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SUMMARY

Autonomous robots deployed in complex, natural human environments such as

homes and o�ces need to manipulate numerous objects throughout their deployment.

For an autonomous robot to operate e↵ectively in such a setting and not require

excessive training from a human operator, it should be capable of discovering how to

reliably manipulate novel objects it encounters. We characterize the possible methods

by which a robot can act on an object using the concept of a↵ordances. We define

a↵ordance-based behaviors as object manipulation strategies available to a robot,

which correspond to specific semantic actions over which a task-level planner or end

user of the robot can operate.

This thesis concerns itself with developing the representation of these a↵ordance-

based behaviors along with associated learning algorithms. We identify three specific

learning problems. The first asks which a↵ordance-based behaviors a robot can suc-

cessfully apply to a given object, including ones seen for the first time. Second, we

examine how a robot can learn to best apply a specific behavior as a function of

an object’s shape. Third, we investigate how learned a↵ordance knowledge can be

transferred between di↵erent objects and di↵erent behaviors.

We claim that decomposing a↵ordance-based behaviors into three separate factors—

a control policy, a perceptual proxy, and a behavior primitive—aids an autonomous

robot in learning to manipulate. Having a varied set of a↵ordance-based behaviors

available allows a robot to learn which behaviors perform most e↵ectively as a func-

tion of an object’s identity or pose in the workspace. For a specific behavior a robot

can use interactions with previously encountered objects to learn to robustly manipu-

late a novel object when first encountered. Finally, our factored representation allows

a robot to transfer knowledge learned with one behavior to e↵ectively manipulate an

object in a qualitatively di↵erent manner by using a distinct controller or behavior

xiv



primitive. We evaluate all work on a bimanual, mobile-manipulator robot. In all

experiments the robot interacts with real-world objects sensed by an RGB-D camera.
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CHAPTER I

INTRODUCTION

The goal of this dissertation is to enhance the ability of robots to learn how to

manipulate objects with which they may have no prior experience. Specifically we

desire robots to autonomously explore methods of interacting with a given object.

First, the robot should be able to interactively discover objects of interest in its

environment. The robot should also be able to determine which available behaviors

are e↵ective in manipulating a particular object. Finally, the robot must transfer

knowledge learned from objects, with which the robot has previously experimented,

in order to be more capable when first encountering a novel object or in manipulating

the same object in a novel manner.

1.1 Thesis Statement

A factored approach to autonomous, interactive learning provides a robot the means

to learn what behaviors e↵ectively manipulate specific objects, the capacity to lever-

age previous experiments in robustly manipulating novel objects, and the power to

transfer this learned knowledge for use with other behaviors.

1.2 Motivation

As the goal of having robots operate in uncontrolled environments becomes more

critical to the advancement of robotics, robots must be able to discover and e↵ectively

manipulate previously unseen objects. This has brought about research on the notion

of a↵ordances of objects with respect to a robot agent[34]. Within the context of

robotics, a↵ordances describe the possible actions an agent can take when acting upon

an object along with the associated outcome resulting from the action [47, 68]. Specific

1



examples might include graspable (e.g. [24]) or pushable (e.g. [55]) that indicate a

particular object can be grasped stably or pushed in a desired manner, respectively.

Because one can cast a↵ordances as state-action pairs that will transform the object

state in some way, there has been further work in considering a↵ordances as a basis

of planning [6]. If the robot has a goal of clearing the path to an object being fetched,

it might first push interfering objects to the side, assuming they can be pushed, that

is have the a↵ordance pushable.

However, while a planner may be able to leverage an abstracted description of the

a↵ordance as being true or not with respect to a particular object, such a high level

description is not su�cient to actually execute the action required for the a↵ordance.

Indeed the method of performing the action may vary by object or object state:

pushing a round cereal bowl might be quite di↵erent than pushing a TV remote control

that has rubber feet that occasionally stick to the table surface. In order to bridge this

gap between abstract, task-level descriptions of actions and the underlying continuous

valued commands sent to a robot’s actuators, we propose the use of a↵ordance-based

behaviors. Our a↵ordance-based behaviors encode how a robot should act on an

object when attempting to induce a desired outcome. The behaviors are comprised

of three components: a perceptual proxy, a control policy, and a behavior primitive.

The control policy used by a specific a↵ordance-based behavior instance defines a task

space controller that commands the robot actuators as a function of the state of the

object and the current robot state. The perceptual proxy computes from the robot’s

sensory data the state description of the object necessary for the control policy. The

behavior primitive constrains how the robot maintains those degrees of freedom not

explicitly controlled by the control policy during manipulation. We explain these

components in greater detail in Chapter 3.

A↵ordances provide more benefit to a robot when we examine their relation to

2



perception. The physical properties of objects, the agent, and the interacting envi-

ronment determine the a↵ordances present. As such an agent that correctly perceives

object properties such as shape, weight, or material composition can accurately pre-

dict how an object should behave when acted upon. This has two further implications

for perception. First, a robot needs to understand what object or other element of

the environment (i.e. pile of stu↵, liquid in a container, collection of objects, etc.) it

can act on. The task of singulation helps in achieving this goal as the robot interacts

with the environment to discover the objects present. Second, a robot should infer the

how it can best manipulate novel objects based on its previous interactions. Finally,

once a robot knows the a↵ordances available to it from objects it regularly sees in its

environment, it should become more e↵ective at manipulating those objects. We thus

investigate how a robot can specialize the execution of a↵ordance-based behaviors for

specific objects in order to be more robust in execution of the planner-level actions.

1.3 Scope

This dissertations investigates how a robot can learn about the elements of its envi-

ronment and how to manipulate them through autonomous interaction. We examine

this problem in the context of pushing objects. We consider our push behaviors to

be useful as actions in a task-level planner. While we are fundamentally interested in

robots learning autonomously, we believe that much of the work here could be helpful

in learning from demonstration, where information about where objects are and how

they should be manipulated can be guided by a human teacher.

Additionally, the experiments presented in this thesis are focused on applying

a↵ordance learning on man-made objects commonly found in home environments.

However, we believe the work would scale nicely to domains such as search and

rescue robotics or other emergency robotics fields, where semi-autonomous agents

may need to understand what can be manipulated and how best to perform this

3



manipulation. Consider a semi-autonomous humanoid robot attempting to clear a

path through rubble. It may be di�cult for a human supervisor to identify the extent

and size of individual pieces of stone or wood, while a robot that could autonomously

interact with the environment to find individual objects would ease this burden on the

user. Additionally, being able to infer and learn about what types of debris could be

pushed versus which pieces need to be picked up could allow a robot to learn from its

experience, so that a human user guiding the robot need not have expert knowledge

of the materials present in the robot’s environment.

The remainder of the dissertation is organized as follows. We explain our approach

to autonomous discovery of objects through interaction in Chapter 2. Our behavior

representation for autonomous a↵ordance learning is presented in Chapter 3. Chap-

ter 4 examines a method for learning how a particular a↵ordance-based behavior,

pushing, can be executed based on the properties of an object. A robot learns to

predict as a function of shape the best location on an object to push, so that the ob-

ject moves stably to the desired location. Chapter 5 describes a framework for using

models of object dynamics to improve the performance of specific a↵ordance-based

behaviors. The chapter goes on to tell how learned knowledge can be transferred

between behaviors. We overview the various areas of related research in Chapter 6.

Finally, we summarize our problem and our contributions in Chapter 7.
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CHAPTER II

HYPOTHESIS GUIDED OBJECT SINGULATION

The ability to detect previously unseen objects and separate them from surrounding

objects holds great value for autonomous robots operating in household environments.

This ability, termed object singulation, provides the most benefit by allowing a robot

to segment novel objects of potential interest from the scene. This is especially true

for a robot operating in a home, which will encounter a wide variety of objects during

its lifespan.

Singulation provides many benefits to a general purpose mobile manipulator be-

yond the identification of previously unknown objects. Separating objects form one

another can be used to assist grasping methods by creating fewer obstacles for an

arm to navigate, while providing more clearance for the robot’s end-e↵ector. For uses

that desire specific object identification or categorization, separating objects from one

another gives recognition systems a better view of the object and provides detection

locations avoiding the need to search the entire image.

Additionally, performing object segmentation through pushing allows us to un-

derstand objects at the operational level of the behaviors used during singulation.

Such an identification is important for tasks such as organizing the objects on a table

through pushing, where the available behaviors may not be capable of separating all

objects at their semantic level. For example, a basket on a kitchen table may be filled

with apples. While object recognition systems could potentially recognize each apple

independently, a robot attempting to push the basket does not need this information

if the fruit remains inside the basket while its being pushed. This holds particular

importance in the context of a↵ordance learning and prediction, where the pushable
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a↵ordance can be associated with acting on the filled basket, as opposed to graspable

which may operate on the individual apples as well as the basket.

We propose a method for separating an unknown number of objects on a surface

by performing selective pushes in such a way as to disambiguate potential object

boundaries. Our method is predicated on the idea that such boundaries tend to

produce visual edges in captured images. Thus visual edges represent hypotheses of

plausible locations, where a single object cluster may split if it is indeed more than

one object. Through successive pushes we accumulate evidence that such edges do

or do not correspond to object boundaries. We do so without explicitly tracking

edges during the push sequence. Instead, we introduce the use of a histogram of

orientations as an aggregated representation of potential boundary edges: only the

histogram has to be propagated through the push sequence. Furthermore we design

a decision process for systematically testing these hypotheses, which is aware of the

constraints of the robot and workspace. Figure 1a illustrates an example initial scene

for our system to singulate. Figure 1b shows the robot performing a singulation push.

(a) (b)

Figure 1: Example initial cluttered scene encountered by the robot. Partial singula-
tion result as the robot performs a pushing action.

In this chapter we present our approach to object singulation. The majority of this

chapter covers our work on object singulation [41]. Section 2.1 gives an explanation of

our approach, followed by a detailed description of the implementation in Section 2.2.
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We give extensive experimental results in Section 2.3 including in depth quantitative

comparisons and qualitative evaluation for a number of di↵erent scenarios. We then

conclude with a discussion in Section 2.4.

2.1 Approach

We base our approach on the fact that object boundaries in the world tend to generate

visual edges in captured intensity and depth images. While edges in the depth image

give the strongest cues as to the location of object boundaries, we can not rely on

them alone as object boundaries often do not appear as depth edges, especially when

the objects are in contact. As such we use the complementary evidence provided

by intensity edges generated by color and texture di↵erences between neighboring

objects.

Of course, visual edges also arise as the result of other phenomena such as internal

texture on an object surface, cast shadows, or specular reflection. While computer

vision techniques have been develop that attempt to classify image edges as object

boundaries (cf. [74]), a robot can much more reliably test if an edge corresponds

to an object boundary by attempting to separate the objects that would generate

such a visual edge. Thus for any edge that corresponds to a potential boundary we

determine explicitly where the pair of objects generating the edge would lie in the

scene, if such a pair exists. Then for a given object hypothesis the robot determines

and performs a push action, which will generate evidence helping to confirm or deny

the hypothesis. After each push action we segment the scene in such a way that

physically separated objects will belong to separate clusters, but neighboring objects

may be grouped together. Thus a push that successfully splits a cluster results in

an increased number of clusters from the segmentation procedure. When no new

clusters are formed, we have confirming evidence that the cluster may be a single

object, but the robot must still test the remaining image edges, to verify that each
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of the segmented clusters represent singular objects.

A naive application of this approach would attempt to split the clusters at each

candidate image edge in order to exhaustively exclude every such edge from being a

boundary between two objects. However, this exhaustive approach has a number of

shortcomings. First, edge detection is not stable across illumination changes; some

edges will appear or disappear after pushes. This causes great di�culty in tracking

individual edges over time. More importantly, pushing actions that attempts to cleave

a cluster along a particular edge will likely reveal any object boundaries parallel to

that edge;additionally, table friction will often cause objects to begin to separate

as long as the push is not directly perpendicular to the separating edge. As such

we approximate this procedure by examining the distribution of boundary candidate

orientations associated with each object cluster and accumulate evidence by tracking

the history of pushes for each cluster. This allows us to achieve singulation with fewer

pushes than the total number of candidate edges in the scene.

For each object cluster we quantize all candidate edges by orientation into one

of n bins, creating a histogram of edge orientations. Each push performed by the

robot is similarly quantized and the appropriate bin in the cluster’s push history

histogram is incremented. By using this quantization we avoid the need to explicitly

track image edges and instead must only repopulate the edge orientation histogram

after each push. This relies on the ability to track the transformations undergone by

the clusters, so that the push history and edge orientation histograms can maintain

consistent alignment with the cluster’s internal frame of reference over time. Once

the robot successfully pushes a cluster in all populated directions of the boundary

orientation histogram, the robot deems the cluster singulated. By recursively applying

this procedure to all clusters in the scene the robot asserts that all objects have been

separated.
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(a) (b)

Figure 2: (a) Example extracted and labeled image edges. Green edges correspond to
candidate splitting edges. Yellow edges represent boundary edges between an object
and free space. Blue edges have too few 3D points to stably estimate a 3D line, while
red edges do not overlap with object clusters. (b) Boundary orientation histograms
associated with the current object clusters.

2.2 Implementation

This section details our specific implementation of the general approach described in

Section 2.1. We first describe the geometric segmentation and boundary detection

methods used to form object hypotheses. We then explain how to generate an ab-

stract push vector for a specific hypothesis. After this we introduce a mechanism for

explaining the outcome of the pushing action and how the robot can use this expla-

nation to update the push history for each object cluster. Finally, we detail how the

robot translates an abstract push into a real-world action.

2.2.1 Object Hypothesis Generation

The first step in proposing the current set of objects requires segmenting spatially

separate regions from one another. The algorithm takes as input a point cloud of the

scene and fits a plane to the supporting surface using RANSAC [26]. We then remove

these table points and all points below or beyond the edges of the table from the

point cloud. The remaining points correspond to objects supported by the estimated

plane. These points are grouped based on the euclidean distance between neighbors
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into a set of “object clusters.”

Each resultant cluster contains at least one separate object. In order to identify

potential objects within these clusters we extract edges from the intensity and depth

images and associate them with the object clusters. We compute image derivatives

both on the RGB and depth images in both the x and y directions using Scharr

filters [99]. We threshold the resulting depth and color derivative images and combine

them into a single binary edge image. We then remove isolated pixels thin blobs and

link neighboring edge pixels in the binary image to form edges. Finally we associate

edges with the clusters they fall on, discarding those edges that do not lie on any of

the object clusters or have too few 3D points associated with them. Extracted edges

are shown in Figure 2a.

Each remaining edge corresponds to a specific boundary hypothesis. We generate

the object hypothesis by splitting the object cluster point cloud by a vertical plane

defined by the chosen edge’s location and dominant orientation. We determine the

edge orientation by fitting a 3D line to the set of edge points using RANSAC.

The vector, v, formed in the direction of the x-y component of the 3D line in the

table plane defines the direction of the splitting plane. We compute the normal to

the splitting plane, n, by taking the cross product of v and the vertical axis vector

(0, 0, 1). We then specify the splitting plane as the plane with surface normal, n

passing through the point p returned from the 3D line fitting process.

Points from the object cluster are then labeled as belonging to hypothetical object

A orB according to which side of the plane they fall on. We discard from consideration

edges where A or B have few points, as edges generating such splits correspond to

object boundaries on the outside of the object cluster neighboring free space. An

example object hypothesis is shown in Figure 3.

The 2D orientation of each vertical splitting plane can be described in the inter-

nal reference frame of each object cluster with a single angle in the range (�1
2⇡,

1
2⇡]
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Figure 3: Object hypothesis generated by the image edge highlighted in green.

radians. We compute this angle for all edges associated with a given object cluster.

We then construct a boundary estimate histogram for each object cluster by quan-

tizing each edge orientation into one of n bins. Figure 2b illustrates these boundary

orientation histograms for a scene with three object clusters.

2.2.2 Push Vector Selection

For any candidate boundary we generate a set of four possible abstract push vectors.

We produce push vectors for all candidate boundaries associated with the object

cluster of interest. The robot then ranks this set of push vectors and performs the

highest ranked push. For a given boundary a push vector points parallel to the

splitting plane running through the centroid of either hypothetical object A or B.

Two potential push vectors run through each hypothetical object centroid giving us

four candidate push vectors. We determine the start location and length of each push

vector by locating the intersection of the line through the centroid with the hull of

the hypothetical object point cloud. We present one such abstract push vector in

Figure 4.

We rank the resulting set of abstract push vectors by preferring those that have

start and end locations that do not leave the tabletop or robot workspace. After this,

we rank higher those pushes that are less likely to collide with other object clusters.

The remaining push options are ranked in decreasing order by the ratio, RAB, between
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the number of points in the hypothetical objects:

RAB =
min(|A|, |B|)
max(|A|, |B|)

Thus objects with near equal splits score close to 1 and splits that generate one object

much larger than the other receive scores closer to 0. We prefer even splitting sizes

for three main reasons. First objects in a given environment tend to be of relatively

equal size and thus tend to generate an equal number of points in the point cloud

split. Second smaller object sizes have less surface area and are thus more di�cult to

make contact with while pushing. Lastly, even if the generated split does not align

with the actual object boundary pushing farther from the middle of the cluster, in

the correct direction of an object boundary, will more likely push only one of the two

objects present.

Figure 4: Example push vector generated for a single object cluster containing five
objects.

2.2.3 Outcome Explanation and Evidence Accumulation

Once a push action is performed the robot first segments the table and clusters the

remaining points as described in Section 2.2.1. It can then determine which clusters

have moved by taking the di↵erence of the point clouds before and after the push

action. We estimate the motion underwent by each moved cluster using iterative

closest point (ICP) [11]. ICP generates a rigid body transformation for each cluster
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as well as a score describing the goodness of fit between the two input point clouds.

We maintain object cluster identification by matching each moved object cluster after

a push with the best fitting cluster from before the push, while maintaining uniqueness

in correspondence. We compose the most recent transformation estimate with the

previous estimates of the cluster’s motion, so that its rotation since initialization

can be recovered. The recovered transformation is then used to rotate the cluster’s

internal frame of reference in order to keep the push history aligned over time, as well

as correctly populate the edge orientation histogram for the image observed after a

push.

Before updating the cluster’s push history we must analyze the resultant scene.

We do not update the push history if clusters split or merge. If the number of clusters

remains the same, then we updated the push history as follows. We first check that

the intended object was in fact moved. If this is the case we only update the push

history if the fitness score returned by ICP is better than a pre-determined threshold.

