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Abstract— We present a novel method for learning and
predicting the affordances of an object based on its physical
and visual attributes. Affordance prediction is a key task in
autonomous robot learning, as it allows a robot to reason
about the actions it can perform in order to accomplish its
goals. Previous approaches to affordance prediction have either
learned direct mappings from visual features to affordances,
or have introduced object categories as an intermediate rep-
resentation. In this paper, we argue that physical and visual
attributes provide a more appropriate mid-level representation
for affordance prediction, because they support information-
sharing between affordances and objects, resulting in superior
generalization performance. In particular, affordances are more
likely to be correlated with the attributes of an object than they
are with its visual appearance or a linguistically-derived object
category. We provide preliminary validation of our method
experimentally, and present empirical comparisons to both the
direct and category-based approaches of affordance prediction.
Our encouraging results suggest the promise of the attribute-
based approach to affordance prediction.

I. INTRODUCTION

A long-standing goal in robotics is the development of
robot learning methods that make it possible to predict
the effects of actions and support continuous improvements
in task execution over time. A key task is the ability to
predict the properties of objects at a distance, which can
inform robot planning and action selection. As an illustrative
example, consider a task in which a mobile manipulator
autonomously cleans up a floor area by moving objects one
at a time into their respective places. Different objects can
support different manipulation strategies: grasping objects
that are sufficiently small, pushing heavier objects, rolling
round objects, etc. In this setting, the ability to predict the
success of different actions at a distance can lead to more
efficient task performance and improved robustness. The set
of possible actions and their outcomes with respect to the
robot and an object are referred to as affordances. Gibson,
who developed the concept of affordance, described them as
encoding the “action possibilities” latent in the environment
for a given agent [1, 2].

This paper describes a novel method for learning to
infer the affordances of objects based upon their visual
appearance. The key insight is to leverage an intermediate
level of representation — visual and physical attributes. The
set of attributes that describe an object can be estimated from
low level visual features, and these attributes can in turn be
used to infer specific affordance properties. A key advantage
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of attribute-based prediction is the ability to leverage object
properties which are shared by multiple affordances, leading
to more effective generalization to novel examples and the
ability to learn new affordances with limited training data.
While there have been several recent works which pursue an
attribute-based approach to object category prediction, we
believe this is the first work to address an attribute-based
approach to affordance learning.

This paper makes three contributions. First, we introduce
a novel attribute-based approach to affordance prediction.
Second, we describe a method for affordance learning which
is fully learning-based, in the sense that all mappings can
be learned from data. Third, we describe a new dataset of
objects and images for affordance prediction in the context
of a clean-up task. In particular, our dataset was collected
autonomously by a mobile robot.

II. RELATED WORK

A. Affordance Learning

While a significant amount of work has been performed
on the learning of affordances in robotics [3], only a lim-
ited amount addresses the fundamental problem of inferring
affordance values from perceptual measurements [4–6].

Fundamentally, any agent that selects an action to perform
to accomplish a task must somehow encode the expected
outcomes. When these actions involve interacting with an
object, these expected outcomes implicitly represent the
affordances of the objects (with respect to the agent). In the
early work on affordance prediction described in [7, 8], a
humanoid robot learns to segment objects through actions
such as poking and prodding. After interaction with a set of
objects, the system could learn to predict the object motion
that would result from a poking action.

Related, Stoytchev [9] describes a method for learning the
functionality of a tool through observation of the effects of
exploratory behaviors, a process that he termed behavioral
babbling. In experiments with a mobile manipulator, the
system demonstrated the ability to learn the affordances of
a set of tools that could be identified by their color.

The concept of Instantiated State Transition Fragment
(ISTF) is introduced in [10]. It encodes the pairing between
an object and an action in the context of the state transition
function for a domain-specific planner. They describe a
process of learning Object Action Complexes [11] through
generalization over ISTF’s. Montesano et. al. [12] present
a Bayesian network model that implicitly represents affor-
dances as mappings from action to effect, which are mediated
by the visual features of objects. A model for grasping,



tapping, and touching actions is learned from both self-
observation and imitation of a human teacher.

