
Learning Contact Locations for Pushing and Orienting Unknown Objects

Tucker Hermans Fuxin Li James M. Rehg Aaron F. Bobick

Abstract— We present a method by which a robot learns to
predict effective contact locations for pushing as a function of
object shape. The robot performs push experiments at many
contact locations on multiple objects and records local and
global shape features at each point of contact. Each trial
attempts to either push the object in a straight line or to
rotate the object to a new orientation. The robot observes
the outcome trajectories of the manipulations and computes
either a push-stability or rotate-push score for each trial.
The robot then learns a regression function for each score
in order to predict push effectiveness as a function of object
shape. With this mapping, the robot can infer effective push
locations for subsequent objects from their shapes, regardless
of whether they belong to a previously encountered object class.
These results are demonstrated on a mobile manipulator robot
pushing a variety of household objects on a tabletop surface.

I. INTRODUCTION AND MOTIVATION

The ability to push objects purposefully can be of great utility
to robots in performing many tasks of daily life, whether
setting a table or searching through a cupboard or drawer.
When performing these pushing tasks in real homes and other
open, human environments a robot will often encounter novel
objects it has never manipulated before. The only guidance
a robot has for manipulating these objects is knowledge
learned from prior experience with previously manipulated
objects. The goal of this paper is to introduce a learning
method by which a robot learns how to predict the effect of
pushing actions on novel objects based upon object shape.

The approach developed here may be considered as an
alternative to complete physical simulation. Physical models
require specification of typically unobservable properties of
the object such as support locations and friction distributions.
For an unknown object these properties cannot be deduced
without interactive experimentation. Even if a physical model
is available, simulation may not be sufficient in solving
the pushing control problem since many efficient solutions
require simplifying assumptions of both the object and the
supporting surface [1–3].

As an alternative to using a complete physical description,
a robot can compute visual cues directly from camera input.
Object shape encodes valuable information about effective
pushing locations. In this paper we develop a method
for autonomously learning a shape-based push-prediction
function that can be easily applied to new objects and
whose applicability can be quickly ascertained through a
small number of experimental manipulations. As an example,
consider the scenario depicted in Figure 1a and 1b where
the robot is pushing a hair brush. If the contact between

Tucker Hermans, Fuxin Li, James M. Rehg, and Aaron F. Bobick are
affiliated with the Center for Robotics and Intelligent Machines and The
School of Interactive Computing, Georgia Institute of Technology, Atlanta,
GA. {thermans, fli, rehg, afb}@cc.gatech.edu

robot and object were to move a small amount to the left
or right, the object would rotate significantly. Compare this
to the example shown in Figures 1c and 1d. In this case
a small variation in contact position will cause a relatively
minor change in the pose of the object and it will essentially
continue along the current pushing direction. Depending on
the current task of the robot, it may wish to either push an
object to a new location or rotate the object to a different
orientation. As such, a robot capable of correctly choosing
contact locations for straight-line pushes, as well as orienting
pushes on unknown objects will have greater success in
pushing objects than a system that does not directly reason
about such contact locations.

We use a data-driven approach where the robot learns
good pushing locations by interacting with objects during
exploration. Each time the robot pushes an object it records
both a shape description centered at the push contact location
orientated towards the object center as well as a “push score”
measuring the quality of the push. The push score encodes
the robot’s ability either to push the object along a straight
path or to rotate it in a controlled manner. These shape
features are extracted in such a way that they capture the
necessary details of the object, while being able to generalize
to novel objects and object classes. As the robot interacts
with more objects in more conditions, it uses non-linear
regression to learn prediction functions for estimating these
two push scores. The procedure for operating on a novel
object or a previously seen object is identical, allowing the
robot to seamlessly deal with new and old objects alike.

When presented with an object, whether new or previously
encountered, and a desired pose the robot extracts shape
features from all locations on the object boundary and uses
the learned prediction function to estimate push-stability and
rotate-push scores for each of these locations. The robot can
then use a high scoring orienting-push location to rotate the
object to a pose, such that a sufficiently good stable push
location aligns with a straight line trajectory to the goal pose.
The robot then performs the orienting push and straight line
push, using the same feedback controllers as from training,
to position the object as desired in its workspace. This
paper represents an extension of our previous work, which
presented limited, offline results for the case of straight-line
pushing [4].

