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Abstract
Equipping an agent with the ability to infer intentions behind observed behavior is a prerequisite for cre-
ating truly autonomous robots. By deducing the purpose of the actions of other agents the robot would
be able to react in a sensible way and, furthermore, to imitate the strategy on a high level. Inverse Rein-
forcement Learning (IRL) can be applied to learn a reward function that is consistent with the observed
behavior and is, thus, a step towards this overall goal.
Some strategies can only be modeled properly by underlying a time-dependent reward function. Max-
imum Causal Entropy Inverse Reinforcement Learning (MaxCausalEnt-IRL) is a method that can be
applied to learn such non-stationary functions. However, it depends on gradient-based optimization and
its performance can therefore suffer if too many parameters have to be learned. This can be problematic,
since the number of parameters increases significantly if separate reward functions are learned for each
time step. Furthermore, since only few time steps might be relevant for the observed task, a second
challenge of applying IRL for learning non-stationary reward functions consists in properly extracting
such sparseness. This thesis investigates how to meet these practical requirements.
A novel approach, IRL-MSD, is developed for that purpose. Unlike some previous IRL methods, Inverse
Reinforcement Learning by Matching State Distributions (IRL-MSD) does not aim to match feature counts
but instead learns a reward function by matching state distributions. This approach has two interesting
properties. Firstly, the features do not have to be defined explicitly but arise naturally from the structure
of the observed state distribution. Secondly, it does not require gradient-based optimization.
The experiments show that it converges faster than existing IRL methods and properly recovers the goals
of a sparse reward function. Therefore, IRL-MSD suggests itself for future research.
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C.1. Derivation of Vπt (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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C.3. Comparison of Vπt (s) and Ṽπt (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



Figures, Tables and Algorithms

List of Figures

1.1. Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1. First Dimension of Expert State Distribution in Task Space . . . . . . . . . . . . . . . . . . . . 26
5.2. Expected Reward of IRL-MSD for Known Expert Statistics . . . . . . . . . . . . . . . . . . . . 26
5.3. First Dimension of MSD State Distribution in Task Space . . . . . . . . . . . . . . . . . . . . . 27
5.4. Comparison of MSD and MaxCausalEnt for Known Statistics . . . . . . . . . . . . . . . . . . 28
5.5. First Dimension of MaxCausalEnt State Distribution in Task Space . . . . . . . . . . . . . . . 29
5.6. Plots of Learned Reward Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.7. Expected Reward of MSD-ACL Based on 7 Samples . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8. Comparison of Maximum Causal Entropy IRL and IRL-MSD Based on 7 Samples . . . . . . 32
5.9. Plots of Learned Reward Parameters Based on 7 Samples . . . . . . . . . . . . . . . . . . . . . 33

List of Tables

5.1. Learned Goal Position for Known Expert Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. Expected Reward for MSD-REG Based on 7 Samples . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3. Learned Goal Position Based on 7 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