In the work presented here we build upon our previous
work in [13], which explicitly represents affordances as
discrete valued nodes within a Bayesian network model. In
that work, the notion of object category was employed as an
intermediate representation to support affordance inference.
Here we explore the alternative approach of using physical
object attributes as an intermediate layer. We primarily bene-
fit by eliminating the concern of being tied to a predefined set
of semantic categories. This change will permit the system to
generalize more effectively and efficiently during affordance
learning and inference as new objects are encountered.

We note here that our approach complements many state of
the art manipulation algorithms. The simple controllers used
for performing the manipulation tasks in this work could be
replaced by more sophisticated methods. For example, given
that an object is known to be graspable, the correct grasp
frame could be computed a variety of methods: [14, 15].
Similarly, much work on object pushing could be used to
help guide the manipulation of objects, once it is known to be
pushable [16, 17]. Generating ground truth information using
these same methods would allow the affordance prediction
algorithm to be tailored to the specific controllers or planners
used. Additionally a task level planner or policy could make
use of the affordance inference machinery in determining
the most efficient or reliable way to complete the problem
at hand.

B. Visual Attributes
The computer vision community has recently produced

a number of works on learning visual attributes [18–25].
While some of these works are concerned with identifying
instances of particular visual attributes in a visual scene
[20, 21], we are interested in those methods which use
attributes to assist in performing some other task, such as
object recognition [23–25].

Fig. 1: Attribute affordance prediction model.

Our work most closely resembles that of [24], where
visual attributes are learned discriminatively in a supervised

manner. These predicted attributes form a bit-string which
maps directly to an animal class; having this intermediate
representation allows the system to recognize a previously
unseen object class by predicting the correct set of attributes
for the object of interest. Instead of this direct mapping from
the predicted attributes to object class, our work uses the
attribute predictions as an intermediate feature vector for
performing classification of affordance values.

III. ATTRIBUTE AFFORDANCE PREDICTION MODEL

Most previous approaches to vision-based affordance pre-
diction (e.g. [26]) use a direct perception approach, in
which visual features are measured about an object and the
affordances are directly inferred from a learned mapping.
Such a model is trained with a requisite number of examples
consisting of a visual feature vector and a set of affordance
values. A separate map is learned for each affordance by
constructing an appropriate classifier.

There are several fundamental difficulties with this ap-
proach. First affordances are not actually determined —
in the physical sense — by visual features, rather by the
physical properties of the objects. Whether an object can
roll is influenced by its shape; whether it can be pushed
is influenced by its material properties. We refer to these
physical object properties as semantic attributes. Note that
attributes are qualitative properties of the object independent
of any robot capabilities or perception systems. We argue
that it is easier to learn to predict affordances from such
attributes than from arbitrary visual features.

Second, the criteria for what makes a powerful visual fea-
ture are tightly coupled to imaging and viewing phenomena.
Features are best chosen, for example, to be invariant or
robust with respect to change in illumination or perspective.
Since they will be computed over much of the image they
must be computationally efficient. These constraints are
entirely decoupled from the question of how predictive they
might be of affordance values.

Finally, a liability of the direct perception methods is that
there is no knowledge transfer between objects. Each direct
map from features to affordance is constructed independently
to discriminate between the affordance values for the set of
training objects. In reality, there is no notion of learning how
to infer the physical properties of an object from the visual
ones. For example, consider the inference that an object has
the attribute of cloth-material. For a given domain of objects,
an inference of this attribute can be learned to be inferred
from various texture features. This learned mapping is likely
valid for any new object with that same semantic attribute.
Such information transfer [24] reduces the data required to
learn successfully to predict the affordances of new objects.

To address these limitations we propose a novel model
for perception-based affordance prediction illustrated in Fig-
ure 1. At the top most level are the affordances, defined
earlier as the action possibilities embodied in an object
with respect to a particular agent - in this case a mobile
robot platform with a single gripper. As the goal is to
infer affordances for visual input, the bottom-most layer



is comprised of visual features, which are chosen to be
relatively stable under a variety of viewing conditions.

Where our model differs from direct perception ap-
proaches is the inclusion of an intermediate layer targeting
specific selected object attributes. The goal is that by explic-
itly training the robot in a supervised manner to map from
features to attributes and then attributes to affordances, the
system will capture the physical regularities present in the
domain. This physically-meaningful middle layer is enforced
by providing attribute valued training data and requiring
the system to learn the mapping from features to attributes
independent of the affordance inference. This semantically
meaningful intermediate layer prevents the learning system
from establishing arbitrary affordance decision surfaces in
feature space.