The remainder of the paper continues as follows. Section II
discusses relevant work in pushing and learning from object
shape in the robotics community. Section III gives details
of the scoring function used for the learning task, our shape
features, and the method used for regression. We describe
implementation details in Section IV and present the results
of all experiments in Section V. Finally, we conclude and

(a) (b) (c) (d)

Fig. 1: Example pushing instances. The first two images are two consecutive frames captured while the robot pushes the large hair brush
from an unstable straight-line pushing location, which induces a rotation of the object. The second two frames show the robot pushing
a soap box from a stable pushing location. In both examples the red line shows the vector from the estimated object center to the goal
location denoted as the red circle.

discuss this work in the broader context of our research
program in Section VI.

II. RELATED WORK

Effective pushing behaviors offer a number of benefits for
robot manipulation which complement standard pick-and-
place operations. Early work that analyzed a complete model
of the dynamics of pushing was developed by Mason who
described the qualitative rotational changes of sliding rigid
objects being pushed by either a single point or single line
contact [1]; representative examples of some more recent
applications of pushing are available in [3, 5–9].

Ruiz-Ugalde et al. execute a pushing behavior by deter-
mining the static and kinetic friction coefficients, between
the robot hand and object, as well as, between the object
and table, for multiple objects with rectangular footprints [3].
Additionally they present a robust feedback controller using
a cart model for the object being pushed. In our previous
work, we presented a method by which a robot can learn to
select an appropriate pushing behavior as a function of object
and workspace location [9]. Behaviors are represented as a
combination of a perceptual proxy, a feedback controller, and
a behavior primitive.

A number of approaches use data-driven methods to
empirically derive characterizations of the outcomes of push-
ing actions applied to objects. For example, Narasimhan
uses vision to determine the pose of polygonal objects of
known shape in the plane [10] and then develops a variety
of methods to push objects into the desired location and
orientation including a data driven approach that learns the
effect of different pushes on the object. Similarly, Salganicoff
et al. present a method for learning and controlling the
position in image space of a planar object pushed with
a single point contact [11]. Slip of the object is avoided
by pushing at a notch in the object. Scholz and Stilman
learn object specific dynamics models for a set of objects
through experience [12]. Each object is pushed at a number
of predefined points on the perimeter and the robot learns
Gaussian models of displacement of the object’s 2D pose at
each location. These learned models are then used to select
the input push location given a desired object pose. Omrc̆en
et al. use a retinal image based neural network to learn the
pushing dynamics for flat objects [5]. The learned models
are specific to individual objects and generalization to similar

objects is not examined. Kopicki et al. also learn probabilistic
models of outcome based on pushing manipulations [13].
The predictions are modified as a function of object shape,
however only rectangular shapes are considered, unlike the
variety of natural objects used in our work. Additionally the
prediction models are not used to perform control movements
of objects to desired poses.

Ridge et al. learn as a function of visual object features
to predict how a pushed object will behave [14]. They use
a neural network with learning vector quantization to jointly
cluster the output space into affordance classes (i.e. rolling
vs pushing) and learn a classifier to predict if a given object
will produce this outcome. In similar work by Ugur et al.,
a robot clusters observed outcomes of a number of learned
manipulation strategies and learns to predict these outcome
categories as a function of different input features, including
object shape [15]. While these methods are definitely inter-
esting, in neither work does the robot learn where to push
in order to move the object to a desired pose.

Finally, shape features have been used in a number of
works on learning grasp locations on objects [16–18]. Bohg
and Kragic use shape context as a feature for learning
grasping locations [16]. Le et al. desire to learn grasping
locations for each finger of a multi-fingered robot hand [17].
Local image features are extracted at each grasp point and
depth features are extracted along the lines formed between
the grasping locations. These features encode variation in
depth in an attempt to encode smoothly changing shape.
Jiang et al. use local histograms of depth values to rank
grasping locations for a parallel jaw gripper [18]. In a
different piece of work Jiang et al. learn placement locations
for objects using features similar to the variance features
discussed above as well as histograms of point locations
of both the object being placed and the potential placement
locations [19].