We avoid updating the history for bad ICP fits as it likely means the push began to

disrupt the configuration of multiple objects within a cluster, but was unsuccessful

in separating them. Thus another attempt may well break the objects apart. For

the case where clusters split, confirming an object boundary hypothesis, we discard

the previously split object cluster and initialize two or more new object clusters

associated with the split. For each new object cluster we set the push histories to

be empty and define their tracked transformations to be the identity matrix. In rare

cases clusters will unfortunately merge due to unaccounted for pushing dynamics or

accidental collisions of the robot arm with the scene. We take a conservative view

of these cases and reinitialize the merged cluster with no push history or tracked

rotations.

We acknowledge that this tracking method will produce drift in the object orien-

tation over time. While more sophisticated methods could be used to mitigate this
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Figure 5: Example push history before and after pushing a cluster corresponding to
a single object. The blue bin corresponds to the direction of the next selected push.

(a) fingertip push Be-
fore

(b) fingertip push After (c) gripper sweep Be-
fore

(d) gripper sweep After

(e) overhead push Be-
fore

(f) overhead push After (g) overhead pull Be-
fore

(h) overhead pull After

Figure 6: The four implemented push behaviors used by the robot.

issue, we find the precision of the rotational estimate is good enough for our purposes,

since we are operating at the relatively coarse scale of quantized boundary and push

orientations.

2.2.4 Push Behavior Selection

The robot translates a given abstract push vector into a real-world action using one

of four di↵erent pushing behaviors. This set of behaviors allows the robot to more

e↵ectively accomplish the intended separation of hypothetical objects, when possible,
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while accounting for constraints in the environment and its own joint limitations.

Each behavior takes as input the abstract push vector defined as a start location

(x, y) and push angle ✓ in the world frame as well as the distance dp to push.

The fingertip push behavior, pictured in Figure 6a-6b, places the tip of the end-

e↵ector at the start pose (x, y, ✓) keeping the top of the robot hand parallel to the

table. fingertip push then moves the end-e↵ector the distance dp along the straight

line defined from the gripper wrist to its tip. gripper sweep(Figure 6c-6d) uses the

broad face of the hand to push objects while remaining close to the table surface.

The center of the hand is positioned at the location (x, y) on the table with vector

normal to the hand facing in the direction of ✓. The arm is then controlled so that

the hand moves in a straight line in the direction of the palm for the distance dp.

The third behavior, overhead push (Figure 6e-6f), where the robot bends its wrist

downward and pushes in the direction of the back of the hand. Again we control the

center of the hand to move in the direction normal to its face after positioning it at

the (x, y, ✓) pose.

These three behaviors all move to the start pose from a predefined home position

following a straight-line trajectory in the work space. The fourth behavior, overhead

pull (Figure 6g-6h) performs the same action as overhead push, except that it will

pull towards the robot and navigates to its start pose by first moving to the location

(x, y, Zh), where Zh is high above the table to avoid colliding with the intended object

to pull.

Pushing behaviors are selected based on the input pose (x, y, ✓). The overhead

push behavior is used for initial locations close to the robot, where there is little

clearance for the arm to fit between the robot torso and body. For lateral pushing

angles the gripper sweep behavior is chosen, while overhead pull is used for angles

point towards the robot torso. fingertip push is used in the remaining cases. The

decision between using the left or right arm is based on workspace limits of the arms.
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If either arm is capable of making the push, the arm is chosen that pushes away

from its side in an attempt to keep the workspace less crowded. We note that while

we have used pre-programmed push behaviors and behavior selection mechanisms,

we are interested in using learned behaviors and behavior selection mechanisms as

discussed below in Chapters 3 and 5.

2.3 Experimental Results

We report comprehensive qualitative demonstrations of our method as well as quan-

titative comparisons to other push selection methods. All of our experiments were

performed by a Willow Garage PR2 robot with a Microsoft Kinect camera mounted

on the head in the Georgia Tech Aware Home.

(a) (b)

Figure 7: Distribution of detected potential splitting boundaries. (a) A single wood
block with a line drawn on it. (b) Two wood blocks placed together.

2.3.1 Qualitative Results

In order to validate our proposed claim and understand its limitations, we first present

results on a set of qualitatively di↵erent groups and arrangements of objects.

We begin by examining two visually similar situations. Figure 7 shows the initial

view of two di↵erent scenarios. In one a single block of wood has a line drawn down its

center in the other two blocks of wood are pressed together appearing as a single block.

We note that the two di↵erent scenes generate quite similar images, which would be
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hard to discriminate with standard object recognition methods. Additionally, large

color and texture overlap exists between the objects and table, making unsupervised

segmentation based on low-level visual cues challenging. Beyond this the large flat

surfaces would be di�cult for most robots to grasp.

(a) (b)

Figure 8: Push histories for object clusters. (a) A single wood block with a line drawn
on it after being determined to be a single object. (b) Two wood blocks correctly
singulated after starting placed together.

(a) (b)

Figure 9: (a) Distribution of candidate boundary orientations after one push. (b)
Push history accumulated after an additional 13 pushes.

However our method successfully determines that Figure 7a corresponds to a single

object, while Figure 7b shows two separate entities. Figure 8 shows the end result

and push history of our singulation approach. The robot performed a total of seven

pushes on the solid object, as a number of edges were detected on regions of di↵erent

color in the wood pattern.
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(a) (b)

(c) (d)

Figure 10: Push histories for bad singulation pushes. Green shows populated push
history directions. Blue represents the direction of the chosen push. (a) After pushing
perpendicular to the object boundary a push is chosen (b) that should separate the
objects. (c) The objects failed to separate. However, ICP returns a bad score, so the
push history is not updated. (d) The next push successfully separates the objects.

A less contrived example is shown in Figure 1. The scene contains five objects

in collision that the robot separates with four pushes. Figure 4 shows the first push

chosen by the robot to singulate the objects. While the chosen edge to test corre-

sponds to a true object boundary, multiple objects, the bowl and green mug, lie on

the other side of the plane defined through this edge. Thus, while the push separates

the bowl from the textured co↵ee cup, other objects remain in contact and must be

separated through subsequent pushes. Figure 2 depicts the scene after the initial

push. While our method e�ciently singulates the objects in this scenario, we note

that the majority of objects have low surface texture and as such have few potential

object boundaries.
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We show an example of textured objects in Figure 9, where the objects are sep-

arated on the first push. However, the robot must perform an additional number of

pushes in order to accumulate evidence that all remaining boundaries are internal

intensity edges and not object boundaries.

Figure 10 shows the importance of only updating the push history after successful

ICP alignment. The attempted push in the direction of an actual object boundary

does not push far enough to separate the two objects. However the system recognizes

this and successfully separates the objects with the next push.

2.3.2 Quantitative Comparison

To test the robustness and e�ciency of our method we compare directly to a push se-

lection method, which does not reason about potential objects within object clusters.

We compare to an unguided approach, similar to that of Chang et al., that pushes

in a random direction through the centroid of a randomly chosen cluster. Pushes are

discarded that are expected to push into other objects or out of the robot’s workspace.

We examine two termination criteria for this method. In the first we push each clus-

ter a fixed number of times. In the analysis below, we term this method “fixed.”

Below we select the fixed number of pushes to be three per clusters. The second

termination method is an attempt to have success with fewer pushes. We halt when

the current set of clusters have all most recently been pushed without receiving a bad

ICP fitness. We call this second method “rand-ICP.” This second method is similar

to that of Chang et al., as we rely on confirmation of a rigid body transform to assert

object identity. However, rand-ICP is a simplification of their approach, since no

image feature correspondences are used to seed the transform estimate and we do not

compute an explicit likelihood calculation for classification of the cluster as a single

object.

We experiment on a number of varying object sets and configurations. For each
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set of objects we randomly generate five configurations for each of the methods.

We construct random configurations by generating a random 2D pose in the robot’s

workspace for each object and then push the objects together so that they are in

contact with one another. We classify our di↵erent tests by the number of objects

present and whether the objects have low or high amounts of texture. For each set of

objects we report the number of successful singulation trials. We also show median,

mean, and minimum number of pushes executed in all successful trials. Additionally,

we note failures due to our segmentation system, where the push selection system is

itself not at fault. For all results using our guided approach we report the number of

histogram bins used.

Table 1: Results for sets of two objects with low texture. Number in parenthesis is
the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 5/5 0 1 1
Guided (8) 4/5 0 1 1.7
Rand-ICP 4/5 2 2 2.5

Fixed 4/5 9 10 11

Table 2: Results for sets of three objects with low texture. Number in parenthesis is
the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 5/5 1 4 3
Guided (8) 4/5 1 2 3.5
Rand-ICP 4/5 4 4 4.75

Fixed 3/5 11 15 14.0

Table 1 and Table 2 show results for tests where all objects present had relatively

low surface texture. We note that the guided pushing achieved the best singula-

tion success rate when using four histogram bins. The guided approach with eight

histogram bins performed as well as rand-ICP, but needed fewer pushes. Fixed per-

formed worse in all respects. The one failure of our method in the two object case

(Table 1) was a result of the segmentation claiming that the two separated objects
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were actually three. Rand-ICP failed because it incorrectly asserted that the two ob-

jects that moved together after being pushed were one. The minimum scores of zero

pushes resulted from the segmentation system correctly separating the objects even

though they were in contact. Our method was able to recognize that no pushes were

necessary, since no edges produced candidate boundaries. We show the estimated

boundaries for this case in Figure 11. We note that the random methods would still

have to perform at least two pushes in such situations, since they have no estimate

of potential objects making up a given object cluster prior to pushing.

Figure 11: Boundary estimates and segmentation relating to a correct segmentation
of objects in contact. Axes represent the internal object frame axes of the two object
clusters.

We report results for a set of two objects with high surface texture in Table 3.

Guided pushing using four histogram bins had the highest success rate, while guided

with eight histogram bins produced success rates equal to rand-ICP method. However

the high level of texture required more pushes to be made in order to singulate the

objects. We note that all failure cases of our method and all failures of the fixed

method were the result of objects being knocked over and falling o↵ the table. One

of the two failure cases for rand-ICP was due to the bottle present being knocked

over and pushed o↵ the table, but the other was a result of terminating prior to all

objects being separated. Thus, while building evidence can increase confidence in the

end result, it does so at the cost of performing more pushes that increases the chance
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of unintentionally knocking rollable items out of the scene.

Table 3: Results for sets of two objects with high texture. Number in parenthesis is
the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 4/5 10 10 11.5
Guided (8) 3/5 14 14 15.3
Rand-ICP 3/5 2 3 2.7

Fixed 1/5 6 6 6

We report results for larger sets of five and six objects in Table 4 and Table 5.

Following the success of using only four histogram bins on earlier experiments we do

not compare to the guided case of eight histogram bins. For both cases our approach

performs the best. In the first, where five low textured objects are used, we have the

highest success rate. The fixed method was unsuccessful in all trials, while rand-ICP

consistently believed to have segmented all objects and halted early in all but one

trial.

Table 4: Results for sets of five objects with low texture. Number in parenthesis is
the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 3/5 6 24 18.3
Rand-ICP 1/5 7 7 7

Fixed 0/5 - - -

For the challenging case of six objects with varying levels of texture we attain

an equal success rate to fixed. However, our guided approach achieves the same

performance level with less than half the number of pushes of fixed. Again rand-ICP

Table 5: Results for sets of six objects with varying levels of texture. Number in
parenthesis is the number of histogram bins used.

Method Success Rate Min # Pushes Median Mean
Guided (4) 1/5 12 12 12
Rand-ICP 0/5 - - -

Fixed 1/5 30 30 30
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regularly halted early, believing the scene to have as few as one object in it and never

more than four. Fixed had similar issues, believing only three or four objects to be

on the table. Our method failed once from believing only five objects to be present.

All other failures of our method were due to items being knocked out of view of the

robot during testing.

2.4 Conclusions

We have presented a novel approach to object singulation that explicitly hypothe-

sizes about the orientation and location of potential separation boundaries between

possible objects within a single object cluster. This reasoning allows us to state

that singulation has occurred more confidently than methods which rely on random

robot actions to serendipitously separate objects from one another. We have con-

firmed through experimentation that our method achieves singulation more reliably

than unguided approaches and often does so with fewer pushes. Additionally our

method works in situations where all objects present have low texture, a challenge

not addressed by previously developed methods.

One shortcoming of our singulation approach comes from the poor performance

of our open-loop pushing controllers. We define and examine a number of closed-loop

feedback controllers for pushing in Chapters 3 and 5. In Chapter 3 we additionally

present a framework in which the robot can learn to choose between the di↵erent

pushing behaviors, which were determined heuristically in this chapter.
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CHAPTER III

A FACTORED BEHAVIOR REPRESENTATION FOR

AUTONOMOUS LEARNING OF AFFORDANCES

As the goal of having robots operate in uncontrolled environments becomes more

critical to the advancement of robotics, there has been much research on the notion

of a↵ordances of objects with respect to a robot agent[35]. Within the context of

robotics, a↵ordances describe the possible actions an agent can take acting upon

an object and the resulting outcome [47]. Specific examples might include graspable

(e.g. [24]) or pushable [55] that indicate a particular object can be grasped or pushed,

respectively. Because one can cast a↵ordances as state-action pairs that will transform

the object state in some way, there has been further work in considering a↵ordances

as a basis of planning [6]. If the robot has a goal of clearing the path to an object

being fetched, it might first push interfering objects to the side assuming they can be

pushed, i.e. have the a↵ordance pushable.

However, while a planner may be able to leverage an abstracted description of

the a↵ordance as being true or not of an object, such a high level description is not

su�cient to actually execute the action required for the a↵ordance. And, indeed

the method of performing the action may vary by object or object state: pushing a

round cereal bowl might be quite di↵erent than pushing a TV remote control that

has rubber buttons that occasionally stick to a table surface.

The goal of this chapter is to introduce a mechanism by which a robot deter-

mines whether a given object has a particular a↵ordance by systematically exploring

how that a↵ordance might be successfully achieved. We do this by decomposing an

a↵ordance-driven behavior into three components. We first define controllers that
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Figure 12: Composition of example frames of the robot performing a successful
pushing behavior. The green line denotes the vector from the estimated centroid of
the object to the goal location.

specify how to achieve a desired change in object state through changes in the agent’s

state. For each controller we develop at least one behavior primitive that determines

how the controller outputs translate to specific movements of the agent. Additionally

we provide multiple perceptual proxies where each defines the representation of the

object that is to be computed as input to the controller during execution. Obviously,

the proxy must be su�ciently rich to support estimation of the variables required

by the controller. The novelty here is that multiple proxies may support the same

controller and a given proxy representation may be selected for use with more than

one controller. Additionally, a single behavior primitive may be compatible with mul-

tiple controllers. Separating these components into separate factors allows the robot

to systematically explore a variety of strategies when determining the a↵ordances of

novel objects.

In this chapter we use as examples the a↵ordances of push-positionable and pull-

positionable where the goal is to move the object to a specified location on a table.

We develop three di↵erent feedback controllers to implement these actions. Each of

the two push-positioning controllers uses any of three behavior primitives of overhead

push, fingertip push, and gripper sweep. Additionally each controller can choose to
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use one of several perceptual proxies. These methods require no prior knowledge

of the object being pushed and make no estimates of underlying model parameters.

We show how a robot can autonomously determine the e↵ectiveness of a particular

a↵ordance-based behavior combination of proxy, controller, and primitive for a given

novel object. We examine which methods perform best for fifteen di↵erent household

objects and explore the success and failure of the approaches as a function of where

in the robot’s workspace the object is located. Figure 12 shows the robot successfully

push positioning a dinner bowl using the a↵ordance-behavior combination of centroid

perceptual proxy, centroid alignment controller, and gripper sweep behavior primitive.

The majority of this chapter was originally published in two previous works [42,

43]. We organize the remainder of this chapter as follows. In Section 3.1 we formally

define the a↵ordance assertion problem and the push and pull positioning tasks. Sec-

tion 3.2 presents our three proposed feedback controllers whose e↵ectiveness, as we

will see, varies depending upon object. We give details of our implemented perceptual

proxies in Section 3.3 followed by the implemented behavior primitives in Section 3.4.

A short analysis of the pushing controllers is then presented in Section 3.5. Sec-

tion 3.6 presents more comprehensive results of over 1500 behavior-controller-proxy

trials performed semi-autonomously by a robot using our proposed system. We end

the chapter with a short discussion in Section 3.7

3.1 Problem Statement

We define an a↵ordance to exist between a robot and an object, if the robot can

select a specific behavior primitive, controller, and perceptual proxy by which it

can successfully perform the desired action. We take as example actions those of

push positioning and pull positioning, where the robot must position an object at an

arbitrary location by pushing or pulling with its arm. We assume that the object

is being manipulated over a plane and thus the object state X = (x, y) defines the
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location of the origin of the object in a 2D space. We denote the goal pose as

X⇤ = (x⇤, y⇤). This state representation is su�cient at the level of a task level planner,

however, a specific controller may require more state variables to be estimated by the

relevant perceptual proxy.

The (unknown) dynamics of the pushing system are governed by the nonlinear

relation Ẋ = h(X,Q,U) which defines the interaction dynamics between the object

state, the robot configuration Q, and the input to the robot U . Importantly, we make

no attempt to model h. In developing our visual feedback controllers to achieve the

above defined task, we presume we do not have an exact measurement of the object

state. Instead we will operate on the estimated state X̂ that will be computed at each

time step based upon properties of a perceptual proxy. In this work we control the

arm through Cartesian control, both position and velocity, in the robot’s task frame.

We denote the specific forms of U and X used in our controllers in detail below. Our

task thus becomes defining a feedback control law U = g(X̂,X⇤) which drives the

position error Xerr = X⇤ � X̂ to zero.

3.2 Feedback Controllers for Pushing and Pulling

In this section we define several visual feedback controllers for the robot either to

push or pull an object to a desired location. Each controller has a necessary set of

state variables to be estimated from the perceptual representation that is continuously

updated. These representations serve as the proxies for the object with respect to

the defined controllers.

3.2.1 Spin-Correction Control

Our first method of defining a push-positioning controller relies on the fact that the

direction of an object’s rotation while being pushed depends on which side of the

center of rotation the applied force intersects. This fact is well described by the limit

surface formulation [75, 36]. Mason derived the velocity direction of a sliding object as
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Figure 13: Visualization of the spin compensation feedback control policy. The green
arrow depicts the goal oriented term of the controller from the object centroid to the
goal (red star). The blue arrow show the term used to move the end-e↵ector (blue)
to compensate for the observed rotation the object (yellow). These two vectors are
scaled and combined to create the commanded velocity of the end-e↵ector.

a function of the forces applied by the pushing robot as well as the support locations

and mass distribution of the object [75]. These parameters are di�cult to know or

estimate well for a given object and even when they are known, the exact resulting

behavior is often indeterminate [75]. However, we make use of Mason’s realization

that the resulting rotation of the object abruptly changes direction when the input

force passes directly through the center of rotation of the object. As such we can use

the direction of the observed rotation of the object to infer which side of the center

of rotation the applied forces are currently acting through. We can then correct the

direction of our applied forces to compensate for any unwanted rotation of the object.