To exploit such a model we need to solve two learning
problems: visual features to attributes, and attributes to
affordances.

IV. ATTRIBUTE LEARNING

Attributes are inherent properties of an object which are
independent of any sensing or cognition system perceiving
them. While we choose to learn attributes which act as
constraints on the affordances we wish to predict (e.g. size),
we also examine semantic attributes, which may only encode
affordances indirectly (e.g. green objects may be heavy
withing some operating environment). Additionally we do
not restrict our attribute set to be purely visual attributes
(e.g. shape), but also include physical attributes, which may
be only indirectly perceived visually (e.g. weight).

A. Visual Features
In order to capture information relevant to the broad

nature of semantics encoded in the chosen attributes, we
extract texture, color, and visual word features. Following
the terminology of [18] these define the base features.

For texture features we extract a set of filter responses to
create textons as described in [27]. The texton centers were
trained using a subset of the CUReT texture dataset [28] and
grouped into 256 clusters using k-means clustering [29]. For
a given image we then extract the filter responses densely
over the image and quantize the responses to the closest
of the cluster center creating a 256 element histogram. To
encode color we extract a 12⇥ 6⇥ 6 dimension LAB color
histogram over the entire image. SIFT features are extracted
densely at four scales in 8 pixel x and y spacing over the
entire image [30]. The raw SIFT features are encoded using
a bag of visual words model into a 512 element histogram
of visual words. We create the clusters using a subset of the
training data, again using k-means clustering. Concatenation
of all feature descriptors results in a single feature of 1200

elements.

B. Attributes
For our current work we wish to learn attributes describ-

ing: size, shape, color, material, and weight. We denote
each of the m attributes for a specific object as ↵

j
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j

is the distribution of possible values for attribute
j. Specifically, size is described by the object height and
diameter of its footprint in centimeters. Shape attributes are
represented by the binary labels of spherical, cylindrical,
2D-boxy, and 3D-boxy. These shape attributes were chosen
following [18]. Color attributes are members of the set: blue,
red, yellow, purple, green, orange, black, white, and gray.
Colors are not mutually exclusive, allowing a single object
to express multiple color attributes. Materials are cloth,
ceramic, metal, paper, plastic, rubber, and wood. Weight is
the object weight in kilograms.

Binary labels encode the shape, color, and material at-
tributes, while the raw floating point values of height,
diameter, and weight are used. Using the visual features
described in Section IV-A we compare the use of a support
vector machine (SVM) and a simple k-nearest neighbor (k-
nn) classifier for attribute prediction. We use standard binary
SVMs for the binary labels and SVM regression for the
real valued attributes. In the case of the k-nearest neighbor
classifier, the highest weighted label of the k neighbors
gives the binary prediction, while a weighted average of
the neighbors is used to predict real valued attributes. Thus
to predict an attribute vector for a given test image with
appearance x

i, we must extract the base features once, run
m attribute classifiers, and concatenate the responses into a
single attribute vector ↵i.

The multi-channel �

2 kernel has been shown to work
well for the classification of image data, where multiple,
unrelated, features are extracted and combined [31, 32]. For
our purposes we extend the multi-channel �

2 kernel to be
used as a distance metric with k-nearest neighbors for direct
comparison with the SVM kernel implementation. If we
denote each of these feature vectors as F = (f1, f2, ..., fp)

then we can compute the multi-channel �2 distance between
feature vectors x and y using the following:
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is a slight abuse of notation, denoting the
indexes of the elements of the feature vectors x and y, that
correspond to feature f
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channel are taken to be the inverse of the average distance
across all pairs of feature vectors in the training set D:
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Following [32] we take the exponential of the nega-
tive multi-channel �

2 distance for use as the SVM kernel
K

mc

(x, y) = exp{��

2
mc

(x, y)}. In the case of our visual
features the multiple channels correspond to: the LAB color
histogram, the texton filter bank response, and the SIFT
codeword feature.