III. LEARNING TASK

We formulate our learning task as the estimation of a
function f : Rm → R, given n training example pairs
(zi, si), i = 1, . . . , n, zi = [zi1, . . . , zim] ∈ Rm, si ∈ R.
All training pairs are collected autonomously by the robot
through exploration with given training objects. The target
value s encodes the quality of the push, while the input
feature z encodes the overall shape of the object of interest
and the local shape for the currently chosen pushing contact

location. In the remainder of this section we first describe
the details of the scoring function used for straight line
pushing, as well as the scoring method for orienting pushes.
We then explain the shape features used and finish the section
with an overview of support vector regression (SVR), which
performs the estimation of the function f .

A. Pushing Score Functions

We define our push-stability score to penalize pushes which
deviate from the desired straight-line trajectory. We thus
compute this score as the average distance of the observed
object trajectory from the desired pushing trajectory. Equa-
tion 1 precisely defines this notion:

ss =
1

K

K∑
k=1

dist(X[k], `p) (1)

where X[k] is the estimated (x, y) centroid location of the
object in the table frame at time k, `p is the line passing
through the objects initial location X[0] and the desired goal
location X∗, and dist is the Euclidean distance.

Figure 2 visualizes the scoring function for two synthetic
trajectories. While both trajectories reach the desired goal
location, the green trajectory follows the desired straight line
trajectory more closely. The computed scores s0s = 0.62cm
for the green trajectory and s1s = 3.94cm for the red
trajectory reflect our preference with the green trajectory
receiving the lower score. There are a number of reasons
to prefer this scoring measure to something simpler such
as final position error. First, it allows the robot to have a
more accurate prediction of how the object will behave when
pushed. This is important for collision avoidance, where
straight line push trajectories allow the robot to avoid pushing
an object into other objects in the environment or off of the
supporting surface. Additionally, the score allows the robot
to predict how an object should move, allowing the robot
to abort pushes early if they deviate significantly from the
straight line path.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 2: Two synthetic push trajectories going from initial location
in the bottom left to the goal location (star) in the top right. The
red trajectory receives a push-stability score of 3.94cm while the
straighter green trajectory receives a score 0.62cm.

For the task of learning where to push in order to rotate
an object to a desired heading we used the simple score of
net change in orientation between the initial pose and final
pose. Ideal orienting pushes should not only rotate the object,
but also produce as little translation of the object position
as possible. While this score can not differentiate between

pushes which rotate the object while keeping the center fixed
with those that also move the object, we found the simple
scoring function sufficient for differentiating good and bad
pushing contact locations. This reflects the nature of the feed-
back controller we used for orienting pushes, which tends to
only cause objects to rotate, when they do not translate (c.f.
Section IV-B). Thus penalizing translations explicitly adds
unnecessary complication. Formally the orienting push score
is sr = |θ[K]− θ[0]| where θ[K] is the object’s orientation
defined in the supporting plane at final time index K and θ[0]
is the orientation at the initial time step prior to pushing.

B. Shape Features

Our feature extraction takes as input the point cloud asso-
ciated with the segmented object of interest. We compute
both local and global descriptions of shape encoded in a
coordinate frame defined by the object center and chosen
pushing contact location. We encode local object shape with
a small 2D histogram, while we use a slightly modified
version of the popular shape context feature for global object
shape [20]. Given a 3D point cloud of an object we project
all points to the 2D plane defined by the supporting surface
and extract the boundary of this projected point cloud. The
evaluated pushing location defines a specific point on the
boundary. This unique point marks the center of the local
coordinate system. The positive x-direction is oriented from
the pushing point to the object center creating a consistent
frame across objects of similar shape.

To build the local feature descriptor we walk along the
boundary to the left and right sides of the pushing point,
selecting all points within a 0.05m band in the local y-
direction around the chosen contact location. We visualize
the point selection in Figure 3. We select these local points
as they best define the object geometry with which the robot
end effector is most likely to interact while performing the
pushing operation. These local points are then encoded into
a 6× 6 2-dimensional histogram with uniform bin sizes. An
example histogram is shown in Figure 3c.