List of Algorithms

1. Pseudo-code Implementation of IRL-MSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



Abbreviations and Symbols

List of Abbreviations

Notation Description

DMP Dynamic Movement Primitive

IRL Inverse Reinforcement Learning

IRL-MSD Inverse Reinforcement Learning by Matching State Distributions

KL Kullback-Leibler divergence

LfD Learning from Demonstrations

LQG Linear Quadratic Gaussian

MAP Maximum-A-Posteriori

MaxCausalEnt-
IRL

Maximum Causal Entropy Inverse Reinforcement Learning

MaxEnt-IRL Maximum Entropy Inverse Reinforcement Learning

MCMC Markov-Chain-Monte-Carlo

MDP Markov Decision Process

MSD-ACL MSD with Action Cost Learning

MSD-REG MSD with KL-based Regularization

PbD Programming by Demonstrations

PoWER Policy Learning by Weighting Exploration with the Returns

ProMP Probabilistic Movement Primitive

RBF Radial Basis Function

REPS Relative Entropy Policy Search

RL Reinforcement Learning

1



1 Introduction
Autonomous robots need to adapt their planning based on observations of their environment. Hence,
when observing other agents, the autonomous robot should decide how to react on the observed behav-
iors. For example, if during a collaborative assembly task one agent picks up a screw, a sensible reaction
of a second agent might consist in handing over the screwdriver. Especially if the environment is not
well-defined, a meaningful reaction to the observed behavior might only be possible by inferring the
intentions of the other agents.
Learning the intention behind an observed behavior is also helpful for Imitation Learning. Imitation
Learning (Schaal, 1999; Argall et al., 2009) allows to teach an agent how to perform a task by providing
demonstrations. By inferring the goals of the demonstrations, the agent learns a task representation that
is generalizable and not affected by different embodiments and system dynamics.
IRL (Ng et al., 2000) is a step towards learning the intentions of an observed behavior by learning a
reward function from expert demonstrations. Reward functions define task goals by rating actions and
states with respect to these goals and hence can represent intention. This representation is suitable for
Imitation Learning, because the agent can learn to perform the desired task by applying Reinforcement
Learning (RL) (Sutton and Barto, 1998).

1.1 Thesis Statement

The aim of this thesis is to apply Inverse Reinforcement Learning in order to learn a time-dependent
reward function. Furthermore, it is investigated how well the sparseness can be recovered, if the true
reward function of the expert is sparse in time.

MaxCausalEnt-IRL (Ziebart et al., 2010) is an IRL approach that can properly treat situations where the
agent adapted its plan based on information that has been revealed to him during execution. This method
therefore suggests itself for learning time-dependent reward functions. MaxCausalEnt-IRL applies gradi-
ent descent for learning the parameters of the reward function. Therefore, the speed of convergence can
suffer if many parameters have to be optimized.
A novel approach, IRL-MSD, is developed in order to avoid gradient based optimization. This method
does not require an explicit definition of the features, but chooses them automatically based on the
structure of the target distribution.

1.2 Motivation for Imitation Learning by Inverse Reinforcement Learning

Teaching a task by combining IRL and RL seems laborious because it involves two steps of learning.
Hence, it could be argued that a more direct approach should be preferred by (1) learning the policy
directly from the demonstrations or (2) by providing the reward function directly. However, both of
these approaches have limitations that shall be discussed in the following.
Imitating a movement from demonstration without learning a reward function is usually achieved by
learning a parametrized target policy or target trajectory using regression. Learning the policy di-
rectly was used by Sammut et al. (2002) to create an autopilot for a flight simulator. However, such
approaches can suffer from the correspondence problem, fail if the dynamics change and can not be
generalized. Learning target trajectories is more promising and was successfully applied on a humanoid
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robot to learn a forehand tennis swing (Ijspeert et al., 2003). Nevertheless, learning a trajectory is still
less flexible than learning a reward function, which gets evident when obstacles occur along the desired
path.
Reinforcement Learning on a provided reward function has been used with great success, e.g. for learn-
ing fast quadrupedal walking (Kohl and Stone, 2004). However, defining an appropriate reward function
can be cumbersome and difficult even for experts. For example, when assessing how well a dishwasher
has been loaded, several different features have to be taken into account (e.g. for describing the types
of the dishes as well as their positions and orientations) with respect to several different subgoals, e.g.
efficient usage of space and high expected cleanness. As it is usually not obvious which subgoals are
relevant and how they have to be weighted against each other, defining an appropriate reward function
requires experience and often involves hand-tuning by trial and error. In contrast to that, demonstrations
can often be provided substantially easier and even by non-experts.

1.3 Motivation for Learning Time-Dependent Reward Functions

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

Time

φ

Figure 1.1.: Motivating Example. The demonstrations can be explained with a time-dependent policy
based on the only observed feature.

