
Guided Pushing for Object Singulation

Tucker Hermans James M. Rehg Aaron Bobick

Abstract— We propose a novel method for a robot to separate
and segment objects in a cluttered tabletop environment. The
method leverages the fact that external object boundaries
produce visible edges within an object cluster. We achieve
this singulation of objects by using the robot arm to perform
pushing actions specifically selected to test whether particular
visible edges correspond to object boundaries. We verify the
separation of objects after a push by examining the clusters
formed by geometric segmentation of regions residing on the
table surface. To avoid explicitly representing and tracking
edges across push behaviors we aggregate over all edges in
a given orientation by representing the push-history as an
orientation histogram. By tracking the history of directions
pushed for each object cluster we can build evidence that a
cluster cannot be further separated. We present quantitative
and qualitative experimental results performed in a real home
environment by a mobile manipulator using input from an
RGB-D camera mounted on the robot’s head. We show that
our pushing strategy can more reliably obtain singulation in
fewer pushes than an approach, that does not explicitly reason
about boundary information.

I. INTRODUCTION

The ability to detect previously unseen objects and separate
them from surrounding objects holds great value for au-
tonomous robots operating in household environments. This
problem, termed object singulation, provides the most benefit
by allowing a robot to segment novel objects of potential
interest from the scene. This is especially true for a robot
operating in a home, which will experience a wide variety
of objects during its lifespan.

Singulation provides many benefits to a general purpose
mobile manipulator beyond the identification of previously
unknown objects. Separating objects form one another can be
used to assist grasping methods by creating fewer obstacles
for an arm to navigate, while providing more clearance for
the robot’s end effector. For uses that desire specific object
identification or categorization, separating objects from one
another gives recognition systems a better view of the object
and provides detection locations avoiding the need to search
the entire image.

Additionally, performing object segmentation through
pushing allows us to understand objects at the operational
level of the behaviors used during singulation. Such an
identification is important for tasks such as organizing the
objects on a table through pushing, where the available
behaviors may not be capable of separating all objects at
their semantic level. For example, a basket on a kitchen table
may be filled with apples. While object recognition systems

Tucker Hermans, James M. Rehg, and Aaron Bobick are with the
Center for Robotics and Intelligent Machines and The School of Interactive
Computing, Georgia Institute of Technology, Atlanta, GA. {thermans,
rehg, afb}@cc.gatech.edu

could potentially recognize each apple independently, a robot
attempting to push the basket does not need this information
if the fruit remains inside the basket while its being pushed.

We propose a method for separating an unknown number
of objects on a surface by performing selective pushes in
such a way as to disambiguate potential object boundaries.
Our method is predicated on the idea that such boundaries
tend to produce visual edges in captured images. Thus visual
edges represent hypotheses of plausible locations, where a
single object cluster may split if it is indeed more than one
object. Through successive pushes we accumulate evidence
that such edges do or do not correspond to object boundaries.
We do so without explicitly tracking edges during the push
sequence. Instead, we introduce the use of a histogram
of orientations as an aggregated representation of potential
boundary edges: only the histogram has to be propagated
through the push sequence. Furthermore we design a decision
process for systematically testing these hypotheses, which is
aware of the constraints of the robot and workspace. Fig-
ure 1a illustrates an example initial scene for our system to
singulate. Figure 1b shows the robot performing a singulation
push.

(a) (b)

Fig. 1: Example initial cluttered scene encountered by the robot.
Partial singulation result as the robot performs a pushing action.

We proceed in Section II with an investigation of prior
research relevant to our work. Section III gives an expla-
nation of our approach, followed by a detailed description
of the implementation in Section IV. We give extensive
experimental results in Section V including in depth quan-
titative comparisons and qualitative evaluation for a number
of different scenarios. We conclude in Section VI with an
overview of our findings and planned future work.

II. RELATED WORK

Object detection constitutes a major research effort in the
computer vision community. State of the art object recogni-
tion and categorization methods can detect object instances
or categories with high precision, but require large training
sets enumerating all possible object categories of interest [1].