We again use the boundary of the object as extracted
above, however all points are kept as input to our shape
context feature, as opposed to only the points near the
pushing location used for the local descriptor. For the given
set of boundary points we follow the standard shape context
extraction method: we compute the distance and angle to
all other points on the boundary and a build a log-polar
histogram of the distribution of all of the points. The polar
coordinates allow for the shape to be encoded in a way
that easily transforms between different contact locations.
In order to make this alignment consistent the first indexed
angular bin of the histogram starts at the angle pointing from
the contact location towards the 2D center of the original
point cloud. The log transform of radial bins creates a more
detailed description of the shape close to the contact location
while points farther away are encoded more coarsely. Our
global histogram has 12 orientation bins and 5 radial bins
for a final histogram of size 60. Thus our final combined
local-global shape descriptor has 96 dimensions.

(a) (b) (c)

Fig. 3: Local boundary selection and local feature descriptor extraction. The red points correspond to the 2D boundary of the object in
the table plane. The magenta point shows the currently selected pushing location. The blue lines in 3a denote the dominant orientation
of the local coordinate system towards the center of the object, as well as the distance in local y-direction used in selecting the green
boundary points. We center a 2D histogram in this local frame and compute the distribution of the local boundary points.

C. Support Vector Regression

We now turn to the estimation of the function, f(z) = s,
which predicts the push stability score, s, from the object
shape feature, z, defined at a potential push contact location.
We can estimate f using kernel support vector regression.
The regression function takes the form:

f(z) =

n∑
i=1

αiK(z, zi) + b (2)

where K(z, zi) is a positive semidefinite kernel comparing
the similarity between the test example z and training exam-
ples zi, and b is a constant offset.

One can see that the prediction is largely based on
similarity. In the extreme case that a testing example is only
similar to one training example, such a function would be
similar to nearest neighbor: predicting the test example by
the value of the training example most similar with it. In
general cases, the prediction is smoothed by the weighted
average of similarities with multiple training examples, thus
reducing the chance of overfitting to a particular example and
achieving provably better performance than nearest neighbor
approaches.

The parameters α are found through a quadratic program-
ming formulation. This quadratic programming formulation
is proven to be equivalent to the functional minimization
problem in the reproducing kernel Hilbert space [21]:

min
f∈HK

∑
i

Lε(f(zi), si) + λ‖f‖2HK
(3)

where HK is the reproducing kernel Hilbert space spanned
by the kernel K, ‖f‖2HK

is the Hilbert space norm of f
which encodes the smoothness of f , λ is a regularization
parameter on this smoothness norm (denoted C in the dual
quadratic programming formulation and in Section IV), and

Lε(f(zi), si) =

{
0, |f(zi)− si| ≤ ε

|f(zi)− si| − ε |f(zi)− si| > ε
(4)

is called the ε-insensitive loss function.
Support vector regression essentially finds a function that

both fits the training data well, and is sufficiently smooth, as
constrained by the Hilbert space norm term ‖f‖HK

. Since

such kernel methods are very flexible estimators that can fit
almost all smooth functions, the Lε loss function is designed
so that the function does not have to fit exactly to the training
data. This reduces the chances of overfitting and improves
generalization performance. In our experiments we observed
that the ε-insensitive loss outperformed traditional L1 and
L2 loss functions.

The kernel we used in this paper is the exponential χ2

kernel [21]:

K(zi, zj) = exp

(
−γ

d∑
k=1

(zik − zjk)2

zik + zjk

)
(5)

a proven excellent kernel for comparing histogram features
that has been widely used in computer vision [22]. The
parameter γ controls the width of the kernel, necessary
when combining multiple kernels. This kernel corresponds
to a symmetric version of the Pearson χ2 test to determine
whether a histogram comes from a certain probability distri-
bution and has nice properties such as striking a good balance
between large and small bins in the histogram, as well as
being well-defined everywhere (as opposed to the commonly
used KL-divergence). We use separate kernels for the local
and global features and take a weighted sum of these two
measures as the ultimate similarity. Details of the learning
parameters used are given in Section IV-C.