To reduce induced rotation, our controller attempts to push the object through

its center in the direction of the goal position. This gives a simple procedure for

determining the initial hand position. We cast a ray from the goal location through

the centroid of the object and find its intersection with the far side of the object.

This location defines the initial position for the hand. We further orient the hand

so that its gripper is facing in the direction of the goal from the initial position. An

example image of the initial hand placement can be seen in the upper left of Figure 15.

Once positioned our feedback control process is initiated. The controller is defined in
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equations 1 and 2 which operates on state X = (x, y, ✓, ✓̇) and computes input U of

x and y velocity of the end e↵ector in the robot’s workspace.

uẋ = kgegoal
x

� sin(�g)(erot) (1)

uẏ = kgegoal
y

+ cos(�g)(erot) (2)

Our control is comprised of two terms. The first pushes through the object driving

it to the desired goal, while the second displaces the contact location between the

robot and object to compensate for changes in object orientation. The input control

defined in equations 3 and 4 commands the robot to push in the direction of the goal.

The overall e↵ect of this component is controlled by the positive gain kg. Since the

object lies between the end e↵ector and the goal this causes the object to translate

towards the goal.

egoal
x

= (x⇤ � x̂) (3)

egoal
y

= (y⇤ � ŷ) (4)

However, since the forces applied by the robot on the object are not pushing directly

through the center of rotation, the object will undoubtedly spin. To compensate

for this we apply additional input velocities proportional to the observed rotational

velocity of the object. We desire not only that the object not rotate, but also that it

maintains its initial orientation ✓0. We combine these terms to generate erot.

erot = ksd
˙̂✓ � ksp(✓0 � ✓̂) (5)

We desire to displace the end-e↵ector perpendicular to the current direction of the

object’s translational motion. Since our estimate of the instantaneous velocity is

somewhat noisy, we instead rotate the velocity vector about the angle defined between

the center of the object and the goal �g.

�g = atan2(y⇤ � ŷ, x⇤ � x̂) (6)
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Figure 14: Visualization of the centroid alignment feedback control policy. The green
arrow depicts the goal oriented term of the controller from the object centroid to the
goal (red star). The blue arrow show the term used to align the end-e↵ector (blue)
with the center of the object. These two vectors are scaled and combined to create
the commanded velocity of the end-e↵ector.

Our pushing controllers halt once xerr < ✏x and yerr < ✏y. For the purpose of devel-

oping this method as well as the controller in Section 3.2.2, the gains are manually

adjusted, but remain fixed for all objects.

3.2.2 Centroid Alignment Control

Our second push-positioning controller replaces the monitoring of object orientation

with a strategy based upon the relative locations of the object’s centroid, the assumed

location of the contact point on the end-e↵ector, and the goal position. The simple

intuition is that pushing the object can be achieved by positioning the end-e↵ector

at a location on the object boundary that intersects a line between the goal location

and the object centroid. We visualize this control law in Figure 14.

The robot achieves this behavior by using a control law that includes a velocity

term to move toward the goal and one that moves the end-e↵ector to the line defined

through the goal centroid locations:

uẋ = kgcegoal
x

+ kcecentroid
x

(7)

uẏ = kgcegoal
y

+ kcecentroid
y

(8)
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where egoal
x

and egoal
y

are as before. The second term provides the additional velocity

term toward the goal-centroid line; ecentroid
x

and ecentroid
y

are components of perpen-

dicular vector from the presumed end-e↵ector contact point to the goal-centroid line.

This error term is computed using the following equations:

ecentroid
x

= Tx � EEx (9)

ecentroid
y

= Ty � EEy (10)

where T defines the point on the line passing through the centroid and goal locations

closest to the end-e↵ector pose

Tx = x̂+m · xerr (11)

Ty = ŷ +m · yerr (12)

and m is the slope of the goal to centroid line defined as

m =
(EEx � x̂) ⇤ xerr + (EEy � ŷ) ⇤ yerrp

x2
err + y2err

(13)

The robot then pushes in the direction of the goal attempting to maintain this

collinearity relation. This controller has the state X = (x, y) and computes the same

U as in Section 3.2.1. Additionally, the end-e↵ector is initially positioned relative to

the object as above.

3.2.3 Direct Goal Pull Control

We implemented a single feedback control law to be used with pulling objects. The

controller assumes the object is already grasped by the gripper and simply moves with

a velocity proportional to the direction of the goal from the current object centroid.

The gripper is placed following a similar procedure to that used in pushing. However,

the initial hand placement is chosen to be at the closest location on the object to the

goal position. The gripper is opened prior to moving to this initial pose. The gripper

then moves forward to surround the object and closes to grasp it. Upon halting of
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Figure 15: Array of behavior primitives. The first image shows the overhead push
behavior primitive placed prior to pushing the television remote. The second image
show the gripper sweep behavior primitive pushing the dinner bowl. The lower left
image shows the teddy bear being pulled. The first three images show the vector
from current centroid estimate to goal location. The food box is being pushed with
the fingertip push in the final image. The first three images have drawn in green the
vector from estimated centroid to goal location. The box has the estimated centroid
location overlaid.
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the controller, the gripper opens to release the object and moves backwards to clear

the object prior to returning to the ready position.

3.2.4 Controller Monitoring

During execution of each feedback controller we monitor for certain conditions where

execution should be aborted. The simplest of these is when no object has been

detected. To avoid being stuck in strange configurations, we abort execution when

neither the arm nor the object has moved after a short period of time. To keep

the robot from manipulating free air execution stops when the robots gripper moves

farther than some predefined threshold from the estimated object centroid. Finally,

we halt execution for both push controllers when the estimated object centroid is not

between the gripper and goal locations.

3.3 Perceptual Proxies

The above defined controllers have modest perceptual requirements. The orientation-

velocity controller requires both the location of the object and its orientation whereas

the centroid-driven push controller and pulling controller require only position as

defined by the object’s centroid. Here we describe the perceptual computations per-

formed and the proxies that satisfy the requirements.

We begin with a simple depth-based segmentation and tracking method that cur-

rently assumes only a single object resting on the sliding surface (a table) is in the

scene. The input is the RGB-D image of a Microsoft Kinect though in this simple

implementation only the depth channel is used. We initialize the tracker by moving

the robot’s arms out of the view of the camera, capture the depth image and then use

RANSAC [26] to find the dominant plane in the scene parallel to the ground plane.

We then remove all points below the estimated table plane and cluster the remaining

points. We filter out clusters with very few points and, because we’re assuming only
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Figure 16: Examples of the robot performing pushing using feedback from the track-
ing. The left image shows the state estimated with the bounding box perceptual
proxy. The right image displays the estimated ellipse.

one object is on the table, we accept the cluster with most points as the object.1 We

compute the 3D centroid of the points in the cluster and use the x and y components

as the object’s location on the table.

Once initialized we track the object by performing the same procedure with the

added step of removing points belonging to the robot from the scene. We project

the robot model into the image frame using the forward kinematics of the robot and

remove points from the point cloud coincident with the robot arm mask. Because

of noise in measurements and other calibration issues points belonging to the robot

can sometimes remain. To prevent the tracker from selecting any of these points

as the current object we perform nearest neighbor matching between current cluster

centroids and the previous object state, selecting the closest as the current object.

We then estimate the object velocity using the previous estimate of the object state.

Computing the perceptual proxies needed for each of the controllers is straight-

forward given the tracker described above. For the centroid based control methods,

centroid alignment and gripper pull, we can immediately return the x and y values

computed from the centroid of the object point cloud as input. We name this the

centroid proxy. However, this estimate may not be the most accurate representation

1 We note that we [41] and others (e.g. [15]) have previously developed methods for singulating
objects form each other by pushing actions.
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of the objects actual centroid, due to occluded regions of the object and non-uniform

mass distributions. As such we implemented two additional proxies to estimate the

centroid of the object. The first alternative approach uses RANSAC to fit a sphere

model to the object point cloud. We then use the x and y estimates of the sphere’s

center as input to the controller. This allows for partially occluded spherical objects

to have a more stable estimate of the object’s center. Our other estimate approach

fits the minimum area bounding box to the 2D footprint of the object. We then use

the center of this bounding box as the object centroid. While this proxy is not robust

to occlusion by the robot, it produces a result that is just a function of the convex

hull of the point cloud and is not influenced by how many points occur in any single

region of an object’s interior.

For the orientation-velocity control we need a proxy that includes an estimate of

object orientation, as well as its rotational velocity, with respect to the global robot

frame. The bounding box proxy can be used to give us an estimate of the orientation.

We simply set the orientation of the object to be the dominant axis of the bounding

box. As an alternative proxy we fit a 2D ellipse to the x and y values of all points in

the object point cloud and use the orientation of the major axis of the ellipse as the

objects orientation ✓. In both cases, the change in ✓ from one frame to the next is

the estimated orientation velocity ✓̇. Example of computed bounding box and ellipse

proxies are shown in Figure 16.

3.4 Pushing and Pulling Behavior Primitives

We performed pushing with three behavior primitives: an overhead push, a gripper

sweep, and a fingertip push. The overhead push has the robot place its hand such

that the fingertips are in contact with the table with the wrist directly above. The

gripper sweep places the length of the hand on the table with the flat of the hand

facing the object. The fingertip push keeps the palm of the hand parallel to the
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table and pushes with the tip of the gripper pointing in the push direction. As our

controllers operate only within the 2D pose of the hand (x, y, ✓), the configuration of

the end-e↵ector with respect to the arm and object remain fixed during operation.

Specifically this means that the wrist remains above the hand throughout pushing for

the overhead push. Likewise the gripper sweep keeps the long side of the robot hand

along the table with the broad side of the hand perpendicular to the surface during

pushing and the fingertip push keeps the palm parallel to the table. Images of the

robot operating with these behavior primitives can be seen in Figure 15.

For all primitives the arm is moved to the initial pushing pose using Cartesian

position control. The arm is first moved to a position directly above the table at the

desired pose and desired orientation. The hand is then lowered in a straight line to

the initial pushing pose. We use a Jacobian inverse controller to control the Cartesian

velocity of the end-e↵ector during feedback control.

The gripper pull behavior primitive is similar to the fingertip push primitive,

except that the gripper is first opened prior to moving to the initial pose. The gripper

then moves forward to surround the object and closes to grasp it. Additionally the

initial hand placement is determined to be between the object and goal not behind

the object, as in pushing.

3.5 Controller Evaluation

We examine the robot’s manipulation performance with di↵erent combinations of

proxies, control laws, and behavior primitives in pushing a television remote, a pink

food box, and a dinner bowl. In all experiments ✏x = ✏y = 0.05 meters.

3.5.1 Goal Position Controller Evaluation

We first show an example of pushing a television remote using the overhead push

controlled by the spin compensation controller. The perceptual proxy used is the

ellipse model. The TV remote has a rather complicated set of support points and far
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(a) (b)

Figure 17: The top and bottom of the television remote. The support distribution of
the remote is much more complex than a simple polygon. Additionally the narrow
end is significantly more massive than the wider end owing to the batteries inside.

from uniform mass or friction distributions. We show an up close picture of the remote

in Figure 17. The tracked trajectory of the TV remote as well as the pose errors are

shown in Figure 18. Midway through the pushing trajectory the remote becomes

partially occluded by the robot arm which causes a jump in the estimated position.

Figure 20 shows the controller compensating for this change which induces a larger

velocity in the object, including its rotation. We show the velocities for the remote

in Figure 21. Note that after the increased rotational velocity the controller most

apply larger input velocities to maintain the initial orientation and continue pushing

towards the goal. Regardless, the remote control converges within the desired bounds

of the goal pose and the execution is successful.

We now show that this same a↵ordance-based behavior instantiation of overhead

push, ellipse proxy, and spin compensation controller can be used for a di↵erent object

of a simple food box. The robot successfully pushed this box using the same behavior

components as with the television remote. The results for a trial with this setting are

shown in Figure 19.

We investigate the same manipulation settings of overhead push, ellipse proxy,

and spin compensation controller for pushing a simple, white dinner bowl. We show
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Figure 18: The first image shows the tracked TV remote pose trajectory. The red
error shows the initial pose. The green arrow is the goal pose. The large jump in
error near time 40 is a result of the TV remote becoming partially occluded by the
robot arm, which results in poor visual tracking performance.

the robot pushing this bowl in Figure 15. The position error for the bowl and the

input velocities during control are shown in Figure 22. We show the tracker output

and rotational velocity estimates of the bowl in Figure 23. Applying this method to

the bowl fails to push the bowl to the desired location. This failure can be attributed

to the symmetric appearance of the bowl, which causes instability in estimating the

object’s orientation by the ellipse perceptual proxy. However, by pushing the bowl

with the overhead push controlled by the centroid controller the robot can correctly

position the object. We show error results and input velocities for these settings in

Figure 24.

Following the success of the centroid controller in pushing the bowl, we investigate

its use with the overhead pushing behavior primitive to push the television remote.

Unsurprisingly, the centroid controller quickly loses contact with the remote since the
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Figure 19: The first image shows the tracked box pose trajectory. The red error
shows the initial pose. The green arrow is the goal pose. The second image is error
in the food box position and the third shows change in orientation from the initial
orientation.

visually estimated centroid is not the center of rotation and trying to push in line

with it fails to compensate for the object’s rotation. Figure 25 shows position errors

and input velocities from the experiments.

3.5.2 Behavior Primitive Evaluation

We now examine using the gripper sweep behavior primitive with the controller proxy

pairs. Following the success of positioning the TV remote with the spin compensa-

tion controller and overhead push, we tried the same setup with the gripper sweep

behavior primitive. This performed quite poorly. Partially at fault was the occlu-

sion of the remote by the arm causing unstable state estimates. Additionally the

spin compensating control input, vrot caused somewhat volatile control of the sweep-

ing end-e↵ector, that was much smoother with the overhead push. This could have

perhaps been fixed by changing controller gains, however, we did not investigate this.
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Figure 20: Plot of the input velocities to the arm controller commanded by our
feedback controller during pushing of the TV remote.

Figure 21: Plot of the tracked object velocities for the TV remote.

Figure 22: Position error and input velocities for pushing the bowl using the spin
compensation controller with the overhead push.
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Figure 23: Position and orientation estimates as well as rotational velocities estimates
for pushing the bowl using the spin compensation controller with the overhead push.

Figure 24: Position error and input velocities for pushing the bowl using the centroid
controller with the overhead push.

Figure 25: Position error and input velocities for pushing the television remote using
the centroid controller with the overhead push.
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Figure 26: Position error and input velocities for pushing the bowl using the centroid
controller with the gripper sweep.

Figure 27: The fifteen objects on which the robot performed experiments.

We also examined pushing the bowl using the centroid controller and the gripper

sweep. This method successfully positioned the bowl. We show the position error

and input velocities in Figure 26. The error results and control velocities were quite

similar to those seen in pushing with the overhead push.

3.6 Experimental Validation

We experimentally validate our approach by having a mobile manipulator explore the

possible combinations of a↵ordance-based behavior actions over a set of 15 household

objects, each displayed in Figure 27. For each object the robot attempted at least

one left arm and one right arm push or pull action with every possible combination

of proxy, behavior primitive, and controller. This produces a set of thirty-six possible
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a↵ordance-based behaviors.

For a given object we place it at an initial random position on the table. The robot

generates a random goal position at least 0.2 meters from the current location and

attempts the first instantiated a↵ordance-based behavior. If the execution succeeds

the robot generates a new goal pose as before and attempts the next behavior in-

stantiation with the object positioned at its current location. If the controller aborts

execution prior to reaching the goal the robot will reattempt the current combination

up to two additional times. If the goal is not reached after the third attempt the

robot moves on to the next a↵ordance-based behavior combination. If the object is

knocked o↵ the table or out of a predefined workspace for the robot the robot asks a

human operator to replace the object and continues exploration. If upright objects

were knocked over during the exploration the robot continues to attempt the current

a↵ordance-based behavior. However once the robot completes the current trial, either

by being successful or by aborting three times, the human operator pauses the search

and returns the object to its canonical pose.

We implemented our system on a Willow Garage PR2 robot augmented with a

Microsoft Kinect for visual input. In all experiments ✏x = ✏y = 0.01 meters. Below

we show detailed results of the a↵ordance-based behavior exploration consisting of

more than 1500 total push/pull trials.

3.6.1 Object A↵ordances

For any given object we would like to know the best a↵ordance-based behavior to use

to e↵ectively move it when a given task demands. Here we define the best a↵ordance-

based behavior to be the best choice of controller, perceptual proxy, and behavior

primitive which together produce the lowest on average final position error. Here

we average over trial and workspace location. The best choice of a↵ordance-based

behavior combination for each object along with it statistics is presented in Table 6.
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Table 6: Lowest on average final position error a↵ordance-based behaviors for the
fifteen objects.

Object Name Primitive Proxy Controller Mean Score (meters) Variance
Plate Gripper Sweep Centroid Centroid 0.085 1.99e-05
Towel Overhead Push Centroid Centroid 0.036 5.40e-05

Hair Brush Overhead Push Centroid Centroid 0.136 0.001
Toothpaste Overhead Push Bounding Box Centroid 0.126 0.015
Food Box Gripper Sweep Centroid Centroid 0.056 0.002
Shampoo Overhead Push Bounding Box Centroid 0.159 0.032
Telephone Overhead Push Bounding Box Spin Comp. 0.032 5.21e-05
Soap Box Overhead Push Bounding Box Spin Comp. 0.086 0.003

Mug Overhead Push Centroid Centroid 0.034 2.69e-04
Medicine Bottle Overhead Push Bounding Box Centroid 0.032 9.12e-05

Teddy Bear Overhead Push Bounding Box Centroid 0.083 2.15e-04
Red Bottle Overhead Push Bounding Box Centroid 0.084 0.001
TV Remote Overhead Push Bounding Box Centroid 0.147 0.007

Bowl Gripper Sweep Centroid Centroid 0.020 3.52e-05
Salt Overhead Push Centroid Centroid 0.015 1.02e-04

We note several results: First, we see that the overhead push with the centroid

controller performs best on average for most objects. Only the telephone and soap

box, both of which tend to rotate when pushed, found better average performance

with the spin compensation controller. Additionally the chosen behavior primitives

were all either overhead push or gripper sweep for these objects. We believe this to

be the case, as the fingertip push and gripper pull operate well only in restricted

areas and angles of the workspace due to the constraint on the hand pose. We see

that there is a nearly even split between the use of bounding box and centroid as

perceptual proxy. The sphere is a much more specialized proxy that only works well

on a few objects with mostly spherical shape.