Additionally the execution time of such methods grows with
the number of object classes presented to the system. The
burden of obtaining training sets large enough to cover
all objects a robot may potentially encounter means that
alternative methods are needed for determining where objects
are in the environment. Attempts at creating generic object
detectors have been made, but they still require large training
sets and computation time [2]. Methods have also been
proposed for determining the manipulation capabilities of
novel objects [3–5]. These methods, however, suffer the same
issues as object recognition requiring a large training set
containing examples similar in appearance to objects with
which the robot is expected to interact.

While singulation has been attempted using grasping, this
requires dexterous capabilities to perform grasps on unknown
objects and is limited in only being able to manipulate
objects small enough to be grasped [6–8]. In contrast,
nonprehensile pushing actions requires less precision, can
be performed using much less capable manipulators, and can
operate on a wider range of objects that may be too large to
be grasped by the robot. As such, we restrict our discussion
to those singulation works relying on pushing, where less
dexterity is necessary in the manipulator.

Early work on pushing developed control and planning
algorithms relying on a strong understanding of the physics
of the object being pushed [9–11]. While pushing has been
used for a number of tasks, such as aiding in grasping [12,
13] and pick-and-place tasks [14, 15], our work builds on
previous approaches to interactive segmentation [16–20].

The problem of interactive segmentation was introduced
by Fitzpatrick and Metta, where a robot makes a sweeping
motion inside its view frame and detects the objects that
move [16, 21]. The robot detects its arm by calculating
optical flow in the scene and segmenting the pixels with
flow corresponding to the controlled motion of the arm [16].
Using this initial segmentation the end-effector of the arm
is estimated at the farthest point of the arm being moved
and any flow that appears in the image beyond the end
effector is assumed to be an object moving as result of
the sweeping motion. Fitzpatrick extends this work in a
graph-cut framework to better segment the object being
moved, allowing for textureless regions to be segmented in
addition to those locations where optical flow occurs [21].
A limitation of this approach, not present in our work,
comes from the assumption that all motion not explained by
the robot’s arm belongs to a single object. Additionally no
method is given for determining where to push, thus pushing
actions must exhaustively search the space in order to detect
all objects present.

Li and Kleeman use small pushes, termed nudges, to
segment symmetric objects [18]. Symmetry lines are detected
in stereo cameras and then group to form hypothesis for
locations of symmetric objects. For a given hypothesis the
robot performs a pushing action that will move the object
in the stereo view allowing frame differencing to seed a
segmentation constrained by the symmetric property of the
object.

Similar to Fitzpatrick’s work, Kenney et al. use image dif-
ferencing to localize the robot arm in the scene and segment
motion not belonging to the arm as objects [19]. Templates
are built from the resulting object locations allowing the
tracking of objects over time. This enables the objects to
collide without their identity being lost. However, it still
fails to separate objects in cases where multiple objects are
in contact prior to the robot discovering them. Furthermore,
these templates require highly textured objects to produce
good results. Additionally it is assumed another process tells
the robot where to initially push.

Katz et al. learn kinematic models of articulated objects
through pushing, although segmentation of the objects in the
scene is assumed known [17, 22]. More recently this has
been extended to extracting 3D models of the objects [23].

The work of Chang et al. is most similar to ours. Chang
et al. perform object singulation through pushing of object
piles [20]. Groups of objects are first segmented by removing
the supporting surface from the input point cloud. Pushes are
planned to push through the object centroid in directions
avoiding contact with other piles of objects. Rigid body
hypotheses are proposed using point correspondences from
the images taken before and after the push action and are
confirmed by matching in the point cloud. Evidence for
singulation is accumulated by consistent strong rigid body
matches. Our work differs in that we explicitly form hypothe-
ses for splitting locations in object clusters based on edge
locations and orientations and accumulate evidence related
to these locations in order to build confidence more quickly.
Additionally, we do not rely on texture being present in the
objects for correspondences nor do we need to perform pick-
and-place operations to clear the workspace of singulated
objects.

III. APPROACH

We base our approach on the fact that object boundaries in
the world tend to generate visual edges in captured intensity
and depth images. While edges in the depth image give the
strongest cues as to the location of object boundaries, we
can not rely on them alone as object boundaries often do
not appear as depth edges, especially when the objects are
in contact. As such we use the complementary evidence
provided by intensity edges, where differing appearance
information from two neighboring objects creates a strong
edge in the intensity image.

