectors are scaled
and combined to create the commanded velocity of the end
effector.

the sampled boundary location and the object center. This is
a natural choice for a straight line goal, given the controllers
design to push through the center of the object towards the
goal location. We stopped all pushing trials after five seconds
in order to have consistent trial lengths for all samples. For
each object the robot autonomously attempted between 19
and 43 trials. The robot collected a total of 163 pushing
trials. The robot performed pushing trials with six different
objects: a large brush, a small brush, a toothpaste tube, a
box of soap, a food box, and a camcorder. We display the
objects in Figure 5.

Fig. 5: The six objects used in the experiments.

We found that taking binary versions of the shape features
helps slightly in learning. We converted both the local and
global histograms to a binary version, where 1 indicates a
nonzero bin in the original feature descriptor and 0 indicates
a 0 bin in the original. Each histogram is then normalized,
so that the vector sums to 1. The weight of the global kernel
is fixed to 0.7, and that of the local kernel is 0.3.The ε in
SVR is fixed to 0.3, and C (the dual variable to λ in Eq. 2)

is fixed to 2 in all experiments. The kernel widths γ for the
local kernel is fixed to 2.5, while the global kernel has a
γ value of 2.0. We determined these values through cross-
validation.

In order to improve the regression performance, we take
the logarithm of Equation 5 as the regression target. Trans-
forms like this are common in statistics in order to make
the target distribution more balanced and better correspond
to model assumptions. In this work, good pushing locations
often have scores less than one-tenth of bad ones; taking the
logarithm has the effect of both accentuating the differences
between relatively good pushing locations as well as com-
pressing the mapping of the poor choices to approximately
equally bad scores. This remapping allows the regression to
focus more on predicting good locations accurately, rather
than aggressively fitting bad locations well.

Finally, to learn the prediction function, we compared
three different learning methods. The first — Kernel SVR
— is the regression method discussed above. In addition, we
implemented 2 other popular regression algorithms: linear
ridge regression and boosting stumps. For boosting stumps,
we used the L2 boosting framework [9] on regression stumps
computed by the CART algorithm. The competing algo-
rithms have been tuned to their respective best parameters.
For completeness we present as baseline just using the
training mean, also known as the 0th-Order regressor, to
show the ability of the learning functions to improve upon
average output.

V. RESULTS

To measure the effectiveness of the learning, we perform
leave-one-out cross-validation on the objects: for each object
included in the experiment, we train on examples from all
the other objects and validate on all the examples of the
current object. This corresponds exactly to prediction of
pushing behaviors on a novel object. Table I presents these
cross validation results both in terms of prediction error
and effectiveness at predicting good push locations. To give
some intuition for the distribution of push-stability scores,
we visualize ground truth pushing scores for two objects
in Figure 6. The high curvature of the brush head, made
pushing on the long side difficult for the robot. The brush
would rotate quite a bit and the robot would not be able to
push it directly towards the goal. However, pushing at the tip
of the handle or the small end of the brush head allowed the
robot to limit the degree to which the object rotated. For the
soap box, many points worked well. We attribute the high
scores near corners to the fact that when pushed at a corner
the object initially rotates, but when the robot compensate to
push through the centroid, it now pushes near the center of
the side and the object’s center moves in a mostly straight
line.

The first set of results presents the L1 prediction error
of the regression on the log of push score. Each column
corresponds to the sequestered object of the leave one out
methodology, while the rows correspond to the different

(a) (b)

Fig. 6: Visualization of ground truth pushing scores for the
large brush and soap box. Green points represent better
scores, while redder represent worse.

learning functions. The support vector regression outper-
forms competing algorithms producing the best result on the
mean and the 3 different objects: Food Box, Small Brush
and Toothpaste. Linear ridge regression bests on only one
object, the Soap Box, by a fairly small margin. Boosting
stumps is better on Camcorder and Large Brush, but fails to
capture the details in Food Box and Small Brush, apparently
the more predictable objects as seen from the results. Overall
all regressors outperform the training mean baseline, except
in the difficult case of the camcorder class.

More important than the actual regression error, however,
is consideration of whether the prediction function actually
allows the robot to more rapidly determine how to push a
novel object than random experimentation. To measure this
effect, for every object we trained the predictor on the other
objects and then predicted good places to push. For each
such novel object, the robot predicts the push score on all
sampled points from the object boundary and then selects the
3 points with best predicted push-stability score. We define
the planning error to be the actual error that was observed
when the test object was pushed at the selected points. This
corresponds to the error that would have resulted had the
robot chosen that point for pushing.

As shown in the bottom half of Table I, under such a
planning error metric our approach performed well on all the
objects, being able to predict a pushing location with an error
of 0.14 − 0.61 centimeters. Significantly, if one compares
against pushing at a random location on the shape, the mean
pushing error is reduced by 74.7% (from 1.37cm to 0.347cm)
by using the system. The second and third locations have
slightly larger planning errors, but are still significantly better
pushing locations. Even more significant: using the best of
the top 3 predictions for each object, the average reduction
in push error was 83%.