We can gain further insight into the behaviors by examining which a↵ordance-

based behavior combinations produced a final goal error below a specified threshold.

The results for all objects are presented in Table 7. Here we can examine individual

attempts rather than average performance. For example, the TV remote—with it’s

rubber buttons that grip the surface—could only be controlled by the overhead push
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behavior using the spin-compensated controller employing the ellipse proxy. Likewise,

the shampoo was quite poorly controlled: only one behavior combination (overhead-

push, bounding-box, spin-compensation) ever achieved the goal and then only once

out of six attempts. Conversely, the food box could be successfully manipulated

using a variety of combinations with only a slight preference for the same control

combination as the TV remote. By such detailed experimentation and analysis the

robot can develop a set of strategies not only for an initially available set of objects

but also, potentially, for novel objects once the robot gains experience with them. For

example, once a new object is observed to behave like a mug with respect to several

behavior combinations a robot could rapidly develop a strategy for that new object

based upon its familiarity with the mug’s behavior.

3.6.2 A↵ordance-Based Behavior Performance as a Function of Object
Workspace Location

The above analysis averages performance independent of target location under the

assumption that the robot can equally well perform these actions throughout its

workspace. Of course, mechanical limitations make certain actions more di�cult at

di↵erent positions. For example, the fingertip push behavior primitive has di�culty in

pointing the fingertip towards the robot’s torso. Additionally it may be impossible for

the robot to reach objects far to the right with the left arm. Knowing which operations

perform best in di↵erent areas of the workspace is di�cult to predict. We would

prefer learned models of where to apply certain behavior primitives as opposed to the

heuristics previously used (cf. [41]). Having knowledge of which behavior primitive

works best in a specific region of the workspace could be helpful in attempting to

manipulate a previously unseen object. Behavior primitives that have been seen to

consistently fail may be skipped in favor of those more likely to succeed.

To compare the various behaviors we grouped push trials by their starting (x, y)

locations as well as the pushing angle, the angle from the initial object location
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Table 7: Successful (final error within 0.02m or 0.04m of goal) a↵ordance-based
behaviors for each object.

Object Name Primitive Proxy Controller 0.02m 0.04m # Attempts
Plate Overhead Push Sphere Centroid 0 2 5

Overhead Push Centroid Centroid 0 1 6
Fingertip Push Centroid Centroid 0 1 4
Fingertip Push Sphere Centroid 0 1 6

Towel Overhead Push Bounding Box Centroid 1 1 5
Overhead Push Centroid Centroid 0 4 5
Gripper Sweep Ellipse Spin Comp. 0 1 6
Overhead Push Sphere Centroid 0 1 6

Hair Brush Gripper Sweep Centroid Centroid 2 3 6
Toothpaste Overhead Push Bounding Box Centroid 2 2 6

Overhead Push Ellipse Spin Comp. 1 1 4
Overhead Push Centroid Centroid 0 3 6

Food Box Overhead Push Ellipse Spin Comp. 2 2 5
Gripper Sweep Centroid Centroid 1 1 4
Overhead Push Sphere Centroid 1 1 6
Overhead Push Bounding Box Centroid 1 2 6
Overhead Push Bounding Box Spin Comp. 0 3 6
Overhead Push Centroid Centroid 0 1 6

Shampoo Overhead Push Bounding Box Spin Comp. 0 1 6
Telephone Overhead Push Centroid Centroid 0 3 6

Overhead Push Bounding Box Spin Comp. 0 3 4
Soap Box Overhead Push Bounding Box Spin Comp. 0 2 6

Gripper Sweep Bounding Box Centroid 0 1 6
Mug Overhead Push Bounding Box Centroid 2 2 5

Overhead Push Sphere Centroid 2 2 6
Overhead Push Centroid Centroid 1 2 4
Gripper Sweep Bounding Box Centroid 0 3 6
Gripper Sweep Centroid Centroid 0 1 4
Gripper Sweep Bounding Box Spin Comp. 0 1 6

Medicine Bottle Gripper Sweep Sphere Centroid 3 3 6
Gripper Sweep Centroid Centroid 1 2 5
Overhead Push Bounding Box Centroid 1 5 6
Gripper Sweep Bounding Box Centroid 0 3 6

Teddy Bear Overhead Push Centroid Centroid 3 3 6
Gripper Sweep Ellipse Spin Comp. 0 1 6
Gripper Sweep Bounding Box Centroid 0 1 5

Red Bottle Gripper Sweep Centroid Centroid 1 1 5
Overhead Push Centroid Centroid 0 3 6
Gripper Sweep Bounding Box Centroid 0 1 6
Overhead Push Bounding Box Centroid 0 1 6

Table continued on next page
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Table 7 (continued)

Object Name Primitive Proxy Controller 0.02m 0.04m # Attempts
TV Remote Overhead Push Ellipse Spin Comp. 0 3 6

Bowl Overhead Push Ellipse Spin Comp. 2 3 6
Overhead Push Bounding Box Centroid 2 3 6
Gripper Sweep Centroid Centroid 1 3 3
Overhead Push Centroid Centroid 0 1 4
Gripper Sweep Bounding Box Centroid 0 1 6

Salt Overhead Push Bounding Box Spin Comp. 2 2 6
Gripper Sweep Bounding Box Centroid 2 3 4
Overhead Push Centroid Centroid 1 2 2
Overhead Push Bounding Box Centroid 1 1 4
Gripper Sweep Centroid Centroid 0 2 6
Gripper Sweep Bounding Box Spin Comp. 0 1 6

Figure 28: Best on average performing behavior primitives for di↵erent initial lo-
cations and pushing angles. Green is gripper sweep. Blue is fingertip push. Red is
overhead push. Yellow is gripper pull. Bottom of the image is closer to the robot
(smaller x). Left of the image is left for the workspace (positive y).
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pointing towards the goal position. We quantized initial x and y locations to the

closest 0.05 meter value and angles to the closest of eight directions at 45� increments.

We visualize the best on average performance at each location and angle between the

four behavior primitives in Figure 28. We note how at the edges of the workspace

farthest from the robot the gripper pull behavior primitive performs best on average.

The robot has discovered that at the farthest extent of its workspace the gripper pull

behavior is the most e↵ective choice it can make to push or pull an object to a desired

location. We can perform similar analysis to allow the robot to automatically select

between the left and right arms.

3.7 Discussion

We have presented a novel behavior representation by which a robot can systemati-

cally explore the a↵ordances of objects. Our method allows us to find the most likely

to succeed behavior as a function of object instance or location in the workspace.

This representation forms the basis for all learning presented in the chapters follow-

ing below.

48



CHAPTER IV

LEARNING CONTACT LOCATIONS FOR PUSHING

AND ORIENTING UNKNOWN OBJECTS

The ability to push objects purposefully can be of great utility to robots in performing

many tasks of daily life, whether setting a table or searching through a cupboard or

drawer. When performing these pushing tasks in real homes and other open, human

environments a robot will often encounter novel objects it has never manipulated

before. The goal of this chapter is to introduce a learning method by which a robot

learns how to predict the e↵ect of pushing actions on novel objects based upon object

shape.

The approach developed here may be considered as an alternative to complete

physical simulation. Physical models require specification of typically unobservable

properties of the object such as support locations and friction distributions. For an

unknown object these properties cannot be deduced without interactive experimen-

tation. Even if a physical model is available, simulation may not be su�cient in

solving the pushing control problem since many e�cient solutions require simplifying

assumptions of both the object and the supporting surface [75, 72, 94].

As an alternative to using a complete physical description, a robot can compute

visual cues directly from camera input. Object shape encodes valuable informa-

tion about e↵ective pushing locations. In this chapter we develop a method for

autonomously learning a shape-based push-prediction function that can be easily ap-

plied to new objects and whose applicability can be quickly ascertained through a

small number of experimental manipulations. As an example, consider the scenario

depicted in Figure 29a and 29b where the robot is pushing a hair brush. If the contact
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(a) (b)

(c) (d)

Figure 29: Example Pushing instances. The first two images are two consecutive
frames captured while the robot pushes the large hair brush from an unstable straight-
line pushing location, which induces a rotation of the object. The second two frames
show the robot pushing a soap box from a stable pushing location. In both examples
the red line shows the vector from the estimated object center to the goal location
denoted as the red circle.

between robot and object were to move a small amount to the left or right, the object

would rotate significantly. Compare this to the example shown in Figures 29c and 29d.

In this case a small variation in contact position will cause a relatively minor change

in the pose of the object and it will essentially continue along the current pushing

direction. Depending on the current task of the robot, it may wish to either push an

object to a new location or rotate the object to a di↵erent orientation. As such, a

robot capable of correctly choosing contact locations for straight-line pushes, as well

as orienting pushes on unknown objects will have greater success in pushing objects

than a system that does not directly reason about such contact locations.
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We use a data-driven approach where the robot learns good pushing locations by

interacting with objects during exploration. Each time the robot pushes an object

it records both a shape description centered at the push contact location orientated

towards the object’s center. The robot then pushes the object at the selected location

and computes a “push score” measuring the quality of the push. The push score

encodes the robot’s ability to either push the object along a straight path or to rotate

it in a controlled manner. These shape features are extracted in such a way that they

capture the necessary details of the object, while being able to generalize to novel

object instances as well as novel object classes. As the robot interacts with more

objects in more conditions, it uses non-linear regression to learn prediction functions

for estimating these two push scores. The procedure for operating on a novel object

or a previously seen object is identical, allowing the robot to seamlessly deal with

new and old objects alike.

When presented with an object, whether new or previously encountered, and

a desired pose the robot extracts shape features from all locations on the object

boundary and uses the learned prediction function to estimate push-stability and

rotate-push scores for each of these locations. The robot can then use a high scoring

orienting-push location to rotate the object to a pose, such that a su�ciently good

stable push location aligns with a straight line trajectory to the goal pose. The robot

then performs the orienting push and straight line push, using the same feedback

controllers as from training, to position the object as desired in its workspace.

This majority of this chapter has been published as the works [39, 38]. The re-

mainder of this chapter continues as follows. Section 4.1 gives details of the scoring

function used for the learning task, our shape features, and the method used for re-

gression. We describe implementation details in Section 4.2. We validate our learning

method o✏ine in Section 4.3 and present the results of all robot experiments in Sec-

tion 4.4. Finally, we conclude and discuss this work in the broader context of our
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research program in Section 4.5.

4.1 Learning Task

We formulate our learning task as the estimation of a function f : Rm ! R, given

n training example pairs (zi, si), i = 1, . . . , n, zi = [zi1, . . . , zim] 2 Rm, si 2 R. All

training pairs are collected autonomously by the robot through exploration with given

training objects. The target value s encodes the quality of the push, while the input

feature z encodes the overall shape of the object of interest and the local shape for

the currently chosen pushing contact location. In the remainder of this section we

first describe the details of the scoring function used for straight line pushing, as well

as the scoring method for orienting pushes. We then explain the shape features used

and finish the section with an overview of support vector regression (SVR), which

performs the estimation of the function f .

4.1.1 Pushing Score Functions

We define our push-stability score to penalize pushes which deviate from the desired

straight-line trajectory. We thus compute this score as the average distance of the

observed object trajectory from the desired pushing trajectory. Equation 14 precisely

defines this notion:

ss =
1

K

KX

k=1

dist(X[k], `p) (14)

where X[k] is the estimated (x, y) centroid location of the object in the table frame at

time k, `p is the line passing through the objects initial location X[0] and the desired

goal location X⇤, and dist is the Euclidean distance.

Figure 30 visualizes the scoring function for two synthetic trajectories. While both

trajectories reach the desired goal location, the green trajectory follows the desired

straight line trajectory more closely. The computed scores s0s = 0.62cm for the green

trajectory and s1s = 3.94cm for the red trajectory reflect our preference with the green
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trajectory receiving the lower score. There are a number of reasons to prefer this

scoring measure to something simpler such as final position error. First, it allows the

robot to have a more accurate prediction of how the object will behave when pushed.

This is important for collision avoidance, where straight line push trajectories allow

the robot to avoid pushing an object into other objects in the environment or o↵ of the

supporting surface. Additionally, the score allows the robot to predict how an object

should move, allowing the robot to abort pushes early if they deviate significantly

from the straight line path.
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Figure 30: Two synthetic push trajectories going from initial location in the bottom
left to the goal location (star) in the top right. The red trajectory receives a push-
stability score of 3.94cm while the straighter green trajectory receives a score 0.62cm.

For the task of learning where to push in order to rotate an object to a desired

heading we used the simple score of net change in orientation between the initial pose

and final pose. Ideal orienting pushes should not only rotate the object, but also

produce as little translation of the object position as possible. While this score can

not di↵erentiate between pushes which rotate the object while keeping the center fixed

with those that also move the object, we found the simple scoring function su�cient

for di↵erentiating good and bad pushing contact locations. This reflects the nature of

the feedback controller we used for orienting pushes, which tends to only cause objects

to rotate, when they do not translate (c.f. Section 4.2.2). Thus penalizing translations
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explicitly adds unnecessary complication. Formally the orienting push score is sr =

|✓[K]� ✓[0]| where ✓[K] is the object’s orientation defined in the supporting plane at

final time index K and ✓[0] is the orientation at the initial time step prior to pushing.

(a) (b) (c)

Figure 31: Local boundary selection and local feature descriptor extraction. The red
points correspond to the 2D boundary of the object in the table plane. The magenta
point shows the currently selected pushing location. The blue lines in 31a denote the
dominant orientation of the local coordinate system towards the center of the object,
as well as the distance in local y-direction used in selecting the green boundary points.
We center a 2D histogram in this local frame and compute the distribution of the
local boundary points.

4.1.2 Shape Features

Our feature extraction takes as input the point cloud associated with the segmented

object of interest. We compute both local and global descriptions of shape encoded in

a coordinate frame defined by the object center and chosen pushing contact location.

We encode local object shape with a small 2D histogram, while we use a slightly

modified version of the popular shape context feature for global object shape [8].

Given a 3D point cloud of an object we project all points to the 2D plane defined by

the supporting surface and extract the boundary of this projected point cloud. The

evaluated pushing location defines a specific point on the boundary. This unique point

marks the center of the local coordinate system. The positive x-direction is oriented

from the pushing point to the object center creating a consistent frame across objects
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(a) (b)

Figure 32: Global shape feature extraction and descriptor. The pink line in 32a
represents the zeroth bin direction of the shape context feature aligned to the center
of the object. 32b shows the resulting two-dimensional array. A rasterized single form
of this is used as the feature descriptor.

of similar shape.

To build the local feature descriptor we walk along the boundary to the left and

right sides of the pushing point, selecting all points within a 0.05m band in the local

y-direction around the chosen contact location. We visualize the point selection in

Figure 31. We select these local points as they best define the object geometry with

which the robot end-e↵ector is most likely to interact while performing the pushing

operation. These local points are then encoded into a 6⇥ 6 2-dimensional histogram

with uniform bin sizes. An example histogram is shown in Figure 31c.

We again use the boundary of the object as extracted above, however all points

are kept as input to our shape context feature, as opposed to only the points near the

pushing location used for the local descriptor. For the given set of boundary points

we follow the standard shape context extraction method: we compute the distance

and angle to all other points on the boundary and a build a log-polar histogram of

the distribution of all of the points. The polar coordinates allow for the shape to be

encoded in a way that easily transforms between di↵erent contact locations. In order
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to make this alignment consistent the first indexed angular bin of the histogram starts

at the angle pointing from the contact location towards the 2D center of the original

point cloud. The log transform of radial bins creates a more detailed description of

the shape close to the contact location while points farther away are encoded more

coarsely. Our global histogram has 12 orientation bins and 5 radial bins for a final

histogram of size 60. Thus our final combined local-global shape descriptor has 96

dimensions. We visualize global feature extraction and the corresponding descriptor

in Figure 32.

4.1.3 Support Vector Regression

We now turn to the estimation of the function, f(z) = s, which predicts the push

stability score, s, from the object shape feature, z, defined at a potential push contact

location. We can estimate f using kernel support vector regression. The regression

function takes the form:

f(z) =
nX

i=1

↵iK(z, zi) + b (15)

where K(z, zi) is a positive semi-definite kernel comparing the similarity between the

test example z and training examples zi, and b is a constant o↵set.

One can see that the prediction is largely based on similarity. In the extreme

case that a testing example is only similar to one training example, such a function

would be similar to nearest neighbor: predicting the test example by the value of the

training example most similar with it. In general cases, the prediction is smoothed

by the weighted average of similarities with multiple training examples, thus reduc-

ing the chance of over-fitting to a particular example and achieving provably better

performance than nearest neighbor approaches.

The parameters ↵ are found through a quadratic programming formulation. This
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quadratic programming formulation is proven to be equivalent to the functional min-

imization problem in the reproducing kernel Hilbert space [45]:

min
f2H

K

X

i

L✏(f(zi), si) + �kfk2H
K

(16)

where HK is the reproducing kernel Hilbert space spanned by the kernel K, kfk2H
K

is

the Hilbert space norm of f which encodes the smoothness of f , � is a regularization

parameter on this smoothness norm (denoted C in the dual quadratic programming

formulation and in Section 4.2), and

L✏(f(zi), si) =

8
><

>:

0, |f(zi)� si|  ✏

|f(zi)� si|� ✏ |f(zi)� si| > ✏
(17)

is called the ✏-insensitive loss function.

Support vector regression essentially finds a function that both fits the training

data well, and is su�ciently smooth, as constrained by the Hilbert space norm term

kfkH
K

. Since such kernel methods are very flexible estimators that can fit almost

all smooth functions, the L✏ loss function is designed so that the function does not

have to fit exactly to the training data. This reduces the chances of over-fitting

and improves generalization performance. In our experiments we observed that the

✏-insensitive loss outperformed traditional L1 and L2 loss functions.

The kernel we use is the exponential �2 kernel [45]:

K(zi, zj) = exp

 
��

dX

k=1

(zik � zjk)2

zik + zjk

!
(18)

a proven excellent kernel for comparing histogram features that has been widely used

in computer vision [113]. The parameter � controls the width of the kernel, necessary

when combining multiple kernels. This kernel corresponds to a symmetric version of

the Pearson �2 test to determine whether a histogram comes from a certain probability

distribution and has nice properties such as striking a good balance between large and

small bins in the histogram, as well as being well-defined everywhere (as opposed to
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the commonly used KL-divergence). We use separate kernels for the local and global

features and take a weighted sum of these two measures as the ultimate similarity.