Of course, visual edges also arise as the result of other
phenomena such as internal texture on an object surface,
cast shadows, or specular reflection. While computer vision
techniques have been develop that attempt to classify image
edges as object boundaries (c.f. [24]), a robot can much more
reliably test if an edge corresponds to an object boundary
by attempting to separate the objects that would generate
such a visual edge. Thus for any edge that corresponds
to a potential boundary we determine explicitly where the
objects generating the edge would lie in the scene, if the
objects exist. Then for a given object hypothesis the robot
determines and performs a push action, which will generate

evidence helping to confirm or deny the hypothesis. After
each push action we segment the scene in such a way that
physically separated objects will belong to separate clusters,
but neighboring objects may be grouped together. Thus a
push that successfully splits a cluster results in an increased
number of clusters from the segmentation procedure. When
no new clusters are formed, we have confirming evidence
that the cluster may be a single object, but the robot must
still test the remaining image edges, to verify that each of
the segmented clusters represent singular objects.

A naive application of this approach would attempt to
split the clusters at each candidate image edge in order to
exhaustively exclude every such edge from being a boundary
between two objects. However, this exhaustive approach
has a number of shortcomings. First, edge detection is not
stable across illumination changes; some edges will appear or
disappear after pushes. This causes great difficulty in track-
ing individual edges over time. More importantly, pushing
actions that attempts to cleave a cluster along a particular
edge will likely reveal any object boundaries parallel to that
edge. As such we approximate this procedure by examining
the distribution of boundary candidate orientations associated
with each object cluster and accumulate evidence by tracking
the history of pushes for each cluster. This allows us to
achieve singulation with fewer pushes than the total number
of candidate edges in the scene.

For each object cluster we quantize all candidate edges
by orientation into one of n bins, creating a histogram
of edge orientations. Each push performed by the robot
is similarly quantized and the appropriate bin in the clus-
ter’s push history histogram is incremented. By using this
quantization we avoid the need to explicitly track image
edges and instead must only repopulate the edge orientation
histogram after each push. This relies on the ability to track
the transformations undergone by the clusters, so that the
push history and edge orientation histograms can maintain
consistent alignment with the cluster’s internal frame of
reference over time. A cluster is deemed singulated once
all push history bins corresponding to non-empty bins in
the boundary orientation histogram have been populated. By
recursively applying this procedure to all clusters in the scene
the robot asserts that all objects have been separated.

IV. IMPLEMENTATION

This section details our specific implementation of the gen-
eral approach described in Section III. We first describe
the geometric segmentation and boundary detection methods
used to form object hypotheses. We then explain how to
generate an abstract push vector for a specific hypothesis.
After this we introduce a mechanism for explaining the
outcome of the pushing action and how the robot can use
this explanation to update the push history for each object
cluster. Finally, we detail how the robot translates an abstract
push into a real-world action.

A. Object Hypothesis Generation
The first step in proposing the current set of objects requires
segmenting spatially separate regions from one another. The

(a) (b)

Fig. 2: (a) Example extracted and labeled image edges. Green
edges correspond to candidate splitting edges. Yellow edges
represent boundary edges between an object and free space.
Blue edges have too few 3D points to stably estimate a 3D
line, while red edges do not overlap with object clusters. (b)
Boundary orientation histograms associated with the current
object clusters.

algorithm takes as input a point cloud of the scene and fits a
plane to the supporting surface using RANSAC [25]. We then
remove these table points and all points below or beyond the
edges of the table from the point cloud. The remaining points
correspond to objects supported by the estimated plane.
These points are grouped based on the euclidean distance
between neighbors into a set of “object clusters.”

Each resultant cluster contains at least one separate object.
In order to identify potential objects within these clusters
we extract edges from the intensity and depth images and
associate them with the object clusters. We compute image
derivatives both on the RGB and depth images in both the
x and y directions using Scharr filters [26]. We threshold
the resulting depth and color derivative images and combine
them into a single binary edge image. We then remove
isolated pixels thin blobs and link neighboring edge pixels in
the binary image to form edges. Finally we associate edges
with the clusters they fall on, discarding those edges that
do not lie on any of the object clusters or have too few 3D
points associated with them. Extracted edges are shown in
Figure 2a.