IV. IMPLEMENTATION
We collected all pushing data using a Willow Garage PR2
robot. We performed all experiments using common house-
hold objects in the Georgia Tech Aware Home. All perception
was conducted using a Microsoft Kinect sensor mounted on
the head of the PR2. We segment the supporting table, robot
arm, and object of interest from the point cloud captured
from the Kinect and track the object throughout the course
of pushing. For all experiments in this work the 3D centroid
of the object estimates the location and an ellipse fit to the
object point cloud determines orientation. For more details
on the object tracking used in our experiments consult our
previous work, specifically the ellipse perceptual proxy [9].

A. Straight Line Pushing
Straight line pushing is performed using a feedback con-
troller which attempts to align the tip of the robot gripper

Fig. 4: Visualization of the feedback control policy. The green
arrow depicts the goal oriented term of the controller from the
object centroid to the goal (red star). The blue arrow show the
term used to align the end effector (blue) with the center of the
object. These two vectors are scaled and combined to create the
commanded velocity of the end effector.

with the vector passing through the centroid of the object
towards the goal, while pushing towards the goal location.
We visualize this control law in Figure 4.

The robot achieves this behavior by using a feedback
control law that includes a velocity term to move toward the
goal and a second term that moves the end effector towards
the vector defined from the goal location through the object’s
centroid:

ux[k + 1] = σgcegx + σcecentroidx (6)
uy[k + 1] = σgcegy + σcecentroidy (7)

where ux[k + 1] and uy[k + 1] are the desired end effector
velocities in the table frame at time k + 1 and egx and egy
define the goal error for goal locations (x∗, y∗) at time k:

egx = (x∗ − x[k]), egy = (y∗ − y[k]) (8)

(x[k], y[k]) is the visually estimated object centroid at the
current time step k. All coordinates are defined in the table
frame. The second term in Equations 6 and 7 provides
the additional velocity term toward the goal-centroid line;
ecentroidx and ecentroidy are components of the perpendic-
ular vector from the presumed end effector contact point to
the goal-centroid line. The robot then pushes in the direction
of the goal attempting to maintain this collinearity relation.
In all experiments σgc = 0.1 and σc = 0.2.

The hand configuration used can be seen in Figure 1. We
orient the hand so that the closed fingertips of the robot
gripper are in contact with the broad side of the hand facing
up. We point the robot’s hand down to make contact with
the table in order to better manipulate low profile objects.
This is a slightly modified version of the fingertip push
behavior primitive discussed in our previous work [9]. In
the terminology of that work, the controller used here is the
centroid alignment controller.

To directly examine straight line pushing for a given object
boundary location, we generated a goal location on the table
30cm past the center of the object along the vector formed by
the sampled boundary location and the object center. This is
a natural choice for a straight line goal, given the controllers
design to push through the center of the object towards the
goal location. We stopped all pushing trials after five seconds
in order to have consistent trial lengths for all samples. For
each object the robot autonomously attempted between 19
and 43 trials. The robot collected a total of 163 pushing
trials. The robot performed pushing trials with six different
objects: a large brush, a small brush, a toothpaste tube, a

box of soap, a food box, and a camcorder. We display the
objects in Figure 5.

B. Rotate to Heading Pushing

The feedback controller used for orienting pushes applies a
forward velocity in the robot’s gripper frame proportional
to the error in current heading, and a rotational velocity of
the end effector to track the rotation of the object. These
feedback laws are defined as:

ux[k + 1] = σg|θ∗ − θ[k]| (9)

uω[k + 1] = −σs · θ̇[k] (10)

where θ[k] and θ̇[k] are the estimates of the object orientation
and angular velocity in the table frame, ux[k + 1] is the
forward velocity applied in the robot’s gripper frame and
uω[k+1] is the desired rotational velocity of the end effector
about its vertical axis. This controller does not attempt to
force a rotation on the object where it does not naturally
rotate. Instead it pushes through the chosen location and, if
the object begins to rotate, follows the dynamics of the object
rotating the robot’s wrist to maintain contact with object
boundary. For all experiments we set the gain σg = 0.1 and
σs = 0.9 which were set by hand to give good performance
on a number of test objects. The robot hand was oriented

Fig. 5: The six objects used in the experiments.

so that the fingertip touched the table and the broad side of
the gripper was aligned with the object; this is the overhead
push from [9]. The robot determines the initial pushing
direction of the hand by first finding the smallest bounding
box around the object footprint with its major axis aligned to
the dominant orientation of the object. The robot then selects
the side of the bounding box closest to the current pushing
location and chooses the push direction perpendicular to this
side pointing inwards towards the object. We visualize this
procedure in Figure 6. While this may not always produce the
best pushing direction, it is consistent and embedded in the
learning framework, which allows the robot to learn the best
rotate pushing locations initialized following this procedure.