Details of the learning parameters used are given in Section 4.2.3.

4.2 Implementation

We collected all pushing data using a Willow Garage PR2 robot. We performed all

experiments using common household objects in the Georgia Tech Aware Home. All

perception was conducted using a Microsoft Kinect sensor mounted on the head of

the PR2. We segment the supporting table, robot arm, and object of interest from

the point cloud captured from the Kinect and track the object throughout the course

of pushing. For all experiments in this work the 3D centroid of the object estimates

the location and an ellipse fit to the object point cloud determines orientation. For

object tracking in our experiments we used the ellipse perceptual proxy defined in

Chapter 3.3.

4.2.1 Straight Line Pushing

Straight line pushing is performed using the centroid alignment feedback controller

define in Chapter 3.2.2, which attempts to align the tip of the robot gripper with

the vector passing through the centroid of the object towards the goal, while pushing

towards the goal location. We visualize this control law in Figure 14.

The hand configuration used can be seen in Figure 29. We orient the hand so

that the closed fingertips of the robot gripper are in contact with the broad side of

the hand facing up. We point the robot’s hand down to make contact with the table

in order to better manipulate low profile objects. This is a slightly modified version

of the fingertip push behavior primitive discussed in Chapter 3.4.

To directly examine straight line pushing for a given object boundary location,

we generated a goal location on the table 30cm past the center of the object along

the vector formed by the sampled boundary location and the object center. This is

58



a natural choice for a straight line goal, given the controllers design to push through

the center of the object towards the goal location. We stopped all pushing trials after

five seconds in order to have consistent trial lengths for all samples. For each object

the robot autonomously attempted between 19 and 43 trials. The robot collected

a total of 163 pushing trials. The robot performed pushing trials with six di↵erent

objects: a large brush, a small brush, a toothpaste tube, a box of soap, a food box,

and a camcorder. We display the objects in Figure 33.

Figure 33: The six objects used in the experiments.

4.2.2 Rotate to Heading Pushing

The feedback controller used for orienting pushes applies a forward velocity in the

robot’s gripper frame proportional to the error in current heading, and a rotational

velocity of the end-e↵ector to track the rotation of the object. These feedback laws

are defined as:

ux[k + 1] = �g|✓⇤ � ✓[k]| (19)

u![k + 1] = ��s · ✓̇[k] (20)

where ✓[k] and ✓̇[k] are the estimates of the object orientation and angular velocity

in the table frame, ux[k + 1] is the forward velocity applied in the robot’s gripper
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frame and u![k + 1] is the desired rotational velocity of the end-e↵ector about its

vertical axis. This controller does not attempt to force a rotation on the object where

it does not naturally rotate. Instead it pushes through the chosen location and, if

the object begins to rotate, follows the dynamics of the object rotating the robot’s

wrist to maintain contact with object boundary. For all experiments we set the gain

�g = 0.1 and �s = 0.9 which were set by hand to give good performance on a number

of test objects. We visualize this control law in Figure 34.

Figure 34: Visualization of the rotate to heading feedback control policy. The green
arrow depicts the forward motion term in the end-e↵ector (blue) frame of the con-
troller. This forward motion is proportional to the di↵erence between the current
object heading ✓ (green solid) and desired orientation ✓⇤ (dashed green line). The
yellow arrow atop the end-e↵ector shows the wrist rotation used to follow the observed
rotation of the object.

The robot hand was oriented so that the fingertip touched the table and the

broad side of the gripper was aligned with the object; this is the overhead push

from Chapter 3.4. The robot determines the initial pushing direction of the hand by

first finding the smallest bounding box around the object footprint with its major

axis aligned to the dominant orientation of the object. The robot then selects the

side of the bounding box closest to the current pushing location and chooses the push

direction perpendicular to this side pointing inwards towards the object. We visualize

this procedure in Figure 35. While this may not always produce the best pushing

direction, it is consistent and embedded in the learning framework, which allows the

robot to learn the best rotate pushing locations initialized following this procedure.

60



Figure 35: Visualization of determining the initial pushing direction for rotate pushes.
For the chosen push location, highlighted in red, the green (top) edge of the bounding
box is closest. Thus the initial pushing direction designated by the red arrow is chosen.

The goal heading for all trials was set to be 180� from the initial object heading to

allow for the largest possible rotation of the object and trials were stopped after five

seconds to give consistent samples as before. The robot collected 87 sample pushes

for the camcorder object, 50 samples for the small brush, and 51 trials for each of the

remaining four objects giving a total of 341 samples for learning.

4.2.3 Learning Details

We found that taking binary versions of the shape features helps slightly in learning.

We converted both the local and global histograms to a binary version, where 1

indicates a nonzero bin in the original feature descriptor and 0 indicates a 0 bin in

the original. Each histogram is then normalized, so that the vector sums to 1. For

learning straight line pushes the weight of the global kernel is fixed to 0.7, and that

of the local kernel is 0.3. The ✏ in SVR is fixed to 0.3, and C (the dual variable to

� in Equation 16) is fixed to 2 in all experiments. The kernel widths � for the local

kernel is fixed to 2.5, while the global kernel has a � value of 2.0. We determined

these values through cross-validation.

In order to improve the regression performance of straight line pushing, we take
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the logarithm of Equation 14 as the regression target. Transforms like this are com-

mon in statistics in order to make the target distribution more balanced and better

correspond to model assumptions. In this work, good pushing locations often have

scores less than one-tenth of bad ones; taking the logarithm has the e↵ect of both

accentuating the di↵erences between relatively good pushing locations as well as com-

pressing the mapping of the poor choices to approximately equally bad scores. This

remapping allows the regression to focus more on predicting good locations accurately,

rather than aggressively fitting bad locations well.

Through cross validation on the rotate pushing data we determined a local � value

of 0.05 and the � of the global kernel to be 2.5. We combined these two kernels with

a global weight of 0.7 and the local kernel weighted with 0.3. The SVR loss ✏ value is

set to 0.2 and C = 1.0. As with straight line pushing, we found taking the logarithm

of the orienting push score to improve the learning performance.

4.3 O✏ine Learning Validation

To measure the e↵ectiveness of the learning, we perform leave-one-out cross-validation

on the objects: for each object included in the experiment, we train on examples from

all the other objects and validate on all the examples of the current object. This

corresponds exactly to prediction of pushing behaviors on a novel object. Table 8

presents these cross validation results for straight-line pushing in terms of prediction

error and e↵ectiveness at predicting good push locations. To give some intuition for

the distribution of push-stability scores, we visualize ground truth pushing scores for

all six objects in Figure 36. The high curvature of the brush head, made pushing

on the long side di�cult for the robot. The brush would rotate quite a bit and the

robot would not be able to push it directly towards the goal. However, pushing at

the tip of the handle or the small end of the brush head allowed the robot to limit the

degree to which the object rotated. For the soap box, many points worked well. We
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attribute the high scores near corners to the fact that when pushed at a corner the

object initially rotates, but when the robot compensate to push through the centroid,

it now pushes near the center of the side and the object’s center moves in a mostly

straight line.

The first set of results presents the L1 prediction error of the regression on the log

of push stability score. Each column corresponds to the sequestered object of the leave

one out methodology, while the rows correspond to the di↵erent learning functions.

The support vector regression outperforms competing algorithms producing the best

result on the mean and the 3 di↵erent objects: food box, small brush, and toothpaste.

Linear ridge regression bests on only one object, the soap box, by a fairly small

margin. Boosting stumps performs better on the camcorder and large brush, but

fails to capture the details necessary in the food box and small brush categories,

apparently the more predictable objects as seen from the results. Overall all regressors

outperform the training mean baseline, except in the di�cult case of the camcorder

class.

More important than the actual regression error, however, is consideration of

whether the prediction function actually allows the robot to more rapidly determine

how to push a novel object than random experimentation. To measure this e↵ect,

for every object we trained the predictor on the other objects and then predicted

good places to push. For each such novel object, the robot predicts the push score

on all sampled points from the object boundary and then selects the 3 points with

best predicted push-stability score. We define the planning error to be the actual

error that was observed when the test object was pushed at the selected points. This

corresponds to the error that would have resulted had the robot chosen that point

for pushing.

As shown in the bottom half of Table 8, under such a planning error metric our

approach performed well on all the objects, being able to predict a pushing location
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(a) Large Brush (b) Soap Box

(c) Small Brush (d) Food Box

(e) Toothpaste (f) Camcorder

Figure 36: Visualization of ground truth pushing scores for all six objects. Green
points represent better scores, while redder represent worse.
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Table 8: O✏ine performance of the push stability prediction system. Regression
errors are in the log-space of the predictions. The baseline 0th-order regressor reflects
using the mean output in the training set to predict on all positions in the test
set. Planning error reflects the error the robot would have incurred, had it used the
predicted best, second best, or third best location (from the kernel SVR regressor)
to push. As one can see using the predictor o↵ers significantly lower pushing errors
compared with pushing at a random location on the object boundary. The learned
regressor also out performs deterministic selection strategies of choosing a minor or
major axis boundary location.

Metric Mean Camcorder Food Box Large Brush Small Brush Soap Box Toothpaste

L1 Regression Error

Kernel SVR 0.720 0.795 0.436 0.714 0.569 1.090 0.717
Ridge Regression 0.744 0.765 0.494 0.749 0.648 1.037 0.771
Boosting Stumps 0.756 0.691 0.602 0.704 0.719 1.060 0.762
Training Mean 0.823 0.781 0.739 0.793 0.636 1.137 0.853

Planning Error in cm

1st Predicted Location 0.347 0.36 0.14 0.61 0.50 0.21 0.26
2nd Predicted Location 0.478 0.64 0.49 0.21 0.96 0.17 0.40
3rd Predicted Location 0.538 1.66 0.10 0.13 1.04 0.12 0.18

Random Location 1.370 1.56 1.30 1.62 1.48 1.31 0.95
Major Axis Location 1.355 2.16 1.76 1.95 1.64 0.44 0.18
Minor Axis Location 0.687 1.51 0.52 0.35 0.34 1.14 0.26

with an error of 0.14�0.61 centimeters. Significantly, if one compares against pushing

at a random location on the shape, the mean pushing error is reduced by 74.7%

(from 1.37cm to 0.347cm) by using the system. The second and third locations have

slightly larger planning errors, but are still significantly better pushing locations.

Even more significant: using the best of the top 3 predictions for each object, the

average reduction in push error was 83%.

We additionally compare to the pre-programmed heuristic of selecting a point on

the object’s boundary lying on the major or minor axis of the object’s footprint. This

selection criteria is a simple geometric feature that requires no learning, but is more

informed than simple random selection. Our method outperforms these baselines in

all cases but one, the small brush category. However, this is not a damming results as

our method produces its worst performance on this category and while the minor axis

location is better than any of the top three determined by our learned method, we

still outperform the major axis location selection. On average the top ranked pushing
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location of the learned regressor out performs the major axis push location by 74.4%

and the minor axis push location by 49.5% (from 0.687cm to 0.347cm). This result

shows the feasibility of learning to predict from shape descriptions where best to push

on a new object given experience with other objects of di↵erent shapes. Finally, the

ability to predict the outcome for all boundary points makes the planning robust for

scenarios where external constraints might prevent the robot from pushing at certain

locations.

4.4 Robot Results

To measure the e↵ectiveness of the learning on the robot, we use the learned regression

functions to perform push tasks on novel objects. A leave-one-out setting is again used

where the robot learns the regressor on five of the objects and performs new pushing

tests on the held-out object. When performing push tests the robot extracts features

from the sampled boundary points of the current object. It then predicts the push

score for each point on the boundary and chooses the point with the best score (lowest

for straight-line, highest for orienting pushes) as the initial contact point. A push is

then attempted at this contact location, with the goal defined as either a straight

line extending 30cm through the center of the object (for straight-line pushes), or

180� from the current heading (for orienting pushes), the same procedures as used for

training in both cases.

In order to test the e↵ectiveness of the learned prediction functions for each object

we performed 15 new straight-line pushing trials as well as 15 new orienting pushes

on the robot. For straight-line pushes, we reject attempts where the goal poses are

o↵ or near the edges of the table. Additionally, pushes are not attempted if the

inverse kinematics solver fails to give a final position for hand placement. In such

cases the robot then decides on the next best ranked pushing location. If no good

locations are reachable, the object is moved to another position on the table. We
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(a) Large Brush (b) Soap Box

(c) Small Brush (d) Food Box

(e) Toothpaste (f) Camcorder

Figure 37: Visualization of predicted stable push scores for all six objects. Green
points represent better scores, while redder represent worse.
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Figure 38: Box and whisker plots of the final position error for learned and random
initial contact location prediction for straight-line pushing. The shaded boxes rep-
resent the pushing locations chosen through the learned regressor, while the unfilled
boxes correspond to random initial locations. The vertical axis represents final posi-
tion error in meters. The horizontal labels are the object categories. The lower most
bar for each plot represents the minimum error for the set of trials, while the upper
most bar is the maximum error. The lowest side of the box corresponds to the first
quartile, the middle line is the median (second quartile), and the top of the box is
the third quartile.

limit the pushes to five seconds, to give easily comparable results. As a comparison,

we additionally performed 15 trials on each object for both pushing tasks choosing

random initial start locations, subject to the same constraints mentioned above. A

detailed explanation of these results follows.

4.4.1 Stable Pushing Locations

We first present results for straight-line pushing. To give some intuition for the

distribution of push-stability scores, we visualize ground truth pushing scores from

the training data for the two objects in Figures 36a and 36b. The high curvature of

the brush head made pushing on the long side di�cult for the robot. The brush would
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rotate quite a bit and the robot would not be able to push it directly towards the goal.

However, pushing at the tip of the handle or at the end of the brush head allowed

the robot to limit the degree to which the object rotated. For the soap box, many

points worked well. We attribute the high scores near corners to the fact that when

pushed at a corner the object initially rotates, but when the robot compensate to

push through the centroid, it now pushes near the center of the side and the object’s

center moves in a mostly straight line.

Contrast these with the visualization in Figures 37a and 37b of predicted push-

stability scores taken from test trials of the same two objects. The colors in the

predicted images have a narrower dynamic range, the greens and reds are not nearly

as bright as those in the ground truth images. We attribute this to the smoothness

constraint enforced in the SVR learning. Nevertheless, the predicted best locations

on the objects correspond well to the ground truth locations with the best scores.

This relative ranking is far more important than the exact prediction of the scores,

as selecting good contact locations instead of bad ones is the ultimate goal of the

learned function.

Examining the predicted push scores in Figure 37 in unison gives us more insight

into what is being learned. We first note that the predicted good locations to push

mostly lie on the narrower sides of the objects or near the center of the longer sides

of the objects. We expect such a result as the robot attempts to push through the

center of rotation of the object. However, as shown above in Section 4.3, we know

that the predicted locations are better than simply choosing the point closest to the

center of the major or minor axis. Looking at the food box results in Figure 37d

shows that the best predicted locations are all slightly o↵ center. If we look at these

points jointly we see that they align to a slight, counter-clockwise rotation away from

the center of the sides. While we are uncertain what to attribute this result to, we

can provide a possible explanation.
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There is likely some systematic bias in the way the robot places its hand with

respect to the object given a selected contact point. The system would inherently

learn this bias and learn to predict locations counter-clockwise to the actual initial

contact point as good pushing locations. Additionally, reaching to points on the far

side of the object during training was often less successful during training and perhaps

this kinematic constraint provided a bias in the training data collected causing the

observed deviation from the centers. Whatever the cause, the important thing to

remember is that autonomous learning provides a means of directly incorporating

these issues into the decision making of the robot. A number of interacting processes

give rise to a good, stable push. The learner does not need to tease these processes

apart to find good locations for pushing. As long as the procedure used during data

collection and testing is consistent the robot must only learn to predict the combined

result.

Figure 38 shows quantitative results for the test trial experiments. We plot pairs

of box and whisker plots of the final position error for each test object. We plot all

learned results as shaded boxes and random initial locations as unfilled boxes. We

see that the learned results are better in many cases. First, the median result for the

learned predictor outperforms the random contact location selection for all objects.

In the case of the small brush and toothpaste, the learned prediction function has

consistently lower error at all performance indices. The improvement is particularly

pronounced for the small brush, where the top 13 trials consistently produced low

errors. Performance on the food box and large brush is marginally better than ran-

dom results, while the camcorder and soap box have close to identical performance.

We attribute the di�culty in predicting the camcorder to its very di↵erent friction

properties than all other objects used. The soap box results are also not surprising,

since the performance is quite insensitive to initial contact location, as can be seen in

Figure 36b. We note that many of the large errors come from pushes that result in
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Figure 39: Box and whisker plots of the final heading error for learned and random
initial orienting push location prediction for straight-line pushing. The shaded boxes
represent the pushing locations chosen through the learned regressor, while the un-
filled boxes correspond to random initial locations. The vertical axis represents final
heading error from 0 radians to ⇡ radians. The horizontal labels are the object cate-
gories. Details of how to read the box plot can be found in the caption to Figure 38.

the object being pushed over a relatively large distance, but not towards the desired

goal location. Regardless, the experiments demonstrate our ability to automatically

learn stable contact locations for pushing from shape information; most importantly

they demonstrate that learning improves the overall pushing performance achieved

by the robot.

4.4.2 Orienting Push Locations

We present quantitative results for all rotate pushing test experiments in Figure 39.

As before the shaded boxes represent learned results, while the unfilled boxes cor-

respond to trial from random initial locations. The vertical axis represents final
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heading error in radians. We note that the learned predictor consistently outper-

forms random initialization on the toothpaste, food box, small brush, and soap box

categories. The performance on the toothpaste tube is particularly impressive with

the best performance of the learned location achieving 0.80 radians of error, while

the best performance for a random location was 1.38 radians. This represents a 42%

decrease in final error. Performance is mostly equal on the remaining large brush and

camcorder categories. We visualize the ground truth orienting push scores used for

training in Figure 40. Example predicted scores for the objects appear in Figure 41.

We see that while not all good pushing locations are correctly predicted, such as the

center of the long side of the toothpaste and large brush. However the predicted

best pushing locations correspond to good locations for orienting pushes based on the

ground truth examples. While having more options for good pushing locations avail-

able to the robot would be ideal, we believe being that his predictor errs cautiously

in generating false negatives instead of false positives.

Unlike in straight line pushing, the overall performance achieved across di↵erent

categories is quite di↵erent for the orienting pushes. The food box never achieves a

final error less than 2 radians, while the small brush attains better than 2 radians

of error in just under half of all trials. The variability is much higher for the other

objects, with both the random and learned predictors achieving a wider range of

performance. While the rotation learning does appear to produce better results for

some objects, the lack of increase on three of the objects indicates that some important

information is not being encoded.