Each remaining edge corresponds to a specific boundary
hypothesis. We generate the object hypothesis by splitting
the object cluster point cloud by a vertical plane defined
by the chosen edge’s location and dominant orientation. We
determine the edge orientation by fitting a 3D line to the set
of edge points using RANSAC.

The vector, v, formed in the direction of the x-y compo-
nent of the 3D line in the table plane defines the direction of
the splitting plane. We compute the normal to the splitting
plane, n, by taking the cross product of v and the vertical
axis vector (0, 0, 1). We then specify the splitting plane as
the plane with surface normal, n passing through the point
p returned from the 3D line fitting process.

Points from the object cluster are then labeled as belonging
to hypothetical object A or B according to which side of
the plane they fall on. We discard from consideration edges
where A or B have few points, as edges generating such
splits correspond to object boundaries on the outside of the
object cluster neighboring free space. An example object

hypothesis is shown in Figure 3.

Fig. 3: Object hypothesis generated by the image edge
highlighted in green.

The 2D orientation of each vertical splitting plane can
be described in the internal reference frame of each object
cluster with a single angle in the range (− 1

2π, 1
2π] radians.

We compute this angle for all edges associated with a
given object cluster. We then construct a boundary estimate
histogram for each object cluster by quantizing each edge
orientation into one of n bins. Figure 2b illustrates these
boundary orientation histograms for a scene with three object
clusters.

B. Push Vector Selection

For any candidate boundary we generate a set of four
possible abstract push vectors. We produce push vectors for
all candidate boundaries associated with the object cluster
of interest. The robot then ranks this set of push vectors
and performs the highest ranked push. For a given boundary
a push vector points parallel to the splitting plane running
through the centroid of either hypothetical object A or B.
Two potential push vectors run through each hypothetical
object centroid giving us four candidate push vectors. We
determine the start location and length of each push vector by
locating the intersection of the line through the centroid with
the hull of the hypothetical object point cloud. We present
one such abstract push vector in Figure 4.

We rank the resulting set of abstract push vectors by
preferring those that have start and end locations that do not
leave the tabletop or robot workspace. After this, we rank
higher those pushes that are less likely to collide with other
object clusters. The remaining push options are ranked in
decreasing order by the ratio, RAB , between the number of
points in the hypothetical objects:

RAB =
min(|A|, |B|)
max(|A|, |B|)

Thus objects with near equal splits score close to 1 and
splits that generate one object much larger than the other
receive scores closer to 0. We prefer even splitting sizes
for three main reasons. First objects in a given environment
tend to be of relatively equal size and thus tend to generate
an equal number of points in the point cloud split. Second
smaller object sizes have less surface area and are thus more
difficult to make contact with while pushing. Lastly, even
if the generated split does not align with the actual object
boundary pushing farther from the middle of the cluster, in

the correct direction of an object boundary, will more likely
push only one of the two objects present.

Fig. 4: Example push vector generated for a single object
cluster containing five objects.

C. Outcome Explanation and Evidence Accumulation
Once a push action is performed the robot first segments
the table and clusters the remaining points as described in
Section IV-A. It can then determine which clusters have
moved by taking the difference of the point clouds before and
after the push action. We estimate the motion underwent by
each moved cluster using iterative closest point (ICP) [27].
ICP generates a rigid body transformation for each cluster as
well as a score describing the goodness of fit between the two
input point clouds. We maintain object cluster identification
by matching each moved object cluster after a push with the
best fitting cluster from before the push, while maintaining
uniqueness in correspondence. We compose the most recent
transformation estimate with the previous estimates of the
cluster’s motion, so that its rotation since initialization can
be recovered. The recovered transformation is then used
to rotate the cluster’s internal frame of reference in order
to keep the push history aligned over time, as well as
correctly populate the edge orientation histogram for the
image observed after a push.

Before updating the clusters push history we must analyze
the resultant scene. If the number of clusters remains the
same, that is no clusters merged or split, we can possibly
increment the push history. We first check that the intended
object was in fact moved. If this is the case we only update
the push history if the fitness score returned by ICP is below
a pre-determined threshold. We avoid updating the history
for bad ICP fits as it likely means the push began to disrupt
the configuration of multiple objects within a cluster, but
was unsuccessful in separating them. Thus another attempt
may well break the objects apart. For the case where clusters
split, confirming an object boundary hypothesis, we discard
the previously split object cluster and initialize two or more
new object clusters associated with the split. For each new
object cluster we set the push histories to be empty and define
their tracked transformations to be the identity matrix. In rare
cases clusters will unfortunately merge do to unaccounted for
pushing dynamics or accidental collisions of the robot arm
with the scene. We take a conservative view of these cases
and reinitialize the merged cluster with no push history or
tracked rotations.