Learning a single, stationary (time-independent) reward function can be inappropriate for learning tasks,
that decompose into several subtasks. For example, assume that the demonstrations of an expert led to
the trajectories depicted in figure 1.1, where φ shall be some arbitrary feature plotted over time. The
demonstrated behavior can be explained using a non-stationary reward function, that rewards the agent
for achieving φ = 1 at time step 25 and φ = 0 at time step 50. Even if both subtasks served an over-
all task and could be explained using a stationary reward function, that reward function might possess
higher complexity than the non-stationary one and would depend on additional, unobserved features.
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1.4 Preliminaries

This section provides background information on Information Theory, Markov Decision Processes and
Optimal Control Theory.

1.4.1 Information Theory

Entropy

The entropy (Shannon, 2001) H(P) of a discrete probability distribution P(X ) measures the uncertainty
of that distribution and, thus, also the amount of encoded information. It is defined as

H(X ) = −
∑

x

P(x) log(P(x)).

This thesis will make use of several related entropy measures for continuous probability distribution that
are defined as follows.
The continuous entropy of a probability distribution p(s), denoted H(S), is defined as

H(S) = −
∫

s

p(s) log p(s) ds.

If an agent chooses its actions according to a time-depend policy, the entropy of that distribution should
only take into account the information that has already been revealed to the agent. The entropy is then
denoted as causal entropy.

Causal Entropy

For a continuous, conditional distributions p(a|s), the conditional entropy H(A|S) is defined as the ex-
pected continuous entropy of the conditional distribution, i.e.,

H(A|S) = −
∫

s

p(s)

∫

a

p(a|s) log p(a|s) da ds.

Let the conditional distribution p(a1, . . . ,aT |s1, . . . , sT ) denote the probability of observing at given st
at each discrete time step t ∈ [1, T]. If this distribution only depends on past observations and, thus,

marginalizes to p(a1, . . . ,aT |s1, . . . , sT ) =
T
∏

t=1
p(at |s1, . . . , st) it will be referred to as “a causally condi-

tioned on s”. The entropy of such a causally conditioned distribution is then denoted as causal entropy
and defined as

H(A||S) = −
T
∑

t=1

∫

s1,...,st

p(s1, . . . , st)

∫

at

p(at |s1, . . . , st) log(p(at |s1, . . . , st)) dat ds1, . . . , st .

For the special case where p(a1, . . . ,aT |s1, . . . , sT ) =
T
∏

t=1
p(at |st) =

T
∏

t=1
pt(a|s), the causal entropy simpli-

fies to

H(A||S) = −
T
∑

t=1

∫

s,a

pt(s)pt(a|s) log(pt(a|s)) da ds.

This equation can be used to compute the entropy of first order Markovian policies, i.e. policies that do
not depend on past states if the current state is given.
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Relative Entropy

The relative entropy KLs(P||Q) between two distributions p(s) and q(s), also known as Kullback-Leibler
divergence, measures the information loss that results when p(s) is employed as approximation of q(s).
It is defined as

KLs(P||Q) =
∫

s

p(s)
log p(s)
log q(s)

ds.

The conditional relative entropy KLa|s(P||Q) and the causal relative entropy KLa||s(P||Q) are defined,
analogous to the conditional and causal entropy,

KLa|s(P||Q) =
∫

s,a

p(s)p(a|s)
log p(a|s)
log q(a|s)

ds da,

KLa||s(P||Q) =
T
∑

t=1

∫

s,a

pt(s)pt(a|s)
log pt(a|s)
log qt(a|s)

ds da. (1.1a)

Equation 1.1a can be used as measure of similarity between two time-dependent policies while properly
taking into account causality.

1.4.2 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework that is often employed for modeling the
environment of an agent in the context of Reinforcement Learning. MDPs model time by using discrete
time steps. Within this thesis, only finite horizon MDPs are discussed, i.e. it is assumed that the process
always ends after a fixed number T of time steps. The state of the environment and the state of the
agent are modeled together using the set S of states s. At each time step, the agent chooses an action
a from the set A of actions. After an action has been chosen, the process transitions into the next time
step by randomly choosing a new state according to the system dynamics pt(s′|s,a). A MDP assumes
the Markovian property, i.e. it assumes that the probability distribution over the next state s′ does not
depend on past states or actions, if the current state s and the current action a are known. Additionally,
for any given time step t, the state st and action at are rated using a reward function rt(s,a). Therefore,
a finite horizon MDP can be defined using a five-tuple M =