Figure 41 paints a very clear picture of what the robot has learned. We see that

good locations are close to the end of the long axis of the objects. We would expect

such a result, since points far from the center of rotation, when pushed will create a

lever arm causing the object to rotate. Perhaps surprisingly the robot does not push

at points at the extremes of the sides. We can attribute this to the fact that when
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(a) Large Brush (b) Soap Box

(c) Small Brush (d) Food Box

(e) Toothpaste (f) Camcorder

Figure 40: Visualization of ground truth rotate push scores for all six objects. Green
points represent better scores, while redder represent worse.
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(a) Large Brush (b) Soap Box

(c) Small Brush (d) Food Box

(e) Toothpaste (f) Camcorder

Figure 41: Visualization of predicted rotate push scores for all six objects. Green
points represent better scores, while redder represent worse. Black circles highlight
the best ranked orienting push location.

74



pushing near the end of the side the robot is more likely to loose contact with the

object while pushing and be less able to push the object to the desired heading. This

represents a significant advantage of autonomous learning over direct reasoning about

the physics of the object. A physics simulation could easily state that applying a force

at the farthest edge of the object side induces the largest rotation; however this ignores

the methods by which the robot is pushing. Even if the simulation was performed

with the full robot model it is still likely that a more aggressive placement would be

determined, since the causes of noise in the real system, such as the series elastic robot

transmissions and nonuniform support friction would be di�cult to correctly model

in the simulator. This result reinforces those shown above for stable pushing, where

learning produced results which may not have been obvious to a human programmer.

We note that not all locations on an object are selected that fit these criteria. For

example looking at the food box in Figure 41d and soap box in Figure 41b we see

only the bottom left and top right sides are highlighted in green. This corresponds

to only selecting points which cause the object to rotate clockwise. We believe this

to be a result of the data collection. For simplicity in data capture we only collected

data pushing from one side of most objects as seen in Figure 40. This exposes a limi-

tation of our feature which is only rotationally symmetric, not reflectively symmetric.

We could potentially overcome this bias by either collecting training data from the

opposite side of the object or simply reflecting the training data to remove this bias.

Another additional correction could be in learning to predict the signed change in

orientation, allowing the robot to separately model clockwise and counter-clockwise

rotation. Regardless, we see that for the toothpaste tube in Figure 41e, the small

brush in Figure 41c, and to a lesser extent the large brush in Figure 41a the robot

predicts good locations to push on both long sides of the objects near the ends. Thus

su�cient information is still present for this reflection to be learned at least in part.
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4.5 Conclusions

We have presented a data-driven approach for learning good contact locations for

pushing unknown objects. We demonstrate that a combined description of an ob-

ject’s local and global shape properties are e↵ective in predicting initial contact lo-

cations for pushing an object in a straight line, as well as rotating an object to a

new orientation. These results were validated with extensive experimentation on a

mobile manipulator robot operating on common household objects. Importantly we

have shown that what is learned di↵ers from what a human programmer would have

determined based on first principles of the object’s physics. This reflects the learners

ability to integrate the e↵ects of numerous separate processes expressed during the

training trials. This highlights the importance of autonomous learning over simula-

tion, where such processes may be idealized, or human labeling for o✏ine learning,

where such processes may never be considered.

While the results presented in this chapter use only two a↵ordance-based behavior

instances: (ellipse proxy, centroid alignment, fingertip push) and (ellipse proxy, rotate

to heading, overhead push), the method is not limited to these choices. Any behavior

as defined in Chapter 3 could be used. In Chapter 5 below we examine transfer be-

tween behaviors of the prediction functions learned in this chapter. We also examine

other elements of knowledge transfer using our a↵ordance-based behavior representa-

tion.
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CHAPTER V

MODEL LEARNING AND KNOWLEDGE TRANSFER

FOR MANIPULATION OF NOVEL OBJECTS

Robots acting as assistants in homes, o�ces, and other human workplaces will regu-

larly encounter new objects. In order to skillfully manipulate these objects with little

experimentation the robot should leverage knowledge from previous experiences. Ad-

ditionally, given more opportunities to manipulate a specific object the robot should

improve its ability in e�ciently achieving its task. Additionally, we desire for the

behaviors being learned to map to higher level planner actions. While all pushing up

to this point has focused on straight-line trajectories we introduce a method which

can be given an arbitrary desired trajectory.

We presents as the first contribution of this chapter a framework for learning dy-

namics models of objects for use in robot manipulation. We show how these models

can be used to perform visual feedback control on the task of pushing an object to

a desired tabletop location. We make use of the model predictive control (MPC)

paradigm to e�ciently replan end-e↵ector controls solved over a short time horizon.

This provides the robot a desired reference trajectory to follow, breaking from the

required straight-line paths of previous chapters. At the same time the robot can still

use feedback provided from vision: a benefit over traditional open-loop model based

planning methods. MPC additionally provides a means of incorporating learning into

your control framework. At the heart of MPC is the system dynamics model. By

learning models specialized to objects or groups of objects the robot should be able

to improve performance in pushing these objects with more experience. We compare

77



performance of learned models in feedback control to using model-free feedback con-

trollers, open-loop controllers, and feedback controllers with naive, analytic dynamics

models. We give a detailed formulation of our model predictive control problem in

Section 5.1 and initial evaluations of this framework performed on a Willow Garage

PR2 Robot are given in Section 5.2.

Our second point of investigation examines methods for transferring learned dy-

namics models to novel objects. We wish for the robot to leverage the learned dy-

namics models in order to manipulate novel objects with lower error than if it had

not performed any learning. Prior to interaction, shape is the most indicative feature

of how an object will behave when manipulated. As such we examine how a robot

can leverage shape descriptions in selecting from a set of learned dynamics models.

Section 5.3.2 describes our approach to knowledge transfer using shape information.

Once manipulation has been attempted the robot can make use of the observed ob-

ject dynamics to check against the learned models, providing an additional means of

selecting the best possible model for use in pushing a particular object.

In some situations a robot may wish to manipulate an object it has already en-

countered in a novel manner. The robot may be constrained in such a way that it

should use a particular behavior primitive, which it has yet to try on the object at

hand. Can the robot transfer knowledge learned about this object in using a di↵er-

ent behavior primitive or control policy? We continue our investigation of knowledge

transfer in Section 5.4 where we focus on transferring the contact location information

learned in Chapter 4 to di↵erent control policies and behavior primitives. Implemen-

tation details of the system used for experiments are described in Section 5.5 Finally,

we conclude in Section 5.6.
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5.1 Model Predictive Controller

We demonstrate our model learning for control framework on the task of pushing

objects to desired 2D locations on a table. We design our control task to follow a

desired trajectory XD by minimizing the cost function1:

c(X) =
HX

k=1

||X[k]�XD[k]||22 (21)

We wish to solve for the desired control inputs, U⇤, that minimize Equation 21 given

fixed initial stateX[0]. At the same time the solutions most be constrained to obey the

system dynamics and actuator limits. We formally define this optimization problem

as:

minimize
X,U

c(X)

subject to X[k + 1] = f(X[k], U [k])

|U [k]| � Umax8k = 1, ...H

(22)

where f(X[k], U [k]) describes the discrete time behavior of the system. For our

pushing system we define the system state at time k to be the 2D pose of the object

and the 2D pose of the end-e↵ector in the robot’s torso frame:

X[k] = (xO[k], yO[k], ✓O[k], xEE[k], yEE[k],�EE[k])
T

The control input for a given time step are the linear and rotational velocities con-

trolling 2D position and orientation of the end-e↵ector:

U [k] = (vx[k], vy[k], v�[k])
T

We solve this optimization problem using the sequential quadratic programming

(SQP) solver of Kraft [64]. This solver approximates all constraints with a linear

model and as such any function f used for estimating the dynamics must be di↵eren-

tiable with respect to the decision variablesX and U in order to solve the optimization

1We only specify desired 2D positions of the object, the desired orientation of the object remains
unconstrained. Additionally while we only examine straight-line trajectories in this thesis, the
controller can in theory take arbitrary, smooth trajectories as input.
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problem quickly. A desired object trajectory, XD, is generated by breaking the vector

from the object’s current pose to the goal position. Points are chosen evenly along this

line such that the object moving slightly slower than the maximum control velocity

could travel the distance between each point.

The method as proposed so far simply gives us an optimization based planner

for following a desired trajectory. In model predictive control a control sequence is

planned using some model of the underlying system, which is known to be wrong in

some way [10]. Often the error in modeling is assumed to be some noise in sensing or

actuation of the system, however the error may also be some systematic simplification

in the dynamics model [57]. These modeling errors are overcome by replanning the

control sequence periodically using a new estimate of the system state. The updated

control solutions is then used changing the original open-loop solution into a feedback

controller. In order to solve the optimal control problem e�ciently a finite look-ahead

horizon, much shorter than the total desired trajectory, is usually used. This allows

the controller to not be myopic in choosing the first control to apply, while not wasting

time solving for controls in the distant future. We examine the performance of our

optimization based planner and the MPC feedback controller in sequel.

5.2 MPC Evaluation with Naive Model

As a first pass validation of our MPC controller we use a naive dynamics model, which

we know to be incorrect. We use a dynamics model which assumes a rigid contact

with the object as defined by Equation 23.
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X[k + 1] = X[k] +

0

BBBBBBBBBBBBBB@

�t 0 0

0 �t 0

0 0 �t

�t 0 0

0 �t 0

0 0 �t

1

CCCCCCCCCCCCCCA

U [k] (23)

It is important to point out how weak this model is with respect to the underlying

mechanics. The model has no knowledge of the forces being applied by the robot

nor even if contact is currently being made. The model also has no ability to encode

information regarding contact and friction between the object and the supporting

surface. Nevertheless when the robot is in a stable pushing configuration with respect

to the object this naive model roughly describes the qualitative behavior of the system.

We evaluate this naive dynamics model both in our proposed MPC controller

as well as in a simple open-loop controller. The open-loop control method plans a

control sequence for an entire desired trajectory using the SQP planner described

above in Section 5.1. An optimal solution to this formulation equates to the robot

simply moving its end-e↵ector in a straight line from its initial placement to the goal

location.

We performed experiments with fifteen di↵erent objects from those shown in Fig-

ure 43. The robot performed at least ten trials with each object. For a given trial the

robot chose a random goal location in the workspace and pushed the object until it

either reached the goal location (within 2cm) or reached an abort condition. For all

experiments object pose estimates were computing using the method described below

in Section 5.5.2. The robot performed all pushes using the overhead push behavior

primitive. Figure 42 summarizes the results of our naive model evaluation. Each box

and whisker plot visualizes the distribution of final position error for a given object
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Figure 42: Box and whisker plots showing final position error for three di↵erent
control methods across 15 di↵erent objects. Dotted plots correspond to centroid
alignment controller, hashed correspond to open loop SQP with the naive model, and
empty correspond to MPC with naive model.
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Figure 43: The objects used to train and validate our model predictive controller.

and control method. A single plot shows the minimum, first quartile, median, third

quartile, and maximum error values reached in the associated experiments. As a base-

line we compare the open-loop and closed-loop model based controllers to a slightly

modified version of the model-free centroid alignment controller2 originally defined in

Chapter 3. The first plot for each object (black dots) corresponds to this model free

control method. The second series of plots (black hashes) shows the results for the

open-loop naive model controller. The final series (empty boxes) corresponds to the

MPC controller with naive dynamics.

The performance of the three controllers varies depending on the object being

manipulated, however we note that the MPC controller almost always has a tighter

distribution of final errors than the two competing methods. While the MPC con-

troller does not always obtain the trial with lowest single error, it has the lowest

median score for all objects except three: the camcorder, the salt container, and the

bowl. All methods perform very well on the salt container and thus the small di↵er-

ence in medians is negligible. The bowl example is one of the best performing for the

centroid alignment controller, with seven of its ten trials performing better than the

2The controller was modified to rotate the wrist while pushing. We describe this modification in
detail along with the motivation for the change in Section 5.5
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median result for MPC. The MPC controller still generally outperforms its open loop

variant on this object and its worse performance is better than the worst attempt for

the centroid alignment controller. The centroid alignment controller’s performance

can be attributed to the ease with which the bowl slips along the edge of the gripper

while being pushed. Since neither model based method attempts to directly com-

pensate for this slip, they more easily lose a stable pushing vector through the bowl

towards the goal position. Nevertheless we clearly see that feedback improves over

the open-loop control. It is less clear why the MPC controller performed poorly on

the camcorder. We attribute this to the centroid alignment controller doing a better

job of staying near the center of the long sides of the camcorder than the MPC con-

troller. This in turn causes the camcorder to rotate less allowing it to more stably

move towards the goal position.

Most surprising was the MPC controller’s dominant performance in pushing the

wooden spoon, shampoo bottle, and cordless telephone. All three of these objects

rotate significantly while being pushed, a phenomenon not modeled at all by our naive

dynamics model. Even the open-loop model based controller is competitive with the

model-free controller on these objects. This supports the results shown in Chapter 3

that the spin compensation controller performs better than the centroid alignment

controller for objects which tend to rotate significantly. It appears that the attempts

to align with the centroid may actually cause the controller to perform worse, than

simply pushing towards the goal from the current hand pose.

The results of this section strongly validate the model predictive control paradigm

for pushing. At the same time these results demonstrate clearly the e↵ect of feedback

over performing a full open-loop plan. The remainder of this chapter examines how

learning can be used to enhance the performance of MPC control.
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5.3 Learning Models of State Dynamics

We seek to improve the performance of our model predictive controller by enhancing

the expressiveness of the underlying dynamics model. This is a task well suited for

machine learning, where the robot can experimentally push an object to collect train-

ing data and learn a model which predicts the behavior of the object as a function

of the current end-e↵ector configuration and control input. In the remainder of this

section we examine several approaches to learning dynamics models along with meth-

ods of transferring this learned knowledge for use in manipulating previously unseen

objects.

5.3.1 Learning Dynamics Models

We wish to learn a dynamics model describing the discrete time state dynamics of

our pushing system X[k + 1] = f(X[k], U [k]). The input space to this system is the

entire workspace of the robot and sampling to fill this entire space would be quite

time consuming. Thus instead of directly learning the system dynamics we seek to

learn the change in system state defined in the object frame. We define this function

to be �XO[k] = fO(Z[k]). Where the superscript O denotes coordinates in the object

centric frame at time k.

�XO[k] = (�xO
O[k],�yOO [k],�⇥O[k],�xO

EE[k],�yOEE[k],��EE[k])
T

and Z[k] denotes the end-e↵ector pose and controls expressed in the object frame:

Z[k] = (xO
EE[k], y

O
EE[k],�

O
EE[k], u

O
x [k], u

O
y [k], u�[k])

T

We can now treat Z[k] as a feature vector for learning �XO. We can then make use

of our predictor fO by transforming the output at each time step back into the global

frame and adding it to the previous object estimate X[k].

An important requirement of our predictor fO is the need to be di↵erentiable

with respect to the decision variables of our optimization problem, X and U . This
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stems from the fact that the dynamics function constrains the decision variables to

follow the expected system behavior. Since all constraints our approximated by a

linear function in the SQP formulation, gradients of these constraint functions must

be used to search for feasible solutions. All training data were collected using the

modified version of the centroid alignment controller defined in Section 5.5. The

motivation for this controller is to ensure adequate sampling of both the linear and

rotational velocities of the end-e↵ector we desire to control. The robot collected ten

example trials for each of the fifteen objects. These data are the same used as the

centroid alignment comparison above in Figure 42.

Figure 44: Box and whisker plots comparing learned and naive dynamics models
with open loop control. Dashed plots correspond to learned SVR hold-out model
dynamics. The empty boxes correspond to the naive model.

Our first learning scenario attempts to learn a single dynamics model using data

from fourteen of the fifteen objects. This is a straight forward leave-on-out valida-

tion setup to examine how well the learned dynamics models scale to novel objects.

We first performed learning using linear support vector regression (SVR). Details of
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support vector regression can be found in Chapter 4. We learn a separate predic-

tor for each of the six dimensions of �XO[k]. We chose ✏ = 0.001 by performing

cross-validation o✏ine with a subset of the data. Figure 44 shows final position error

using this learned hold-out model in the open-loop controller.We see that the learned

model performs demonstrably worse in all scenarios than the naive dynamics model.

We examine a number of possible reasons for this poor performance.

Our first inclination was to examine what performance gain adding feedback would

have. Figure 45 shows results comparing MPC with learned SVR dynamics models to

the naive dynamics model for six test objects. We see that the hold-out model SVR

is only competitive with the naive model in pushing the bowl. We thought the linear

model of the SVR may be insu�cient in capturing the complexity of the dynamics.

To address this we first learned separate models for each object and had the robot

select the best matching model following the method described below in Section 5.3.2.

The results correspond to the third series of box plots in Figure 45. We see that the

performance decreases even further with these models. As such it would appear that

more data is in fact helping the learner perform better for control.

We next examine if there is any sampling bias in the data collected for learning,

which may cause poor models to be learned. We visualize sample distributions for

several objects in Figure 46. We see that the boundaries of all objects are well

sampled with varying push velocity vectors. While this is far from filling the entire

space, it shows no obvious gaps in the data collected. We thus attempted to use more

powerful learning techniques in estimating the dynamics. However neither kernel

support vector regression with a radial basis function kernel nor Gaussian process

regression improved the performance of the estimators. In fact both methods would

often fail to solve the optimization problem with adequate time to perform feedback

control due to the more costly constraint prediction and gradient computations.

As a final attempt at learning dynamics we examine a hybrid approach biased by
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Figure 45: Final position error box and whisker plot for MPC control with learned
SVR dynamics. Dotted plots show MPC with the naive dynamics model. Dashed
plots correspond to MPC with the hold-out SVR model. Empty boxes represent
results for MPC using an SVR model learned from the closest matched shape feature.

the naive dynamics model. To do so we change the targets of our learning problem

from state deltas, �XO, to be the error in the prediction function:

X̃[k + 1] = X[k + 1]� f(X[k], U [k])

The motivation for such a learning problem is that the majority of the complexity

of the underlying dynamics is modeled by the naive dynamics model and thus the

learner has a simpler function to model. We again use linear support vector regression

for prediction. We compare two learning methods: single object class hold-out, as

above, and learning a single model for each object. However, unlike before we remove

the shape matching component to our model selection and use the single object model

trained on the test object. We performed testing for three objects using these dynam-

ics error learning formulations. Results are shown in Figure 47. We see again that the

learning has produced no marked increase in performance over the naive model. It

appears that the noise present in tracking is too significant to be overcome in learning.