We additionally compare to the pre-programmed heuristic
of selecting a point on the object’s boundary lying on the
major or minor axis of the object’s footprint. This selec-
tion criteria is a simple geometric feature that requires no
learning, but is more informed than simple random selection.
Our method outperforms these baselines in all cases but one,
the small brush category. However, this is not a damming
results as our method produces its worst performance on
this category and while the minor axis location is better than
any of the top three determined by our learned method, we
still outperform the major axis location selection. On average

TABLE I: Performance of the system. Regression errors are in the log-space of the predictions. The baseline 0th-order
regressor reflects using the mean output in the training set to predict on all positions in the test set. Planning error reflects
the error the robot would have incurred, had it used the predicted best, second best, or third best location (from the kernel
SVR regressor) to push. As one can see using the predictor offers significantly lower pushing errors compared with pushing
at a random location on the object boundary. The learned regressor also out performs deterministic selection strategies of
choosing a minor or major axis boundary location.

Metric Mean Camcorder Food Box Large Brush Small Brush Soap Box Toothpaste
L1 Regression Error

Kernel SVR 0.720 0.795 0.436 0.714 0.569 1.090 0.717
Ridge Regression 0.744 0.765 0.494 0.749 0.648 1.037 0.771
Boosting Stumps 0.756 0.691 0.602 0.704 0.719 1.060 0.762
Training Mean 0.823 0.781 0.739 0.793 0.636 1.137 0.853

Planning Error in cm
1st Predicted Location 0.347 0.36 0.14 0.61 0.50 0.21 0.26
2nd Predicted Location 0.478 0.64 0.49 0.21 0.96 0.17 0.40
3rd Predicted Location 0.538 1.66 0.10 0.13 1.04 0.12 0.18

Random Location 1.370 1.56 1.30 1.62 1.48 1.31 0.95
Major Axis Location 1.355 2.16 1.76 1.95 1.64 0.44 0.18
Minor Axis Location 0.687 1.51 0.52 0.35 0.34 1.14 0.26

the top ranked pushing location of the learned regressor
out performs the major axis push location by 74.4% and
the minor axis push location by 49.5% (from 0.687cm to
0.347cm). This result shows the feasibility of learning to
predict from shape descriptions where best to push on a
new object given experience with other objects of different
shapes. Finally, the ability to predict the outcome for all
boundary points makes the planning robust for scenarios
where external constraints might prevent the robot from
pushing at certain locations.

VI. RELATED WORK

Pushing

Effective pushing behaviors offer a number of benefits in
robotics domains which complement standard pick-and-place
operations. For example pushing can be used to move objects
too large for the robot to grasp, to more quickly move objects
to new locations, or to move an object while another object is
already grasped. As such there has been considerable work
at developing such capability. Early work that analyzed a
complete model of the dynamics of pushing was developed
by Mason who describes the qualitative rotational changes
of sliding rigid objects being pushed by either a single point
or single line contact [1]; representative examples of some
more recent applications of pushing are available in [3, 8,
10–14].

Notably, Ruiz-Ugalde et al. execute a pushing behavior by
determining the static and kinetic friction coefficients, both
between the robot hand and object and between the object
and table, for multiple objects with rectangular footprints [3].
Additionally they present a robust feedback controller using
a cart model for the object being pushed. Hermans et al.
present a method by which a robot can learn to select
an appropriate pushing behavior as a function of object
and workspace location [8]. Behaviors are represented as a

combination of a perceptual proxy, a feedback controller, and
a behavior primitive.

To address the inherent difficulty in estimating model
parameters, there are data-driven methods that use an em-
pirically derived characterization of the outcomes of specific
actions applied to the object. For example, Narasimhan
uses vision to determine the pose of polygonal objects of
known shape in the plane [15] and then develops a variety
of methods to push objects into the desired location and
orientation including a data driven approach that learns the
effect of different pushes on the object. Similarly, Salganicoff
et al. present a method for learning and controlling the
position in image space of a planar object pushed with
a single point contact [16]. Slip of the object is avoided
by pushing at a notch in the object. Scholz and Stilman
learn object specific dynamics models for a set of object
through experience [17]. Each object is pushed at a number
of predefined points on the perimeter and the robot learns
Gaussian models of displacement of the object’s 2D pose,
(x, y, θ), at each location. These learned models are then
used to select the input push location given a desired object
pose.

Learning with Shape

Shape features have been used in a number of works on
learning grasp locations on objects [18–21]. Bohg and Kragic
use shape context as a feature for learning grasping loca-
tions [18]. Le et al. desire to learn grasping locations for
each finger of a multi-fingered robot hand [19]. Local image
features are extracted at each grasp point and depth features
are extracted along the lines formed between the grasping
locations. These features encode variation in depth in an
attempt to encode smoothly changing shape. Rao et al. use
similar variance features on depth and height values of the
object of interest as well as absolute range in height [20].