V. AFFORDANCE LEARNING

A. Attribute Based Affordance Learning

Our task now falls to predicting affordance values based
on the attribute model described in the previous section. We
desire to use the attribute values to share information across
affordance classification tasks; however, we do not wish to
hard code a mapping from attributes to affordances, as was
done for animal classification in [24]. Instead we learn the
second layer mapping from attribute values to affordance
values.

Fig. 2: The Attribute-Affordance graphical model.

Affordance prediction in the attribute context requires
estimation of the function a

i

= f(↵

j

) , a

i

2 {0, 1} for
each of the m affordances. Here again we implement both
SVM and k-nn classifiers for comparison. For the k-nearest
neighbor classifier, we use a more general form of the multi-
channel distance to better match the attribute encoding. As
with the multi-channel �2 distance, we compute a weighted
sum of the component channel distances. The difference
here is that we use the standard euclidean distance for
the real-valued attributes and the Hamming distance for
the binary components [33]. As before the weights are the
inverse of the average distance between members of the
training set. We build a kernel from this distance following
the same procedure as before. Specifically, we compute the
exponential of the negative of the normalized distance.

As a baseline comparison to our method we also build
binary classifiers for each affordance trained directly from
the base features. We call this method direct perception
(DP) of affordances, following the convention of Gibson and
others [2, 13]. As with the attribute learning we implement
both SVM and k-nn approaches, using the same multi-
channel �2 measures.

As an alternative intermediate representation we learn
affordance classifiers conditioned on the object class. Here
we can build a classifier (multi-class SVM or k-nn) to
perform object class prediction using the same base features
as above to encode the image. Using this class label we then
perform DP affordance prediction using binary classifiers
for each affordance trained again on the base features. The
difference with the DP approach lies in the fact that, for
a given affordance, a separate classifier is built for each
object class, rather than one for all objects. This method
equates to the Category-Affordance Full model of [13].
Additionally, we implement a majority vote classifier for
each affordance, conditioned on object class, corresponding

to the Category-Affordance Chain model. We now briefly
review these Category-Affordance models.

B. Category Affordance Models
The Category-Affordance full (CA-full) and Category-

Affordance chain (CA-chain) models link object categoriza-
tion with affordance prediction, relying on the assumption,
that appearance based object categorizations provide useful
cues for affordance prediction [13]. For the CA-full model,
this is exploited by factoring the joint probability distribution
of the affordance a, appearance x, and category c as

(a) (b)

Fig. 3: The Category-Affordance Full (a) and Chain (b)
models.

p(x, a, c) = p(c)p(x|c)
mY

i=1

p(a

i

|x, c). (3)

It is depicted as a Bayesian network in Fig. 3a. From the
perspective of affordance prediction, the key term in the CA-
full model is p(a

i

|x, c), which relates the probability of an
affordance to the object category and appearance. Given a
trained model and an input x, we can compute the posterior
distribution over an affordance a

i

by marginalizing out the
unknown category label:

p(a

i

|x) =
X

c

p(a

m

|c, x)p(c|x), (4)

where p(c|x) is the posterior distribution over the category.
Alternatively, the CA-chain model, makes a simplifying

assumption that the presence of a specific affordance a

i

is
conditionally independent of appearance x given the object
class label c given the equation:

p(x, a, c) = p(x|c)p(c)
mY

i=1

p(a

i

|c). (5)

While these methods were designed to give probabilis-
tic interpretations we have not preserved the probabilistic
predictions in our current implementation. The implemen-
tation of the CA-chain and CA-full models for this work
use a k-nearest neighbor classifier with multi-channel �

2

to perform the object category classification. The CA-full
model also uses k-nearest neighbor with multi-channel �

2

to compute the affordance, conditioned on the object class.
The CA-chain model uses a majority vote classifier for each
affordance, given the object category. The motivation for
such an implementation was to more directly compare the
independence assumptions of each of the CA models to the
attribute and DP approaches.



Fig. 4: Distribution of affordance values across all data.

VI. EXPERIMENTAL VALIDATION

We collected data from six object categories: balls, books,
boxes, containers (mugs, bottles, and pitchers), shoes, and
towels. For each category we collected 55 to 67 images of
8 to 12 object instances per class, giving a total of 375
frames. We show the distribution of positive examples of
the seven affordances across all classes in Figure 4. We
examined learning visual classification of the following seven
affordances: pushable, rollable, graspable, liftable, dragable,
carryable, and traversable.