�

S , A, pt(s′|s,a), T, rt(s,a)
�

.
For the remainder of this thesis, the states and actions are represented using vectors s and a of size Ns
and Na respectively. The state and action for time step t are denoted by st and at and their continuous
element at index i by si,t and ai,t respectively. The system dynamics are assumed to be linear with
Gaussian noise, e.g.

pt(s
′|s,a) =N (Ats+Bta+ bt ,Σd yn,t).

Furthermore, the reward function is assumed to be convex quadratic in s and a. Thereby, the MDP
complies with the Linear Quadratic Gaussian (LQG) assumption.

1.4.3 Optimal Control

An agent, acting in a MDP, chooses its actions according to a policy πt(a|s) that is assumed to be
consistent over time and thereby (and due to the Markovian property) depends only on the current state
and time step. Reinforcement Learning addresses the problem of learning a policy that maximizes the
expected reward of the agent. For finite horizon MDPs that comply with the LQG assumption, the optimal
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control policy can be computed recursively, even for continuous (and thereby infinite) state and action
spaces, by using backward induction.
Backward induction makes use of the concept of Value functions and state-action Value functions. The
Value function for a given policy π at time step t is denoted by Vπt (s) and corresponds to the expected
reward of an agent that starts at time step t in state s, assuming that the agent will act according to
policy π for the current and all remaining time steps. The state-action Value function Qπt (s,a) is defined
accordingly, however, it assumes that the agent chooses action a at time step t and only afterwards acts
according to the policy π. The Value function for the last time step does not have to take future rewards
into account and is thereby given by the reward function of the last time step, VπT (s) = rT (s). The reward
at the last time step does not depend on an action, because it is assumed that the MDP ends immediately
after reaching the final state. The state action Value function is consequently only defined for t < T . It
can be expressed in terms of the expected Value function of the next time step using

Qπt (s,a) = rt(s,a) +Ept (s′|s,a)

�

Vπt+1(s
′)
�

, (1.2)

where the distribution over the next state s′ is given by the system dynamics pt(s′|s,a).
Similarly, the Value function for a time step t < T can be expressed in terms of the expected state action
Value function of that same time step using

Vπt (s) = Eπt (a|s)
�

Qπt (s,a)
�

, (1.3)

where the distribution of the current action is given by the policy πt(a|s). These recursive equations (1.2
and 1.3) are known as the Bellman equations for finite horizon MDPs. Starting with VπT (s) they can be
employed to compute the Value function and the state-action Value function of any given policy π for all
time steps t by deducing backwards in time.
The optimal policy π?t (a|s) chooses at each time step t an action that maximizes the state-action Value
function Q?πt (s,a). Hence, the corresponding state-action Value function Q?πt (s,a) and the Value function
V ?πt (s) can be computed using equation 1.2 and

V ?πt (s) =max
a

Q?πt (s,a).

The recursive equations are then known as Bellman optimality equations for finite horizon MDPs.
For LQG systems, Vπt (s) and Qπt (s,a) are convex quadratic for all time steps. The involved expected
values and maximum values can thus be derived analytically. The optimal policy for such systems takes
the form of a deterministic, linear controller πt(s) = Kts+ kt , where the controller gains Kt and kt can
be computed using backward induction.

1.5 Outline

The remainder of this thesis is structured as follows: Chapter 2 discusses related work, by providing an
overview of Imitation Learning and Inverse Reinforcement Learning. Studying MaxCausalEnt-IRL led to
insights that hopefully assist in better understanding the mechanics of the approach. These insights are
presented in chapter 3 along with the discussion of implementation specific details. Chapter 4 will cover
the novel approach of IRL-MSD. Chapter 5 evaluates this approach and compares it to MaxCausalEnt-
IRL. Finally, Chapter 6 presents an outlook on future research and Chapter 7 recapitulates the findings
of this thesis.
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2 Related Work

2.1 Learning From Demonstrations

This section provides a brief overview of Learning from Demonstrations (LfD) in the field of robotics.
Robotic LfD is an active field of research since it was first covered in depth in 1984 (Halbert, 1984).
Since then it has evolved into several different directions and produced overlapping terminology (Argall
et al., 2009). This thesis distinguishes between the following terms:

• Learning from Demonstrations is used for all robot learning methods that make use of demonstra-
tions. This definition is strictly more general than the one given by Argall et al. (2009), that only
applies to approaches that learn a policy based on demonstrations.