Figure 48 shows a typical example of tracking. While both position estimates as well
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(a) Batteries (b) Bear

(c) Shampoo (d) Glad box

(e) Bowl (f) Large Brush

Figure 46: Distribution of sample locations used as training input. Red dots cor-
respond to sample point locations of the end-e↵ector, red lines show end-e↵ector
orientations, and green lines denote push velocity vectors. Object boundaries in blue.
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Figure 47: Final position errors comparing error dynamics learning to naive model
MPC. The first series (slashes) corresponds to MPC with naive dynamics learning.
The second series (dots) shows results for error dynamics learning with a single hold
out model. The final series (blank boxes) shows the results for error dynamics learning
with object specific models.

as the heading estimate appear mostly smooth, the small fluctuations are made more

prominent when the much smaller values of position change and prediction error are

computed. Thus it is unlikely the learning signal is strong compared to the noise

present. Since we have no access to ground truth tracking we can not compute an

explicit signal-to-noise ratio.

5.3.2 Transfer of Learned Models using Shape Features

We propose two methods in which shape information is used in selecting learned dy-

namics models for novel objects. In the first method the robot learns a dynamics

model independently for each object it encounters. When encountering a new object

the robot extracts a shape descriptor describing the object, finds the closest matching

shape in its database, and selects the corresponding dynamics model for use in ma-

nipulation. Alternatively the robot can learn dynamics models jointly across multiple

objects.

Shape features can be used to cluster similar objects into groups. The robot then
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(a) Object x vs time

(b) Object y vs time

(c) Object ⇥ vs time

Figure 48: Example tracking performance on the bear object.
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learns a dynamics model for each of these object groups. The robot can then select

the best matching group model in a manner analogous to the selection method used

for individual objects. Once a model has been selected and the robot performs its

action, the robot can use feedback from the observed manipulation trial to improve

its control. If the observed pushing trajectory could best be predicted by a model

other than the one previously used by the robot, the robot can select this alternative

model for its next pushing attempt.

We use the global feature designed in Chapter 4 for all shape comparisons. We

chose this feature based on its good performance in describing objects for pushing

previously. However, we remove the use of the local descriptor, as we are no longer

trying to reason about the local contact location with the object. For each dynamics

model we created shape exemplars by computing the average shape descriptor among

all training examples. We examined performing k-means clustering to create multiple

exemplars for each object, but in our o✏ine testing this did not change the matching

results. We perform matching by computing the L2 distance between the normalized

shape descriptors.

In order to increase the training data available to learning a single model, shape

clustering can be performed to group objects into shape based classes. A dynamics

model is then learned and matching can be performed just as with the single object

models. Such a shape based model hopes to find a middle ground between over

generalizing across all previously seen objects and having a scarcely sampled model

for a single object. Ideally, such shape based object classes would change as the

robot gained experience with enough objects. In the extreme each individual object

may become its own class when enough training examples were present. However, it

is unclear if such specialized models would be best for use with novel objects or if

more general models may better handle the uncertainty in modeling the new object’s

dynamics. Table 9 shows example clusters generated for a few hold out scenarios. We
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Table 9: Example shape clusters for k = 5 clusters.

Test Object Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Bowl large brush food box large vitamins, bear soap box

mug phone water bottle plate salt
glad, batteries
camcorder
shampoo

Bear large brush food box large vitamins bowl salt
mug phone water bottle plate

soap box
camcorder
glad, batteries
shampoo

Shampoo large brush food box large vitamins bear soap box
mug phone water bottle bowl salt

camcorder plate
glad, batteries

Soap Box large brush food box large vitamins bear salt
mug phone water bottle bowl

camcorder plate
glad, batteries
shampoo

see that the clusters are generally stable with few changes dependent on the hold out

objects. This is a good sign as to the robustness of the descriptor to building models.

While some shape groupings make sense—bowl and plate, vitamin bottle and water

bottle—other groups are less obvious, such as why the bear is grouped with the bowl

and plate.

We present results of MPC with shape-based model selection in Figure 45. As

discussed earlier the performance of this method was worse than both the naive

dynamics model and the lumped hold-out SVR dynamics model. As such we will only

further examine the single object model selection problem, ignoring any evaluation

of the shape clustering methods.

We examine how predictive shape was given models available to the robot. To do

this we compute a score of how predictive each single object model was of the observed
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push trajectory. We use each possible model and simulate an object push trial using

the controls applied from the previous trial. The average prediction error, in terms of

object position, is then used as a scoring function to rank each model. We summarize

results in Table 10. We see that the best ranked model is seldom the model selected

based on object shape. At the same time, for each test object one model ranks best

for a majority of the trials. These results show promise in selecting models based on

post-push analysis. However, the poor predictive nature of the learned models in the

control context should give pause in expecting significant generalization of this result.

The fact that the glad box model is consistently chosen as the most predictive model

lends more support to being cautious in leveraging these results. A variant of this

post-push scoring method could be used as an a�nity score for clustering training

data for model learning. However, models learned in such a way would not be useful

until the object had been manipulated at least once. Thus, we do not examine this

idea further here.

5.4 Transfer of Initial Push Location Models

One finding of the previous section was that the noise currently present in object

tracking prevents an adequate learning signal for learning dynamics models of objects.

However, the results of Chapter 4 show that this noise does not prevent learning from

trajectory wide signals. As such, we wish to examine if the knowledge previously

learned about contact locations could be transferred to the novel MPC controller of

this chapter. We compare using the learned stable-pushing prediction function to

choose the initial contact location to randomly choosing initial contact locations in

several di↵erent scenarios. Notably, the MPC controller with naive dynamics model

was designed and tested for use with the overhead controller, but the contact locations

learning of the previous chapter was done with the fingertip push. The experiments

of this section thus also serve to examine transfer of the learned contact location
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Table 10: Shape based model selection evaluation. For each trial we show the model
selected based on shape in the second column. The third column shows the rank of
this model based on the post-push analysis. The final column lists the model ranked
best by the post-push analysis.

Test Object Selected Model Selected Rank Best Model
Bowl shampoo 12 glad

food box 3 glad
food box 9 camcorder
food box 6 glad
large vitamins 14 glad
shampoo 9 glad
shampoo 9 glad
food box 3 glad
food box 2 glad
food box 2 mug

Bear glad 1 glad
glad 10 camcorder
glad 14 camcorder
glad 3 soap box
batteries 10 glad
glad 7 camcorder
food box 4 glad
food box 3 glad
food box 2 glad
food box 6 glad

Shampoo phone 8 glad
salt 6 glad
batteries 13 glad
batteries 13 glad
batteries 1 batteries
batteries 9 glad
camcorder 9 glad
batteries 11 glad
large vitamins 3 batteries
batteries 5 camcorder
batteries 11 glad
batteries 11 glad

Table continued on next page
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Table 10 (continued)

Test Object Selected Model Selected Rank Best Model
Soap Box batteries 11 glad

batteries 8 glad
salt 4 glad
salt 2 large vitamins
salt 5 glad
salt 7 glad
salt 2 glad
batteries 8 glad
salt 2 glad
salt 9 large brush

Large Brush soap box 8 glad
large vitamins 5 camcorder
soap box 6 phone
batteries 11 glad
batteries 9 glad
batteries 13 glad
batteries 6 glad
batteries 11 glad
batteries 12 glad
food box 3 bowl

Glad Box batteries 13 camcorder
batteries 11 camcorder
batteries 11 camcorder
batteries 9 camcorder
batteries 11 camcorder
shampoo 9 camcorder
shampoo 13 camcorder
food box 1 food box
batteries 9 camcorder
batteries 12 camcorder
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between controllers and behavior primitives. At the same time we examine how well

the MPC controller performs with the fingertip push behavior primitive.

We compare five testing scenarios, each containing ten trials. Figure 49 sum-

marizes the findings of these experiments. We list the five scenarios as 3-tuples of

the form (control policy, behavior primitive, random or learned contact location) in

the same order they appear in the figure: (MPC naive, overhead, learned location),

(MPC naive, fingertip push, learned location), (MPC naive, overhead push, random

location), (centroid alignment, overhead push, learned location), and (centroid align-

ment, fingertip push, learned location). While no strong trends exist across the five

testing objects, we see that learning tends to improve the performance of the MPC

controller. This is definitely true for the di�cult case of the large brush, where

the MPC controller using learned contact locations outperforms the baseline MPC

regardless of the behavior primitive used. This same improvement, although less pro-

nounced, appears in the results for the camcorder, an object which was di�cult for

the MPC controller in the original experiments of Section 5.2.

No behavior primitive is dominant across all objects. This is consistent with

the hypothesis of Chapter 3 that di↵erent behavior primitives will behave better

as a function of the object being manipulated. However, the MPC controller with

fingertip push is still competitive with all other methods present in the experiments.

Additionally the centroid alignment controller also performs well with the overhead

push when using learned locations, even though the contact location prediction was

learned with the fingertip push. While not compared directly in Figure 49, we note

that the centroid alignment controller using the overhead push behavior primitive,

increases performance over the random location selection examined in Section 5.2.

5.5 Implementation Details

We now highlight some important implementation details of our pushing system.
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5.5.1 Pushing

For all experiments we follow the same hand pose initialization used in Chapter 3.

The hand is placed in an initial configuration such that it points towards the goal

location with a vector passing through the estimated center of the object. Of course

in Section 5.4 the goal position is chosen to be a straight line from the chosen initial

pushing location. Plans for our MPC controller are generated using a look-ahead

horizon of H = 10 time steps. Only the initial control is applied and a new control

sequence is planned at the next time step. We attempt to speed up the SQP solution

by giving an informed initial solution. We initialize the first solution for each trial

by setting a constant velocity from the initial position to the goal and apply these

controls to the model, to ensure a feasible solution. For each subsequent solution we

take the controls solved from the previous time step, remove the initial control and

add a constant velocity term for the final control step.

In order to sample from all dimensions of our feature vector, we need the robot to

collect data with a controller which not only moves the end-e↵ector linearly in x and

y but also rotates the wrist about its vertical axis. As such we modified the centroid

alignment controller introduced in Chapter 3 to rotate its wrist to counteract any

observed rotation of the object being pushed. This gives us the new control equation:

u� = �ks
˙̂✓ (24)

with gain ks controlling how quickly the hand responds to the observed rotational

velocity of the object.

5.5.2 Object Tracking

Feedback of the objects pose is provided by means of Microsoft Kinect attached to

the robots head. The supporting table is segmented from the 3D point cloud using

RANSAC [13]. The robot’s arm is segmented away by projecting a CAD model of its
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arm into the Kinect camera frame using the current forward kinematics. The remain-

der of the point cloud is segmented into objects by means of Euclidean clustering.

The initial object pose is estimated using the ellipse proxy presented in Chapter 3.

The system then extracts interest points in the color image within the region aligning

with the segmented object. Interest points are extracted using the good features to

track method of [103]. ORB feature descriptors are extracted for each interest point

and stored as an object model [92]. In subsequent frames the same segmentation and

feature extraction method is used to detect the object. Feature points extracted in

the latest frame are matched to the initial model. A 3D rigid transform is estimated

between the matching points to update the estimate of the object’s pose.

5.6 Discussion

In this chapter we have presented a framework for performing model predictive control

for a robot to autonomously push tabletop objects to desired locations. Our experi-

ments demonstrate that a very simple dynamics model can be used in this framework

to achieve state-of-the-art performance in pushing objects to follow straight lines.

Furthermore we have demonstrated empirically the utility of the feedback provided

by MPC over using a dynamics based planner without feedback. We have shown an

attempt at learning dynamics models to provide more informative dynamics models to

the MPC controller. While our learning failed to produce models with superior qual-

ity to the naive model presented, we have nevertheless proposed methods by which

a robot can choose from multiple dynamics models for manipulating a novel object.

We believe these methods ask many interesting questions open for future research.

Finally, we have shown that knowledge about where initial contact should be made

when pushing can be transferred between di↵erent controllers and between di↵erent

behavior primitives. This result extends the results of Chapter 4 by incorporating

the MPC controller of this chapter into the behavior representation of Chapter 3.
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CHAPTER VI

RELATED WORK

This chapter serves to place this dissertation within the broader context of research

on learning for robotics manipulation. Section 6.1 gives an overview of a↵ordance

learning work in robotics. Following this Section 6.2 describes work on object singu-

lation. Information on pushing in robotics is given in Section 6.3. We then present

work on control learning and improvement in Section 6.4. Last we describe work on

visual and kinematic knowledge transfer in Section 6.5.

6.1 A↵ordance Learning

In early work on a↵ordance prediction described in [27, 77], a humanoid robot learns

to segment objects through actions such as poking and prodding. After interaction

with a set of objects, the system could learn the rollable a↵ordance for the objects

and predict the result of hand-object interactions. The goal was to learn parameters

such as initial location of the hand with respect to the orientation of an object that

best induce the desired motion. The actions were atomic in the sense that they were

applied in their entirety and the results measured. In [30], a classification method is

applied to high-level image features to learn the a↵ordance of liftable. Using decision

tree classifiers with SIFT and patch features, they demonstrate the ability to learn

liftable vs non-liftable objects. Other methods have also been proposed for predict-

ing the manipulation capabilities of novel objects using visual features [97, 108, 40].

These methods, however, require a large training set containing examples similar in

appearance to objects with which the robot is expected to interact.

A series of works [68, 79, 78] address the task of recognizing the graspable and

tappable a↵ordances, based upon experimentation through self-observation of actions.
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Learning in a Bayesian network is employed to learn cuing rules for actions. The net-

work models the relationship between object appearance and motion, end-e↵ector

motion, and action. In [105], a functional approach to a↵ordance learning is devel-

oped in which subcategories of the graspable a↵ordance (such as handle-graspable

and sidewall-graspable) are learned by observation of human-object interactions. In-

teraction with specific object parts leads to the development of detectors for specific

a↵ordance cues (such as handles). The focus of that work was to learn a mapping

from object features to grasp locations without unduly worrying about what method

of grasping would work at that location. Ugur et al. also examine grasping as an af-

fordance prediction problem, by first creating a↵ordance labels through unsupervised

clustering of grasping attempts [110]. A support vector machine is then trained to

predict a↵ordance labels as a function of the object and a parameter of the grasping

behavior used. When attempting to create a specific outcome, a search is performed

to find a behavior parameter that is far from parameters that give undesired out-

comes using the predictions from the SVM as a forward model. Barck-Holst et al.

learn in simulation to choose a side or top grasp given object appearance [5]. They

additionally learn parameters for the grasp: the region of the object to grasp: bottom,

middle, top, or above and the force to apply: none, small, medium, or large.

Related, Stoytchev [107] describes a method for learning the functionality of a tool

through observation of the e↵ects of exploratory behaviors, a process that he termed

behavioral babbling. In experiments with a mobile manipulator, the system demon-

strated the ability to learn the a↵ordances of a set of tools that could be identified by

their color. While not explicitly mentioning a↵ordances, Klank et al. examine how

a robot can choose from di↵erent perceptual and manipulation mechanisms to more

reliably achieve a task on di↵erent objects in di↵erent scenarios [58].

With respect to planning, a↵ordance-based modeling of robot-object interaction

would allow a planning system to systematically select from a set of actions to achieve
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desired sub-goals. An example of such an approach is given in [6] where the robot

arrange plates and bowls on a table. In that work, however, there is an assumption

of a priori knowledge as to which behaviors can successfully operate on which objects

and what the resulting state of the action will be.

The concept of Instantiated State Transition Fragment (ISTF) is introduced in [33].

It encodes the pairing between an object and an action in the context of the state

transition function for a domain-specific planner. The authors describe a process

of learning Object Action Complexes (OACs) through generalization over ISTF’s.

Montesano et. al. [78] present a Bayesian network model that implicitly represents

a↵ordances as mappings from action to e↵ect, which are mediated by the visual fea-

tures of objects. A model for grasping, tapping, and touching actions is learned from

both self-observation and imitation of a human teacher. The goal is to leverage such

OACs in planning and executing a multi-step task. Ugur et al. present a planning

architecture where behaviors define the actions of the planner and state transition

outcomes are the learned outcomes of object a↵ordances [111]. Full plans to achieve

higher level tasks, such as lifting an object, are pieced together through chaining of

a↵ordance predictions.

Ridge et al. use a self organizing map to discover types of attributes as groupings of

input-output relations from pushes [90, 89]. Does not predict what outcome an input

will generate, instead attempts to di↵erentiate rolling vs sliding learning a↵ordances,

not a↵ordance values. Ridge et al. later perform bootstrap learning of a↵ordances

by first determining a↵ordance classes as before and then train an SVM to classify

objects based on visual features into the learned a↵ordance classes [91]. The system

thus learns to predict how one action performed by the robot induces di↵erent changes

in the environment as a function of the object being acted upon. However, the number

of a↵ordance classes must be specified by the user [91]. Ridge et al. perform the same

task through use of a neural network with learning vector quantization to jointly
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cluster the output space and learn the a↵ordance classifier [88].

6.2 Singulation and Interactive Segmentation

Object detection constitutes a major research e↵ort in the computer vision commu-

nity. State of the art object recognition and categorization methods can detect object

instances or categories with high precision, but require large training sets enumerat-

ing all possible object categories of interest [25]. Additionally the execution time of

such methods grows with the number of object classes presented to the system. The

burden of obtaining training sets large enough to cover all objects a robot may po-

tentially encounter means that alternative methods are needed for determining where

objects are in the environment. Attempts at creating generic object detectors have

been made, but they still require large training sets and computation time [2].

While singulation has been attempted using grasping, this requires dexterous ca-

pabilities to perform grasps on unknown objects and is limited in only being able

to manipulate objects small enough to be grasped [67, 76, 59]. In contrast, non-

prehensile pushing actions requires less precision, can be performed using much less

capable manipulators, and can operate on a wider range of objects that may be too

large to be grasped by the robot. As such, we restrict our discussion to those singu-

lation works relying on pushing, where less dexterity is necessary in the manipulator.

The problem of interactive segmentation was introduced by Fitzpatrick and Metta,

where a robot makes a sweeping motion inside its view frame and detects the objects

that move [28, 29]. The robot detects its arm by calculating optical flow in the scene

and segmenting the pixels with flow corresponding to the controlled motion of the

arm [28]. Using this initial segmentation the end-e↵ector of the arm is estimated at

the farthest point of the arm being moved and any flow that appears in the image

beyond the end-e↵ector is assumed to be an object moving as result of the sweeping

motion. Fitzpatrick extends this work in a graph-cut framework to better segment
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the object being moved, allowing for textureless regions to be segmented in addition

to those locations where optical flow occurs [29]. A limitation of this approach, not

present in our work, comes from the assumption that all motion not explained by

the robot’s arm belongs to a single object. Additionally no method is given for

determining where to push, thus pushing actions must exhaustively search the space

in order to detect all objects present.