The goal heading for all trials was set to be 180◦ from the
initial object heading to allow for the largest possible rotation
of the object and trials were stopped after five seconds to give
consistent samples as before. The robot collected 87 sample
pushes for the camcorder object, 50 samples for the small

Fig. 6: Visualization of determining the initial pushing direction
for rotate pushes. For the chosen push location, highlighted in red,
the green (top) edge of the bounding box is closest. Thus the initial
pushing direction designated by the red arrow is chosen.

brush, and 51 trials for each of the remaining four objects
giving a total of 341 samples for learning.
C. Learning Details
We found that taking binary versions of the shape features
helps slightly in learning. We converted both the local and
global histograms to a binary version, where 1 indicates a
nonzero bin in the original feature descriptor and 0 indicates
a 0 bin in the original. Each histogram is then normalized,
so that the vector sums to 1. For learning straight line pushes
the weight of the global kernel is fixed to 0.7, and that of the
local kernel is 0.3. The ε in SVR is fixed to 0.3, and C (the
dual variable to λ in Eq. 3) is fixed to 2 in all experiments.
The kernel widths γ for the local kernel is fixed to 2.5, while
the global kernel has a γ value of 2.0. We determined these
values through cross-validation.

In order to improve the regression performance of straight
line pushing, we take the logarithm of Equation 1 as the re-
gression target. Transforms like this are common in statistics
in order to make the target distribution more balanced and
better correspond to model assumptions. In this work, good
pushing locations often have scores less than one-tenth of bad
ones; taking the logarithm has the effect of both accentuating
the differences between relatively good pushing locations as
well as compressing the mapping of the poor choices to
approximately equally bad scores. This remapping allows
the regression to focus more on predicting good locations
accurately, rather than aggressively fitting bad locations well.

Through cross validation on the rotate pushing data we
determined a local γ value of 0.05 and the γ of the global
kernel to be 2.5. We combined these two kernels with a
global weight of 0.7 and the local kernel weighted with 0.3.
The SVR loss ε value is set to 0.2 and C = 1.0. As with
straight line pushing, we found taking the logarithm of the
orienting push score to improve the learning performance.

V. RESULTS

To measure the effectiveness of the learning, we use the
learned regression functions to perform push tasks on novel
objects. A leave-one-out setting is used where the robot
learns the regressor on five of the objects and performs new
pushing tests on the held-out object. When performing push
tests the robot extracts features from the sampled boundary
points of the current object. It then predicts the push score
for each point on the boundary and chooses the point with
the best score (lowest for straight-line, highest for orienting
pushes) as the initial contact point. A push is then attempted

(a) (b)

(c) (d)

Fig. 7: Visualization of ground truth and predicted straight-line
pushing scores for the large brush and soap box. The top row shows
ground truth samples, while the bottom row shows predicted scores
at all points. Green points represent better scores, while redder
represent worse. The black circles on the predicted scores show
the points with best predicted score.

at this contact location, with the goal defined as either a
straight line extending 30cm through the center of the object
(for straight-line pushes), or 180◦ from the current heading
(for orienting pushes), the same procedures as used for
training in both cases.