We collected all data from an autonomous mobile robot
with a Pan-Tilt-Zoom (PTZ) camera. The collected data was
used offline to train all attribute and affordances classifiers.
We perform offline validation of our approach, comparing
to direct perception as a baseline method for affordance
classification. Finally, we perform classification online to
inform behavior selection for performing a cleanup task of
placing objects within a specified region of the floor.

A. Data Collection and Learning Procedure

All data was collected autonomously by the robot. We
use a Mobile Robots Pioneer 3 DX equipped with a PTZ
(768⇥480) and 2-DOF (pinch and lift) gripper. An overhead
camera provides localization information of the robot and
objects. For each object detected in the overhead view, the
robot turns to center its camera on the object and uses the
distance estimate to the object to zoom and tilt the camera.
Tilting allows for the object to be relatively centered in the
frame, while zooming, so that all objects are viewed at the

Fig. 5: Overhead camera view of the robot in its operating
environment.

same magnification, removes scale issues, so that size may
be estimated from the image (alternatively, the use of depth
sensing could remove any scale ambiguities).

To generate the ground truth affordance labels, the robot
was commanded to perform each of its atomic behaviors
of: push, shove (i.e. push-roll), grasp, lift, drag, carry, and
traverse (attempt to drive over). A human recorded the
success or failure of each action attempt. For cases where the
action could be successfully completed in only a constrained
situation (e.g. grabbing the object only when facing its
narrowest side), we labeled the affordance as not present,
since our current system has no mechanism for dealing with
object pose or, alternatively, a probabilistic affordance value.

To build the SVM classifiers we use the SVMlight package
kernel [34]. We use a custom implemented multi-channel �2

kernel.

B. Attribute Prediction
We first examine the performance of our attribute learning

procedure. We performed experiments for training set sizes
ranging from 10 to 260 images, testing on the remaining
115 images. For each prediction method we performed 5
random testing/training splits of the data and report the
results averaged across the 5 splits. Figure 6 compares the
performance of SVM and k-nn based attribute prediction
on the binary labeled attributes (shape, color, and material).
The SVM outperforms the nearest neighbor approach for all
attributes, producing lower error rates with fewer training
examples. However, the SVM approaches find little benefit
in having more than 100 training examples. This early
convergence is likely an artifact of the low diversity in
training examples in the dataset. Conversely, the nearest
neighbor regression outperformed the SVM regression for
the size and weight attributes, producing marginally lower
error rates. The nearest neighbor approach continued to
improve performance with larger training sizes, while the
SVM approach converged quickly.

C. Affordance Learning Comparison
In order to examine the benefits of attribute based learning

of affordances, we constructed an experiment to perform
affordance prediction on a set of known objects. For this
closed set of objects we compare with a direct perception im-
plementation of affordance classification, as well as methods
leveraging object categories.

All methods use the same base set of visual features as
well as the same choice of classifiers. As such we can directly
evaluate the utility of the auxiliary semantic attribute labels.
The training was performed with varying training sizes on 5
random splits in the manner as described above for attribute
prediction.

Figure 8 summarizes the percentage of correctly predicted
affordances for the various methods at the largest training
size using the SVM approach, which outperformed the
nearest neighbor approach. Figure 7 shows the error rates as
a function of training size for three of the SVM methods.
The attribute based approach quickly approaches its final



(a) Shape (SVM) (b) Color (SVM) (c) Material (SVM)

(d) Shape (k-nn) (e) Color (k-nn) (f) Material (k-nn)

Fig. 6: Shape, color, and material attribute prediction error versus training size.

(a) Attribute Based (b) Direct Perception (c) CA-Full

Fig. 7: Affordance prediction (SVM) versus training size.

error rate, while the CA-Full approach continues to improve
with more training data. Direct perception also increases
performance as a function of training size, although the
slope flattens near the largest training sizes. We examined
this claim by testing affordance prediction on ground truth
attribute labels. Figure 9 shows the results for this test,
which converges to much lower error rates, with many fewer
training examples than any of the current methods.