We acknowledge that this tracking method will produce
drift in the object orientation over time. While more sophis-

(a) GRIPPER PUSH Before (b) GRIPPER PUSH After (c) ARM SWEEP Before (d) ARM SWEEP After

(e) OVERHEAD PUSH Before (f) OVERHEAD PUSH After (g) OVERHEAD PULL Before (h) OVERHEAD PULL After

Fig. 6: The four implemented push behaviors used by the robot.

Fig. 5: Example push history before and after pushing
a cluster corresponding to a single object. The blue bin
corresponds to the direction of the next selected push.

ticated methods could be used to mitigate this issue, we find
the precision of the rotational estimate is good enough for
our purposes, since we are operating at the relatively coarse
scale of quantized boundary and push orientations.

D. Push Behavior Selection

The robot translates a given abstract push vector into a real-
world action using one of four different pushing behaviors.
This set of behaviors allows the robot to more effectively
accomplish the intended separation of hypothetical objects,
when possible, while accounting for constraints in the envi-
ronment and its own joint limitations. Each behavior takes
as input the abstract push vector defined as a start location
(x, y) and push angle θ in the world frame as well as the
distance dp to push.

The GRIPPER PUSH behavior, pictured in Figure 6a-6b,
places the tip of the end-effector at the start pose (x, y, θ)
keeping the top of the robot hand parallel to the table.
GRIPPER PUSH then moves the end effector the distance
dp along the straight line defined from the gripper wrist to
its tip. ARM SWEEP(Figure 6c-6d) uses the broad face of
the hand to push objects while remaining close to the table
surface. The center of the hand is positioned at the location
(x, y) on the table with vector normal to the hand facing
in the direction of θ. The arm is then controlled so that the

hand moves in a straight line in the direction of the palm
for the distance dp. The third behavior, OVERHEAD PUSH
(Figure 6e-6f), where the robot bends its wrist downward
and pushes in the direction of the back of the hand. Again
we control the center of the hand to move in the direction
normal to its face after positioning it at the (x, y, θ) pose.

These three behaviors all move to the start pose
from a predefined home position following a straight-
line trajectory in the work space. The fourth behavior,
OVERHEAD PULL (Figure 6g-6h) performs the same action
as OVERHEAD PUSH, except that it will pull towards the
robot and navigates to its start pose by first moving to the
location (x, y, Zh), where Zh is high above the table to avoid
colliding with the intended object to pull.

Pushing behaviors are selected based on the input pose
(x, y, θ). The OVERHEAD PUSH behavior is used for initial
locations close to the robot, where there is little clearance
for the arm to fit between the robot torso and body. For
lateral pushing angles the ARM SWEEP behavior is chosen,
while OVERHEAD PULL is used for angles point towards the
robot torso. GRIPPER PUSH is used in the remaining cases.
The decision between using the left or right arm is based
on workspace limits of the arms. If either arm is capable of
making the push, the arm is chosen that pushes away from
its side in an attempt to keep the workspace less crowded.

V. EXPERIMENTAL RESULTS

We report comprehensive qualitative demonstrations of our
method as well as quantitative comparisons to other push
selection methods. All of our experiments were performed by
a Willow Garage PR2 robot with a Microsoft Kinect camera
mounted on the head in the Georgia Tech Aware Home.

A. Qualitative Results

In order to validate our proposed claim and understand its
limitations, we first present results on a set of qualitatively
different groups and arrangements of objects.

(a) (b)

Fig. 7: Distribution of detected potential splitting bound-
aries. (a) A single wood block with a line drawn on it. (b)
Two wood blocks placed together.