In order to test the effectiveness of the learned prediction
functions for each object we performed 15 new straight-line
pushing trials as well as 15 new orienting pushes on the
robot. For straight-line pushes, we reject attempts where the
goal poses are off or near the edges of the table. Additionally,
pushes are not attempted if the inverse kinematics solver
fails to give a final position for hand placement. In such
cases the robot then decides on the next best ranked pushing
location. If no good locations are reachable, the object is
moved to another position on the table. We limit the pushes
to five seconds, to give easily comparable results. As a
comparison, we additionally performed 15 trials on each
object for both pushing tasks choosing random initial start
locations, subject to the same constraints mentioned above.
Detailed explanation of these results follows.
A. Stable Pushing Locations
We first present results for straight-line pushing. To give
some intuition for the distribution of push-stability scores,
we visualize ground truth pushing scores from the training
data for the two objects in Figures 7a and 7b. The high
curvature of the brush head made pushing on the long side
difficult for the robot. The brush would rotate quite a bit
and the robot would not be able to push it directly towards
the goal. However, pushing at the tip of the handle or at the
end of the brush head allowed the robot to limit the degree
to which the object rotated. For the soap box, many points
worked well. We attribute the high scores near corners to
the fact that when pushed at a corner the object initially
rotates, but when the robot compensate to push through the
centroid, it now pushes near the center of the side and the
object’s center moves in a mostly straight line.

Contrast these with the visualization in Figures 7c and 7d
of predicted push-stability scores taken from test trials of

Fig. 8: Box and whisker plots of the final position error for learned and random initial contact location prediction for straight-line pushing.
The shaded boxes represent the pushing locations chosen through the learned regressor, while the unfilled boxes correspond to random
initial locations. The vertical axis represents final position error in meters. The horizontal labels are the object categories. The lower most
bar for each plot represents the minimum error for the set of trials, while the upper most bar is the maximum error. The lowest side of
the box corresponds to the first quartile, the middle line is the median (second quartile), and the top of the box is the third quartile.

the same two objects. The colors in the predicted images
have a narrower dynamic range, the greens and reds are not
nearly as bright as those in the ground truth images. We
attribute this to the smoothness constraint enforced in the
SVR learning. Nevertheless, the predicted best locations on
the objects correspond well to the ground truth locations with
the best scores. This relative ranking is far more important
than the exact prediction of the scores, as selecting good
contact locations instead of bad ones is the ultimate goal of
the learned function.

Figure 8 shows quantitative results for the test trial ex-
periments. We plot pairs of box and whisker plots of the
final position error for each test object. We plot all learned
results as shaded boxes and random initial locations as
unfilled boxes. We see that the learned results are better in
many cases. First, the median result for the learned predictor
outperforms the random contact location selection for all
objects. In the case of the small brush and toothpaste, the
learned prediction function has consistently lower error at
all performance indices. The improvement is particularly
pronounced for the small brush, where the top 13 trials
consistently produced low errors. Performance on the food
box and large brush is marginally better than random results,
while the camcorder and soap box have close to identical
performance. We attribute the difficulty in predicting the
camcorder to its very different friction properties than all
other objects used. The soap box results are also not sur-
prising, since the performance is quite insensitive to initial
contact location, as can be seen in Figure 7b. We note that
many of the large errors come from pushes that result in

the object being pushed over a relatively large distance,
but not towards the desired goal location. Regardless, the
experiments demonstrate our ability to automatically learn
stable contact locations for pushing from shape information;
most importantly they demonstrate that learning improves
the overall pushing performance achieved by the robot.
B. Orienting Push Locations
We present quantitative results for all rotate pushing test ex-
periments in Figure 9. As before the shaded boxes represent
learned results, while the unfilled boxes correspond to trial
from random initial locations. The vertical axis represents
final heading error in radians. We note that the learned
predictor consistently outperforms random initialization on
the toothpaste, food box, small brush, and soap box cate-
gories. The performance on the toothpaste tube is particularly
impressive with the best performance of the learned location
achieving 0.80 radians of error, while the best performance
for a random location was 1.38 radians. This represents a
42% decrease in final error. Performance is mostly equal on
the remaining large brush and camcorder categories.