• Programming by Demonstrations (PbD) is used in its original meaning, when demonstrations are
used to produce code in a programming language (Cypher and Halbert, 1993).

• Imitation Learning is used when the robot should learn to imitate the demonstrator. True Imitation
Learning is used when, following the definition of Tomasello et al. (1993), an “understanding of
the intentional state underlying the behavior” is additionally required.

• Behavioral Cloning is used when the agent learns state-action mappings that closely match the
observed ones without regarding the implications of the actions. It is thereby a subfield of Imitation
Learning but can not provide true imitation.

A natural question regarding LfD is how to demonstrate. The different ways of demonstrating a task can
be also described from the perspective of the learning agent, leading to the question: How can a robot
perceive demonstrations?

2.1.1 Perceiving Demonstrations

Within this thesis, three different possibilities of perceiving demonstrations are discussed. For the first
one, the agent perceives the demonstrations merely via exteroceptive sensors, i.e. sensors that measure
quantities concerning the agent’s environment, e.g. via vision. The second one also incorporates propri-
oception, i.e. directly sensing quantities that are related to the robot itself, e.g. joint positions. The third
possibility of perceiving a demonstration includes proprioception and exteroception and furthermore
recordings of the issued control commands.

Perception Based on Exteroceptive Sensing

When perceiving demonstrations based on exteroception, the agent passively observes the expert per-
forming a task. Even though the robot might be able to measure using its proprioceptive sensors, this
information is not considered to be part of the demonstration. Kuniyoshi et al. (1994) used learning by
watching to learn a high-level assembly plan by watching human demonstrations. Marker-based motion
capturing is often used by humanoid robots to mimic the whole-body movement of human demonstra-
tions (Ude et al., 2004; Kulić et al., 2011; Kim et al., 2009).
Such demonstrations have the advantage, that they often can be performed naturally and without the
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need of interacting with the robot. However they have the drawback, that they give the least information
to the agent. Especially, they do not contain any information about how the robot is supposed to perform
the task but only about how the expert performs it. If the expert and the robot have similar embodiments,
the robot might be able to perform the desired motion by imitating the expert. However, if they have
different embodiments, it is not clear how to imitate the expert which is known as the correspondence
problem (Nehaniv and Dautenhahn, 2002; Alissandrakis et al., 2002).

Additional Perception Based on Proprioceptive Sensing

The robot can also perceive demonstrations using its proprioceptive sensors if the expert demonstrates
the task by physically moving its limbs. Providing such demonstrations to the robot is known as kines-
thetic teaching. If the robot is lightweight and compliant, the desired robot motion can be induced solely
by forces created by the expert. Such demonstrations have been used successfully for learning a large va-
riety of tasks, including Ball-Paddling, Ball-in-a-Cup, Pendulum Swing-Ups and Pancake-Flipping (Kober
and Peters, 2009; Kormushev et al., 2010).

Additional Perception of the Controls

Demonstrations can also be performed by using the actuators of the robot directly, for example via teleop-
eration. Thereby, the robot is controlled from distance via a remote control, e.g. a joystick or exoskeleton.
Other examples for this kind of demonstrations include programming the desired motor commands and
some forms of active kinesthetic teaching, i.e. kinesthetic teaching where the robot senses touches of the
expert and reacts by issuing corresponding control commands.
Demonstrations on a radio-controlled helicopter where used by Abbeel et al. (2010) to learn a controller
that was capable of producing maneuvers at the edge of the physical feasible, including in-place flips
and auto-rotational landing (emergency landing with an unpowered main rotor).