We begin by examining two visually similar situations.
Figure 7 shows the initial view of two different scenarios.
In one a single block of wood has a line drawn down its
center in the other two blocks of wood are pressed together
appearing as a single block. We note that the two different
scenes generate quite similar images, which would be hard
to discriminate with standard object recognition methods.
Additionally, large color and texture overlap exists between
the objects and table, making unsupervised segmentation
based on low-level visual cues challenging. Beyond this the
large flat surfaces would be difficult for most robots to grasp.

(a) (b)

Fig. 8: Push histories for object clusters. (a) A single wood
block with a line drawn on it after being determined to be a
single object. (b) Two wood blocks correctly singulated after
starting placed together.

(a) (b)

Fig. 9: (a) Distribution of candidate boundary orientations
after one push. (b) Push history accumulated after an addi-
tional 13 pushes.

However our method successfully determines that Fig-
ure 7a corresponds to a single object, while Figure 7b shows
two separate entities. Figure 8 shows the end result and push
history of our singulation approach. The robot performed a

total of seven pushes on the solid object, as a number of
edges were detected on regions of different color in the wood
pattern.

(a) (b)

(c) (d)

Fig. 10: Green shows populated push history directions. Blue
represents the direction of the chosen push. (a) After pushing
perpendicular to the object boundary a push is chosen (b) that
should separate the objects. (c) The objects failed to separate.
However, ICP returns a bad score, so the push history is not
updated. (d) The next push successfully separates the objects.

A less contrived example is shown in Figure 1. The scene
contains five objects in collision that the robot separates with
four pushes. Figure 4 shows the first push chosen by the
robot to singulate the objects. While the chosen edge to test
corresponds to a true object boundary, multiple objects, the
bowl and green mug, lie on the other side of the plane defined
through this edge. Thus, while the push separates the bowl
from the textured coffee cup, other objects remain in contact
and must be separated through subsequent pushes. Figure 2
depicts the scene after the initial push. While our method
efficiently singulates the objects in this scenario, we note
that the majority of objects have low surface texture and as
such have few potential object boundaries. We now show
results for high texture examples.

We show an example of textured objects in Figure 9,
where the objects are separated on the first push. However,
the robot must perform an additional number of pushes in
order to accumulate evidence that all remaining boundaries
are internal intensity edges and not object boundaries.

Figure 10 shows the importance of only updating the push
history after successful ICP alignment. The attempted push
in the direction of an actual object boundary does not push
far enough to separate the two objects. However the system
recognizes this and successfully separates the objects with
the next push.

B. Quantitative Comparison

To test the robustness and efficiency of our method we
compare directly to a push selection method, which does
not reason about potential objects within object clusters. We
compare to an unguided approach, similar to that of Chang
et al., that pushes in a random direction through the centroid
of a randomly chosen cluster. Pushes are discarded that are
expected to push into other objects or out of the robot’s
workspace. We examine two termination criteria for this
method. In the first we push each cluster a fixed number
of times. In the analysis below, we term this method “fixed.”
Below we select the fixed number of pushes to be three per
clusters. The second termination method is an attempt to have
success with fewer pushes. We halt when the current set of
clusters have all most recently been pushed without receiving
a bad ICP fitness. We call this second method “rand-ICP.”
This second method is similar to that of Chang et al., as
we rely on confirmation of a rigid body transform to assert
object identity. However, rand-ICP is a simplification of their
approach, since no image feature correspondences are used
to seed the transform estimate and we do not compute an
explicit likelihood calculation for classification of the cluster
as a single object.

We experiment on a number of varying object sets and
configurations. For each set of objects we randomly generate
five configurations for each of the methods. We construct
random configurations by generating a random 2D pose in
the robot’s workspace for each object and then push the
objects together so that they are in contact with one another.
We classify our different tests by the number of objects
present and whether the objects have low or high amounts
of texture. For each set of objects we report the number of
successful singulation trials. We also show median, mean,
and minimum number of pushes executed in all successful
trials. Additionally, we note failures due to our segmentation
system, where the push selection system is itself not at fault.
For all results using our guided approach we report the
number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 5/5 0 1 1
Guided (8) 4/5 0 1 1.7
Rand-ICP 4/5 2 2 2.5

Fixed 4/5 9 10 11

TABLE I: Results for sets of two objects with low texture.
Number in parenthesis is the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 5/5 1 4 3
Guided (8) 4/5 1 2 3.5
Rand-ICP 4/5 4 4 4.75

Fixed 3/5 11 15 14.0

TABLE II: Results for sets of three objects with low texture.
Number in parenthesis is the number of histogram bins used.