Unlike in straight line pushing, the overall performance
achieved across different categories is quite different for
the orienting pushes. The food box never achieves a final
error less than 2 radians, while the small brush attains
better than 2 radians of error in just under half of all
trials. The variability is much higher for the other objects,
with both the random and learned predictors achieving a
wider range of performance. While the rotation learning does
appear to produce better results for some objects, the lack of
increase on three of the objects indicates that some important

Fig. 9: Box and whisker plots of the final heading error for learned and random initial orienting push location prediction for straight-line
pushing. The shaded boxes represent the pushing locations chosen through the learned regressor, while the unfilled boxes correspond to
random initial locations. The vertical axis represents final heading error from 0 radians to π radians. The horizontal labels are the object
categories. Details of how to read the box plot can be found in the caption to Figure 8.

information is not being encoded.
VI. CONCLUSIONS AND FUTURE WORK

We have presented a data-driven approach for learning
good contact locations for pushing unknown objects. We
demonstrate that a combined description of an object’s local
and global shape properties are effective in predicting initial
contact locations for pushing an object in a straight line,
as well as rotating an object to a new orientation. These
results were validated with extensive experimentation on a
mobile manipulator robot operating on common household
objects. In the future we would like to examine whether using
three dimensional shape features could improve performance
beyond current levels. Additionally, we are interested in
extending this work to learning dynamics models of objects
from shape, so that more complicated push trajectories can
be planned and performed.

VII. ACKNOWLEDGMENTS
This work was supported in part by NSF Awards 0916687 and
1016772. REFERENCES

[1] M. T. Mason, “Mechanics and Planning of Manipulator Pushing
Operations,” The International Journal of Robotics Research (IJRR),
vol. 5, pp. 53–71, September 1986.

[2] K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Con-
trollability, and Planning,” in The International Journal of Robotics
Research (IJRR), 1996, pp. 533–555.

[3] F. Ruiz-Ugalde, G. Cheng, and M. Beetz, “Fast Adaptation for Effect-
aware Pushing,” in Humanoids, 2011.

[4] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick, “Learning Stable
Pushing Locations,” in ICDL-EPIROB, August 2013.

[5] D. Omrc̆en, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous Acquisition of Pushing Actions to Support Object Grasping
with a Humanoid Robot,” in Humanoids, Paris, France, 2009.

[6] M. Dogar and S. Srinivasa, “A Framework for Push-Grasping in
Clutter,” in RSS, 2011.

[7] ——, “Push-Grasping with Dexterous Hands: Mechanics and a
Method,” in IROS, 2010.

[8] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push Planning
for Object Placement on Cluttered Table Surfaces,” in IROS, 2011.

[9] T. Hermans, J. M. Rehg, and A. F. Bobick, “Decoupling Behavior,
Perception, and Control for Autonomous Learning of Affordances,”
in ICRA, May 2013.

[10] S. Narasimhan, “Task Level Strategies for Robots,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1994.

[11] M. Salganicoff, G. Metta, A. Oddera, and G. Sandini, “A vision-based
learning method for pushing manipulation,” in AAAI Fall Symposium
on Machine Learning in Computer Vision, 1993.

[12] J. Scholz and M. Stilman, “Combining Motion Planning and Opti-
mization for Flexible Robot Manipulation,” in Humanoids, 2010.

[13] M. Kopicki, S. Zurek, R. Stolkin, T. Morwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
ICRA, 2011, pp. 5722–5729.

[14] B. Ridge, D. Skočaj, and A. Leonardis, “Self-Supervised Cross-Modal
Online Learning of Basic Object Affordances for Developmental
Robotic Systems,” in ICRA, Anchorage, USA, May 2010.

[15] E. Ugur, E. Sahin, and E. Oztop, “Self-discovery of motor primitives
and learning grasp affordances,” in IROS, 2012, pp. 3260–3267.

[16] J. Bohg and D. Kragic, “Learning Grasping Points with Shape Con-
text,” Journal of Robotics and Autonomous Systems, vol. 58, no. 4,
pp. 362–377, April 2010.

[17] D. K. Quoc Le and A. Y. Ng, “Learning to grasp objects with
multiple contact points,” in International Conference on Robotics and
Automation (ICRA), 2010.

[18] Y. Jiang, S. Moseson, and A. Saxena, “Efficient Grasping from RGBD
Images: Learning using a new Rectangle Representation,” in ICRA,
2011.

[19] Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to Place New
Objects,” in ICRA, 2012.

[20] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 24, April 2002.

[21] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The Annals of Statistics, vol. 36, pp. 1171–1220,
2008.

[22] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple
kernels for object detection,” in International Conference on Computer
Vision, 2009.