Li and Kleeman use small pushes, termed nudges, to segment symmetric ob-

jects [66]. Symmetry lines are detected in stereo cameras and are then grouped to

form hypothesis for locations of symmetric objects. For a given hypothesis the robot

performs a pushing action that will move the object in the stereo view allowing frame

di↵erencing to seed a segmentation constrained by the symmetric property of the

object.

Similar to Fitzpatrick’s work, Kenney et al. use image di↵erencing to localize the

robot arm in the scene and segment motion not belonging to the arm as objects [56].

Templates are built from the resulting object locations allowing for tracking of ob-

jects over time. This enables the objects to collide without their identity being lost.

However, it still fails to separate objects in cases where multiple objects are in con-

tact prior to the robot discovering them. Furthermore, these templates require highly

textured objects to produce good results. Additionally it is assumed another process

tells the robot where to initially push.

Katz et al. learn kinematic models of articulated objects through pushing, al-

though segmentation of the objects in the scene is assumed known [55, 51, 52]. More

recently this has been extended to extracting 3D models of the objects [54, 53].

Schiebener et al. generate object hypotheses by segmenting scene elements into 3D

geometric primitives [100]. Pushing behaviors are then performed and the object

hypotheses are refined based on what moved coherently when the object was pushed.
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The work of Chang et al. is most similar to ours. Chang et al. perform object sin-

gulation through pushing of object piles [14, 15]. Groups of objects are first segmented

by removing the supporting surface from the input point cloud. Pushes are planned

to push through the object centroid in directions avoiding contact with other piles of

objects. Rigid body hypotheses are proposed using point correspondences from the

images taken before and after the push action and are confirmed by matching in the

point cloud. Evidence for singulation is accumulated by consistent strong rigid body

matches. Our work di↵ers in that we explicitly form hypotheses for splitting locations

in object clusters based on edge locations and orientations and accumulate evidence

related to these locations in order to build confidence more quickly. Additionally, we

do not rely on texture being present in the objects for correspondences nor do we

need to perform pick-and-place operations to clear the workspace of singulated ob-

jects. Van Hoof et al. present a method for producing maximally informative pushes

for object singulation [112]. They plan pushes which will give the most information

in determining if over-segmented regions belong to one or multiple objects.

6.3 Robot Pushing

Robotic applications of pushing manipulation occur in many sub-fields of robotics.

Here we review the fundamental results in robotic pushing as well as relevant appli-

cations to pushing in natural human environments and methods which apply learning

in pushing. We will mostly ignore industrial applications such as pushing to orient

parts [70].

Mechanics and Control Mason describes the qualitative rotational changes of

sliding rigid objects being pushed by either a single point or single line contact [75].

Goyal et al. introduce the limit surface as well as other geometric examples to analyze

the frictional e↵ects of rate independent velocities applied to rigid bodies sliding on

a surface [36]. Howe and Cutkosky present a method for approximating the limit
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surface function with an ellipsoid [46]. Peshkin and Sanderson determine all possible

support distributions for a given object and show how far a fence must push the

object for it to become aligned with the fence [84]. Yoshikawa and Kurisu estimate

the support distribution and center of friction for an object through use of a force

sensor in pushing the object [114]. Lynch also uses force sensing to present a method

for estimating the coe�cient of friction and distribution of support for a number of

objects through pushes by a robot. [69]. Balorda and Bajd show how pushing with a

two fingered end-e↵ector can reduce uncertainty in positioning polygonal objects. By

using two point contacts and reasoning about the rotation with respect to the center of

friction the object can be rotated into a desired orientation and then purely translate

along the line of motion of the end-e↵ector [4]. Lynch and Mason determine the

controllability of pushing an object with a single point or line contact [71, 72]. They

present a planner which returns a sequence of contact locations between the pusher

and object where each contact point can be reached smoothly from the previous one

while navigating the object around obstacles in the plane [71, 72]. Akella and Mason

produce sequences of linear pushes with a fence to position a polygon at a desired pose

in the plane [1]. Bernheisel and Lynch present a method for determining if a collection

of planar parts in contact will maintain their configuration when pushed [9]. Ruiz-

Ugalde et al. determine the static and kinetic fiction coe�cients for multiple objects

with rectangular footprints, both between the robot hand and object and between

the object and table [94]. Additionally they present a robust controller using a cart

model for the object being pushed. The controller takes object velocity as input to

control the system to a desired 2D pose, as such the mapping from applied force to

velocity is believed known from the estimation and is separate from the control of the

object.
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Outcome Prediction and Detection Gandolfo et al detect using optical flow

patterns if an object will topple, slide, or oscillate when pushed [32, 31]. Ruiz-Ugalde

et al. predict if an object will topple or slide when pushed [93]. Zrimec and Mowforth

present a method for grouping changes in object pose in an unsupervised way which

a human can qualitatively label with categories such as: {moved, not moved} or

{moved left, moved right, etc.} [116]. Narasimhan uses vision to pose polygonal

objects of known shape in the plane [81]. Three di↵erent methods are examined. The

first method uses hand coded behaviors to rotate and translate the objects which

have known center of mass. The second approach uses feedback control to rotate

the object the desired direction about the center of rotation, while pushing it in the

direction that will translate its centroid to the desired location. The third approach

stores the results of di↵erent pushes and uses nearest neighbor classification to select

the action that generated a result closest to the desired outcome.

Stoychev learns the e↵ects of a robot moving di↵erent tools in the plane using a

simple look-up table where actions are explored through motor babbling [106]. These

learned tool motions are then used to push a puck into a desired goal region. Sinapov

and Stoychev learn the pushing e↵ects of di↵erent tools on a puck in simulation.

Decision trees and nearest neighbor approaches are compared with di↵erent points of

focus in the image used to predict the change. Generalization across di↵erent tools

is also examined [104].

Omrc̆en et al. use a retinal image based neural network to learn the pushing

dynamics for flat objects [82]. The learned models are specific to individual objects

and generalization to similar objects is not examined. Scholz and Stilman learn object

specific dynamics models for a set of object through experience [101]. Each object is

pushed at a number of predefined points on the perimeter and Gaussian models of

displacement in (x, y, ✓) are learned. Salganico↵ et al. present a method for learning

and controlling the position in image space of a planar object pushed with a single
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point contact [95, 96]. Slip of the object is avoided by pushing at a notch in the

object.

Kopicki et al. also learn probabilistic models of outcome based on pushing manip-

ulations [63]. The predictions are modified as a function of object shape, however only

rectangular shapes are considered, unlike the variety of natural objects used in our

work. Additionally the prediction models are not used to perform control movements

of objects to desired poses. Ridge et al. learn as a function of visual object features to

predict how a pushed object will behave [88]. They use a neural network with learn-

ing vector quantization to jointly cluster the output space into a↵ordance classes (i.e.

rolling vs pushing) and learn a classifier to predict if a given object will produce this

outcome. In similar work by Ugur et al., a robot clusters observed outcomes of a

number of learned manipulation strategies and learns to predict these outcome cat-

egories as a function of di↵erent input features, including object shape [109]. While

these methods are definitely interesting, in neither work does the robot learn where to

push in order to move the object to a desired pose, a problem we propose a solution

to in Chapter 4.

Tabletop Clearing Planning Scholz and Stilman organize object on a table by

specifying an optimization function as an abstract goal [101]. RRTs are used to plan

a sequence of learned actions to achieve the desired result. Replanning is performed

when the observed e↵ects deviate too far from the original plan. Cosgun et al. plan

pushes of tabletop objects in simulation to clear large enough space to place new

objects into the scene [17]. Emeli et al. extend this for use on the PR2 robot [23].

Dogar and Srinivasa perform similar planning in order to clear a path through objects

on a cluttered tabletop environment in order to grasp a desired object [22]. Zito et

al. use RRTs to plan sequences of straight line pushes with a point contact to move

objects to desired locations [115].
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Grasping Dogar and Srinivasa plan and perform push grasps where pushing is used

to reduce uncertainty in object pose relative to the robot gripper prior to closing [21].

Mason discusses push grasping in [75] describing the earlier work of Pingle et al. [85].

Rao and Goldberg also present work on push grasping [87]. Omrc̆en et al. push large

planar objects to hang slightly o↵ a table edge to facilitate grasps that are di�cult

when the object base is surrounded by table surface [82]. Gupta and Sukhatme

present a method for separating blocks that are in piles or close to one another in

order to more reliably grasp individual blocks [37].

6.4 Control Learning

For control systems where the underlying plant model is not well known, machine

learning methods are often used to address the control problem. Schaal and Atkeson

review control learning in [98]. Many approaches attempt to learn a forward model

of the system dynamics and then attempt to invert this model to plan an appropriate

action [98]. Locally weighted regression is often used for this modeling task. The

alternative approach of directly modeling the policy as a function of the state space

can be formulated as a reinforcement learning problem.

Deisenroth et al. use Gaussian process (GP) regression to estimate the state tran-

sition function in an MDP [19]. Using a policy with a�ne parameters an analytic

gradient can be evaluated to update the policy. The expected cost of future actions is

computed using the forward propagated Gaussian distribution through computation

of an analytic gradient. This method was used to learn from scratch a task of stacking

a series of blocks with a low-cost robot arm [20]. A separate control policy was learned

for stacking each block on the tower, but training time for each additional controller

could be decreased by initializing with the policy used on the previous block. This

work was extended to allow for applying a single policy for controlling to multiple

target values [18]. This was achieved using an internal change of coordinates so that
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the target value of the task was the origin of the state space.

Another popular method of reinforcement learning for control learning builds on

the use of dynamic motor primitives (DMPs) [48, 61, 83]. The DMP framework de-

fines a set of dynamic systems, one for each of the system’s degrees of freedom, which

are coupled together by a single canonical system. A human teacher usually demon-

strates the desired motion and then policy gradient methods are used to improve the

controller to more reliably perform the task [61]. Pastor et al. use multiple MDP

behaviors to give a robot a database of behaviors for use in di↵erent situations [83].

Kober et al. learn meta-parameters of the MDP system to adjust the robot controller

to multiple target situations [60, 62]. A mixture of MDPs defines a set of MDP, where

separate MDPs activate as a function of the robot’s location in the state space [80].

6.5 Knowledge Transfer

Much work on a↵ordance learning takes the flavor of transferring learned informa-

tion between object categories using visual information and observed object behavior

during manipulation, specifically predicting a↵ordance labels for new objects based

on previously learned information (cf. [108, 40, 65]). Here we focus on related work

in robotics communities on learning methods that attempt to transfer other types of

knowledge to novel situations in ways that could be helpful to a↵ordance learning.

Madry et al. use object category information to transfer what types of grasps to

perform on di↵erent objects [73]. Hillenbrand and Roa warp the contact locations

of grasps between objects to transfer between objects [44]. Replanning refines the

final placement location to determine a more stable grasp. Amor et al. use this

contact warping method to enable robots to transfer grasps defined through human

demonstration between di↵erent objects [3]. The non-rigid registration method of

Chui and Rangarajan has recently been used in warping manipulation trajectories

between di↵erent objects by Schulman and Abbeel [16, 102].
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Finally, shape features have been used in a number of works on learning grasp

locations on objects [12, 86, 49]. Bohg and Kragic use shape context as a feature

for learning grasping locations [12]. Le et al. desire to learn grasping locations for

each finger of a multi-fingered robot hand [86]. Local image features are extracted

at each grasp point and depth features are extracted along the lines formed between

the grasping locations. These features encode variation in depth in an attempt to

encode smoothly changing shape. Jiang et al. use local histograms of depth values

to rank grasping locations for a parallel jaw gripper [49]. In a di↵erent piece of work

Jiang et al. learn placement locations for objects using features similar to the variance

features discussed above as well as histograms of point locations of both the object

being placed and the potential placement locations [50].
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CHAPTER VII

CONCLUSION

This dissertation is motivated by the need for robots to act as assistants in the daily

lives of humans. We address this concern in the forms of two concrete problems. The

first desires a representation which allows a robot to encode goal directed behaviors it

performs into discrete actions for use in a planner or to be commanded semantically

by a human. A↵ordance-based behaviors provide an attractive representation for

bridging this gap between high-level semantic knowledge and low-level sensing and

actuation of robots. This dissertation presents a factored representation for encoding

a↵ordance-based behaviors. The representation defines an a↵ordance-based behavior

as a collection of three components: a perceptual proxy, a control policy, and a be-

havior primitive. The behavior representation provides a means of transforming the

continuous space of actuator controls into a discrete selection process for a given goal

situation and set of objects in the environment. Chapter 3 shows how a robot can

explore a wide variety of behaviors from a small set of predefined atomic behavior

components. The robot learns which a↵ordance-based behavior is best suited for a

specific task as a function of either the object’s identity or its pose in the workspace.

For example our behaviors could provide the actions available to the planner pro-

posed by Cosgun et al. [17]. The plan provides a sequence of straight line pushes to

move the objects in the scene to clear a space on the table. The robot can use the

learned knowledge of how each specific object is best pushed to select the behavior

to complete these planner-level actions. Additionally the results of our push location

learning presented in Chapter 4 could be used to select pushing directions as a func-

tion of the objects observed, instead of selecting locations only at compass points as
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the planner currently works. Our behaviors would also work well with the planner

of Barry et al. [7]. This planner explicitly reasons about diverse manipulation types:

pushing, grasping, and transit of the robot base. While this planner provides geomet-

ric paths for transit and grasp planning, it only allows simple straight-line paths for

pushing. Our behaviors and learned contact locations provide a means of selecting

higher quality pushes to achieve the desired displacement, than the heuristics used

in Barry’s work. Finally, our proposed Model Predictive Controller from Chapter 5

could be extended to work with non-straight line trajectories. Having this extended

set of pushing paths may allow the robot to create plans with shorter overall exe-

cution time, extend battery life by not needing to move the robot base as much, or

possibly even achieve tasks which were otherwise infeasible. These examples highlight

some ways in which our behaviors could improve current planning techniques, there

are likely many other planners which could leverage this object specific manipulation

knowledge, encapsulated as discrete actions.

The second main problem we address for assistive robots, asks how the robot can

meaningfully interact with a novel object when seen for the first time. We examine

this problem in three ways. First, we ask how a robot can discover objects in clut-

tered environments when none of the objects have previously been seen. Second, we

examine how a robot can learn good locations for making contact for pushing objects

in a controlled manner. Third, we examine if dynamics models can be learned for

specific objects in order to improve pushing performance when encountering a novel

object. We detail these contributions below.

Chapter 2 makes use of a set of behaviors in the setting of a robot autonomously

discovering pushable objects in its environment. This problem of singulation requires

the robot to segment and separate all objects in the environment. Since the actual

set of objects is unknown, the robot selects a behaviors primitive as a function of

where the objects lie in its workspace, keeping the control policy fixed. Singulation
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provides a fundamental tool to a robot learning with a↵ordances. Since, the robot

determines empirically what constitutes an object in its environment, many ambigui-

ties inherent to segmentation are removed, allowing the robot to confidently associate

manipulation information with the object. Our singulation approach contributes an

advancement in interactive segmentation over previous approaches, allowing a robot

to e↵ectively separate textureless objects, while providing confident reasoning about

potential object boundaries.

Our approach to learning contact locations as a function of object shape represents

a significant contribution of this dissertation. We show in Chapter 4 that a robot can

learn to predict good initial contact locations for pushing previously unseen objects.

The robot collects all training data autonomously through interaction. In our eyes

this represents an extremely attractive property for learning in robotics. Needing

little supervision from a human teacher allows the robot to continuously improve its

performance through its deployment. One key to the autonomous data collection

lies in characterizing good and bad pushing locations using a score derived from the

entire push trajectory. These scores—characterizing stable, straight-line pushing and

orienting pushes—inherently account for all processes involved in performing the push.

In addition to being robust to noise introduced from the simple tracking methods

used by the robot, more complicated information such as kinematic constraints and

calibration errors become encoded in the scores as well. As long as the procedure used

for collecting training data reflects how the robot will perform at deployment the robot

has no need to tease apart the specific elements which make a particular push good

or bad. This provides a benefit over simulation or human defined heuristics where

it may be impossible a priori to define and account for all possible influences on the

push quality. This robustness to noise and minor errors plays an especially important

role in interacting with novel objects, where it is unreasonable to expect high quality

object models to be available for tracking or simulation. This issue became even more

115



apparent to us in conducting the experiments presented in Chapter 5.

We examine in Chapter 5 the utility of dynamics models for control in pushing.

We show that even when the model used is know to poorly represent the underly-

ing dynamics, feedback can be used to achieve state-of-the-art performance. Given

higher quality models a robot should achieve even better performance. As such, we

examine the ability of a robot to learn dynamics models through interaction. Our

attempts were insu�cient in learning models useful to manipulation, which we at-

tribute primarily to the level of noise present in our object tracking system. However,

our results on contact location learning provide evidence that a useful learning signal

is present in the trajectory recovered from our object tracker. Making use of our fac-

tored a↵ordance-based behavior representation we show that the regressors learned

for predicting stable contact locations produce improved pushing performance when

used by our model predictive controller. These locations additionally provide benefit

when used with a distinct behavior primitive from the one used at training. While

this demonstrates how knowledge transfer can be performed using our behavior rep-

resentation, the limits of generalization are unknown.

This dissertation presents a concrete use of a↵ordance-based behaviors for au-

tonomous learning on a robot. Using this representation our robot was able to learn

meaningful strategies for experimenting with and e↵ectively manipulating previously

unseen objects. These results generate a number of questions we leave open to the

research community. First, how can the robot use contextual information about its

environment to more quickly search through the available behavior factors? For exam-

ple, if we add as a component of the behavior the arm being used— left of right—the

robot should be able to learn that pushing at the extreme right of its workspace is not

possible with the left arm, independent of the controller being used. Second, many

questions remain open in the context of task level planning. Specifically, how can

learning and singulation be introduced as possible actions to a planner, so that the
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robot may explore novel manipulation strategies while still making progress towards

its goal? Finally, how extensible is our representation? Humans produce an enormous

range of skillful manipulation strategies, beyond simple pushing and grasping. What

must be added to our representation for a robot to make use of it for other tasks such

as throwing or catching?

Enabling robots to operate autonomously alongside humans has the potential to

help better the lives of countless people. Providing robots with the ability to gener-

alize and improve their repertoire of available skills remains paramount to ensuring

this success. This dissertation contributes a step towards this goal, presenting a

mechanism by which robots can learn how to better interact with their environment,

learning strategies that can be leveraged in novel situations and manged by higher-

level planners or human operators.
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