TABLE I and TABLE II show results for tests where
all objects present had relatively low surface texture. We
note that the guided pushing achieved the best singulation

success rate when using four histogram bins. The guided
approach with eight histogram bins performed as well as
rand-ICP, but needed fewer pushes. Fixed performed worse
in all respects. The one failure of our method in the two
object case (TABLE I) was a result of the segmentation
claiming that the two separated objects were actually three.
Rand-ICP failed because it incorrectly asserted that the two
objects that moved together after being pushed were one. The
minimum scores of zero pushes resulted from the segmenta-
tion system correctly separating the objects even though they
were in contact. Our method was able to recognize that no
pushes were necessary, since no edges produced candidate
boundaries. We show the estimated boundaries for this case
in Figure 11. We note that the random methods would still
have to perform at least two pushes in such situations, since
they have no estimate of potential objects making up a given
object cluster prior to pushing.

Fig. 11: Boundary estimates and segmentation relating to
a correct segmentation of objects in contact. Axes represent
the internal object frame axes of the two object clusters.

We report results for a set of two objects with high surface
texture in TABLE III. Guided pushing using four histogram
bins had the highest success rate, while guided with eight
histogram bins produced success rates equal to rand-ICP
method. However the high level of texture required more
pushes to be made in order to singulate the objects. We
note that all failure cases of our method and all failures of
the fixed method were the result of objects being knocked
over and falling off the table. One of the two failure cases
for rand-ICP was due to the bottle present being knocked
over and pushed off the table, but the other was a result of
terminating prior to all objects being separated. Thus, while
building evidence can increase confidence in the end result, it
does so at the cost of performing more pushes that increases
the chance of unintentionally knocking rollable items out of
the scene.

Method Success Rate Min # Pushes Median Mean
Guided (4) 4/5 10 10 11.5
Guided (8) 3/5 14 14 15.3
Rand-ICP 3/5 2 3 2.7

Fixed 1/5 6 6 6

TABLE III: Results for sets of two objects with high texture.
Number in parenthesis is the number of histogram bins used.

We report results for larger sets of five and six objects in
TABLE IV and TABLE V. Following the success of using
only four histogram bins on earlier experiments we do not

compare to the guided case of eight histogram bins. For both
cases our approach performs the best. In the first, where five
low textured objects are used, we have the highest success
rate. The fixed method was unsuccessful in all trials, while
rand-ICP consistently believed to have segmented all objects
and halted early in all but one trial.

Method Success Rate Min # Pushes Median Mean
Guided (4) 3/5 6 24 18.3
Rand-ICP 1/5 7 7 7

Fixed 0/5 - - -

TABLE IV: Results for sets of five objects with low texture.
Number in parenthesis is the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 1/5 12 12 12
Rand-ICP 0/5 - - -

Fixed 1/5 30 30 30

TABLE V: Results for sets of six objects with varying levels
of texture. Number in parenthesis is the number of histogram
bins used.

For the challenging case of six objects with varying levels
of texture we attain an equal success rate to fixed. However,
our guided approach achieves the same performance level
with less than half the number of pushes of fixed. Again
rand-ICP regularly halted early, believing the scene to have
as few as one object in it and never more than four. Fixed
had similar issues, believing only three or four objects to be
on the table. Our method failed once from believing only
five objects to be present. All other failures of our method
were do to items being knocked out of view of the robot
during testing.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to object singulation
that explicitly hypothesizes about the orientation and location
of potential separation boundaries between possible objects
within a single object cluster. This reasoning allows us to
state that singulation has occurred more confidently than
methods which rely on random robot actions to serendipi-
tously separate objects from one another. We have confirmed
through experimentation that our method achieves singu-
lation more reliably than unguided approaches and often
does so with fewer pushes. Additionally our method works
in situations where all objects present have low texture, a
challenge not addressed by previously developed methods.