D. Affordance Prediction on Novel Object Classes
One theoretical benefit of using semantic attributes to

guide affordance prediction, as opposed to object class labels,
lies in the ability to generalize to unseen object categories.
Therefore we introduce an experiment to quantitatively com-
pare the performance of attribute based affordance classifi-
cation with direct perception of affordances on previously

unseen objects. Only the SVM based classifiers are examined
on this task, since they outperformed the nearest neighbor
method.

We examine the novel object affordance classification
problem by training on five of the six object categories and
testing on the sixth. For example, to examine the inference
capabilities on unseen boxes, we train our direct perception
and attribute based classifiers on the data from the object
classes of balls, books, containers, shoes, and towels. We
repeat this procedure for each of the six object classes in
turn. Our findings our summarized in Figure 10.

The attribute approach, on average, only outperforms
direct perception on two of the novel object categories. Note,
some affordances could not be predicted on unseen object
classes, (i.e. only balls were rollable). While the average test



Affordance Attribute DP Full Chain
PUSHABLE 74.43 83.75 77.50 65.56
ROLLABLE 96.87 97.32 90.71 84.14

GRASPABLE 70.09 81.25 73.21 55.48
LIFTABLE 73.91 83.93 75.71 67.48

DRAGABLE 72.87 81.43 75.00 60.00
CARRYABLE 73.91 83.93 75.71 67.48

TRAVERSABLE 93.39 95.00 90.71 86.61
TOTAL 81.12 85.46 79.21 68.57

Fig. 8: Percent of correctly classified affordances com-
pared between the attribute based method (Attribute), direct
perception (DP), Category-Affordance full, and Category-
Affordance chain models. Results are for the SVM imple-
mentations with the largest (260) training size.

Fig. 9: Affordance prediction for ground truth attributes.

error across all affordances is relatively high for both DP
and the attribute based approach, examining a specific object
class shows that some affordance predictions better transfer
to new object classes.

The superior performance of direct perception can be
attributed to the limited number of object classes, which
provided limited information transfer when one was removed
from the training set. The proposed attribute approach was
not exposed to a spanning set of attribute vectors capable
of scaling to some object categories. In contrast, direct
perception makes use of features which may not express any
specific semantic quality, which may be more informative
when specific examples of attributes arising in the new object
category are not provided at training time. Figure 11 shows
results for testing on the novel object category of boxes.
The relatively flat error rates are representative of other
novel categories, informing us that little information is shared
between the known object classes and the novel category.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel method for learning object
affordances through an intermediate prediction of physical
attributes. We believe this method should outperform a
direct-perception approach on affordance prediction on novel
objects in ways that previous object-classification methods
can not. Specifically, semantic attributes form an expressive
vocabulary, which can be used as a basis for information
transfer to unseen object classes. Our preliminary results
show that attribute based affordance prediction can perform

Ball Book Box Cont. Shoe Towel
Att 52.03 39.39 69.01 76.28 60.97 53.63
DP 57.99 65.58 67.69 58.96 67.86 67.91

Fig. 10: Percent of correctly classified affordances of unseen
object classes comparing between SVM based direct percep-
tion (DP) and the attribute based method (Att). Class labels
represent the testing class. Results are the average of five
training-testing splits with a training size of 300 images.

(a) Attribute Based

(b) Direct Perception

Fig. 11: SVM based affordance prediction as a function of
training size testing on novel object category of boxes.

on par with direct perception and object based affordance
classification methods.

Poor attribute prediction appears to be the bottle neck in
achieving effective affordance inference in the current work.
Attribute prediction could be improved by training attribute
classifiers on a much larger auxiliary data set, which need
not be comprised solely of images taken from the robot
of interest. Such a training set could be collected from
annotated web images or standard computer vision databases.
Additionally the small set of object classes provided little
information sharing when performing inference on novel
objects. As such, we intend to extend this approach to
data sets with a greater diversity in objects. Beyond this,
object class labels still provide much utility; we believe
that merging the attribute and object models into a single
framework, capable of making use of all information could
produce better results, than either method in isolation.

While our work has focused purely on visual features,
we believe that higher accuracy shape and size information



Fig. 12: Examples of images from the six object classes used: Balls, Books, Boxes, Containers, Shoes, and Towels.

could be obtained by incorporating depth sensing, such as
stereo imaging, laser scanners, or RGB-D cameras. Our
active research is focusing on this use of depth information
as well as extending these methods to more complex domains
and environment elements other than objects.
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