These features are combined with visual features to learn
to classify good grasping locations. Jiang et al. use local
histograms of depth values to rank grasping locations for a
parallel jaw gripper [21]. In a different piece of work Jiang
et al. use features similar to the variance features discussed
above to encode shape information of both an object being
placed and potential placement locations in learning to place
objects [22]. Histograms of point locations are also used
to encode information both about the object being placed
and the placement location. Additional features are used
to directly encode the interaction between the object and
potential placement locations.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an interactive learning approach by which
a robot autonomously performs experiments and learns ob-
ject locations that afford stable pushing. We have shown that
the robot can effectively learn to predict pushing locations
on novel objects, and the results significantly outperform
randomly sampling pushing locations, as well as a pre-
programmed, shape-based heuristic. We are interested in
extending this learning technique to learn also how to push
objects to a desired orientation. We can couple this orienting
behavior with the straight line pushing learned in this work
to push an object to any desired pose. By first orienting
such that a stable pushing location is inline with the desired
goal point and then pushing in a straight line to the goal
the robot can effectively push an object to a location in its
workspace. If a specific final orientation is also desired, then
an additional orienting push can be performed once the object
has reached the final location.

Beyond this simple extension, we are interested in exam-
ining the benefits in using a combination of pre-programmed
knowledge (such as the major-minor axis method in this
paper), general, object independent knowledge (the learned
pushing functions across objects), and object specific knowl-
edge (such as the behavior selection done in our previous
work [8]).

We envision a system which prior to any interaction could
use heuristics to first manipulate the environment. This could
help to bias the exploration to find good locations to push
more rapidly. Once enough data is collected, the approach
of this paper could be used to generalize to interaction with
novel objects. However, if the robot is expected to interact
with the novel object more than once, learning a new push
location selection function, specialized to the object would
be desirable. If it is the case that the general regressor
works well, no such specialization should be required, but
if the predictor is systematically wrong in someway, the
robot should learn to specialize its actions to this object,
without hindering the performance on other objects on which
it already operates successfully.

VIII. ACKNOWLEDGMENTS

This work was supported in part by NSF Award 0916687.
We would like to thank the anonymous reviewers for their
suggestion of comparing to the heuristic major and minor
axis location selection scheme.

REFERENCES

[1] M. T. Mason, “Mechanics and Planning of Manipulator Pushing
Operations,” The International Journal of Robotics Research (IJRR),
vol. 5, pp. 53–71, September 1986.

[2] K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Con-
trollability, and Planning,” in The International Journal of Robotics
Research (IJRR), 1996, pp. 533–555.

[3] F. Ruiz-Ugalde, G. Cheng, and M. Beetz, “Fast Adaptation for Effect-
aware Pushing,” in Humanoids, 2011.

[4] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The Annals of Statistics, vol. 36, pp. 1171–1220,
2008.

[5] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple
kernels for object detection,” in International Conference on Computer
Vision, 2009.

[6] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 24, April 2002.

[7] T. Hermans, J. M. Rehg, and A. F. Bobick, “Decoupling Behavior,
Control, and Perception in Affordance-Based Manipulation,” in (IROS)
Workshop on Cognitive Assistive Systems, October 2012.

[8] ——, “Decoupling Behavior, Perception, and Control for Autonomous
Learning of Affordances,” in Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2013.

[9] P. Buhlmann and B. Yu, “Boosting with the l2 loss: Regression and
classification,” Journal of American Statistics Association, vol. 98, pp.
324–340, 2003.

[10] D. Omrc̆en, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous Acquisition of Pushing Actions to Support Object Grasping
with a Humanoid Robot,” in Humanoids, Paris, France, 2009.

[11] D. Katz, Y. Pyuro, and O. Brock, “Learning to Manipulate Articulated
Objects in Unstructured Environments Using a Grounded Relational
Representation,” in RSS, Zurich, Switzerland, June 2008, pp. 254–261.

[12] M. Dogar and S. Srinivasa, “A Framework for Push-Grasping in
Clutter,” in RSS, 2011.

[13] ——, “Push-Grasping with Dexterous Hands: Mechanics and a
Method,” in IROS, 2010.

[14] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push Planning
for Object Placement on Cluttered Table Surfaces,” in IROS, 2011.

[15] S. Narasimhan, “Task Level Strategies for Robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

[16] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in AAAI Fall Symposium
on Machine Learning in Computer Vision, 1993.

[17] J. Scholz and M. Stilman, “Combining Motion Planning and Opti-
mization for Flexible Robot Manipulation,” in Humanoids, 2010.

[18] J. Bohg and D. Kragic, “Learning Grasping Points with Shape Con-
text,” Journal of Robotics and Autonomous Systems, vol. 58, no. 4,
pp. 362–377, April 2010.

[19] D. K. Quoc Le and A. Y. Ng, “Learning to grasp objects with
multiple contact points,” in International Conference on Robotics and
Automation (ICRA), 2010.

[20] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y.
Ng, “Grasping Novel Objects with Depth Segmentation,” in Proc. of
the IEEE/RSJ International Conference on Intelligent Robotics and
Systems (IROS), 2010.

[21] Y. Jiang, S. Moseson, and A. Saxena, “Efficient Grasping from RGBD
Images: Learning using a new Rectangle Representation,” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA), 2011.

[22] Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to Place New
Objects,” in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2012.