An obvious extension to our approach would be the use
of template matching of singulated objects to robustly deal
with accidental collision of other objects with those already
singulated, similar to the method used by Kenney et al. We
currently only test vertical boundaries as vertical splitting
planes. By fitting planes parallel to the table plane and choos-
ing appropriate pushing actions, our method could potentially
separate stacked objects. Additionally, we currently choose
pushes based on a single edge hypothesis. Reasoning jointly
about all edge hypothesis could more quickly accumulate ev-
idence towards singulation. More broadly, we are interested

in having the robot autonomously learn which behavior to
select and to perform real-time analysis and feedback control
while pushing to more quickly singulate the scene and deal
with more challenging configurations.

VII. ACKNOWLEDGMENTS
This work was supported in part by NSF Award 0916687.

REFERENCES

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models.”
PAMI, vol. 32, no. 9, September 2010.

[2] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?” in CVPR,
2010.

[3] A. Saxena, J. Driemeyer, and A. Y. Ng., “Robotic grasping of novel
objects using vision,” IJRR, vol. 27, no. 2, pp. 157–173, Feb 2008.

[4] J. Sun, J. L. Moore, A. Bobick, and J. M. Rehg, “Learning Visual
Object Categories for Robot Affordance Prediction,” IJRR, vol. 29,
no. 2-3, pp. 174–197, 2010.

[5] T. Hermans, J. M. Rehg, and A. Bobick, “Affordance prediction via
learned object attributes,” in ICRA Workshop on Semantic Perception,
Mapping, and Exploration, 2011.

[6] W. H. Li and L. Kleeman, “Interactive learning of visually symmetric
objects,” in IROS, 2009.

[7] M. T. Mason, S. Srinivasa, and A. S. Vazquez, “Generality and simple
hands,” in ISRR, July 2009.

[8] E. Klingbeil, D. Drao, B. Carpenter, V. Ganapathi, O. Khatib, and A. Y.
Ng, “Grasping with application to an autonomous checkout robot,” in
ICRA, 2011.

[9] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” IJRR, vol. 5, pp. 53–71, September 1986.

[10] K. M. Lynch and M. T. Mason, “Controllability of pushing,” in ICRA,
1995, pp. 112–119.

[11] ——, “Stable pushing: Mechanics, controllability, and planning,” in
IJRR, 1996, pp. 533–555.

[12] D. Omrcen, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Au-
tonomous acquisition of pushing actions to support object grasping
with a humanoid robot,” in Humanoids, Paris, France, 2009.

[13] M. Dogar and S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in IROS, 2010.

[14] ——, “A framework for push-grasping in clutter,” in RSS, 2011.
[15] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push planning

for object placement on cluttered table surfaces,” in IROS, 2011.
[16] P. M. Fitzpatrick and G. Metta, “Towards manipulation-driven vision,”

in IROS, 2002, pp. 43–48.
[17] D. Katz, Y. Pyuro, and O. Brock, “Learning to manipulate articulated

objects in unstructured environments using a grounded relational
representation,” in RSS, Zurich, Switzerland, June 2008, pp. 254–261.

[18] W. H. Li and L. Kleeman, “Autonomous segmentation of near-
symmetric objects through vision and robotic nudging,” in IROS, 2008,
pp. 3604–3609.

[19] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for
manipulation in unstructured environments,” in ICRA, 2009, pp. 1377–
1382.

[20] L. Y. Chang, J. R. Smith, and D. Fox, “Interactive Singulation of
Objects from a Pile,” in ICRA, 2012.

[21] P. M. Fitzpatrick and G. Metta, “First contact: an active vision
approach to segmentation,” in IROS, 2003.

[22] D. Katz and O. Brock, “Extracting planar kinematic models using
interactive perception,” in In Unifying Perspectives In Computational
and Robot Vision, ser. Lecture Notes in Electrical Engineering, vol. 8.
Springer Verlag, May 2008, pp. 11–23.

[23] D. Katz, A. Orthey, and O. Brock, “Interactive Perception of Articu-
lated Objects,” in ISER, 2010.

[24] D. R. Martin, C. C. Folkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color and texture cues,”
PAMI, vol. 26, no. 5, pp. 530–549, May 2004.

[25] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, June 1981.

[26] H. Scharr, “Optimal Second Order Derivative Filter Families for
Transparent Motion Estimation,” in EUSIPCO, September 2007.

[27] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” PAMI, vol. 14, pp. 239–256, 1992.