2.1.2 Imitation Learning

Imitation Learning is an important application of LfD, as it makes programming the robot easier for
the expert and accessible for non-expert users. Imitation Learning can be divided into three different
approaches (Schaal, 1999), (1) approaches that are only concerned with matching the demonstrated
policy, (2) approaches that try to reproduce the demonstrated trajectory and (3) approaches that use the
demonstrated trajectories in order to reduce the search space for Reinforcement Learning.

Policy-Based Imitation Learning

Already in the early years of robotics, demonstrations were used to ease the task of robot programming.
The manipulator was guided by a human expert in order to perform a desired movement and was able to
repeat that motion by recording the via points. This simple approach of robot programming by demon-
stration does not incorporate sensory inputs and is thereby only applicable to few, industrial tasks like
painting component parts (Lozano-Perez, 1983).
Behavioral Cloning (Bain and Sammut, 1995; Pomerleau, 1989) additionally records the sensory infor-
mation to map the observed states to actions. This approach was used to create an autopilot for a flight
simulator that exceeded the performance of the expert by smoothing out the human control noise (Sam-
mut et al., 2002). This clean-up effect is often encountered with behavioral cloning (Michie et al., 1990).
However, as behavioral cloning merely tries to produce the same actions as the expert, mindless of the
resulting trajectory, it is often fragile with respect to changes in the environment.
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Trajectory-Based Imitation Learning

The policy-based imitation learning approach can fail, if the robot and the expert differ in their kinemat-
ics or dynamics, because the same actions then lead to different trajectories. Trajectory-based imitation
learning methods circumvent this shortcoming by trying to match the expert’s trajectory instead of its
policy. In order to make learning of the trajectory feasible, a representation is required that can generate
the desired trajectories while at the same time depending on a tractable number of parameters. The
choice of representation is crucial for the performance of the imitation learning task. An example for
such a representation are via points. Miyamoto et al. (1996) extract via points from demonstrations by
first adding a via point at the goal position and then iteratively adding via points at the positions of max-
imal squared error between the learned trajectory and the demonstrated one until the demonstration
is matched sufficiently well. However, this representation can not be generalized straightforwardly and
might not recover from perturbations in the environment.
Schaal et al. (2000) proposed to represent a movement by using a nonlinear dynamic system as an at-
tractor. This led to the development of Dynamic Movement Primitives (DMPs), a flexible representation
of a motion that can be learned from demonstrations and is therefore suitable for Imitation Learning
(Ijspeert et al., 2002, 2003; Schaal et al., 2003, 2004). A DMP is actually not a trajectory representation,
but a representation of a control policy. This policy corresponds to a PD-controller that is perturbed
with a nonlinear forcing function. The PD-controller has the purpose of reaching a given goal position
whereas the forcing function controls which path should be chosen to reach that goal. The forcing func-
tion is defined as a radial basis function network and converges to zero so that it does not prevent the
PD-controller from reaching the goal state (when assuming appropriate controller gains). Furthermore,
a phase variable is introduced that can be used to change the speed of execution. Additional advan-
tages include robustness against perturbations, capability of producing rhythmic movements, and ease
of learning, which is achieved by learning the weights of the radial basis functions. Ijspeert et al. (2002)
demonstrated the effectiveness of their approach by learning a forehand tennis swing from demonstra-
tion.
The trajectories can also be represented as Gaussian distributions by using Probabilistic Movement Prim-
itives (ProMPs) (Paraschos et al., 2013). This approach uses weighted radial basis functions in order
to encode the means for each time step and encodes the covariance matrices by using a prior on these
weights. Hence, by marginalizing out the weight vector, the trajectories are given by the parameteriza-
tion of the prior. Similar to DMPs, temporal modulation is achieved by introducing a phase variable and
rhythmic motions can be produced by using von-Mises basis functions instead of Gaussian ones. ProMPs
can be used for Imitation Learning, by learning the parameters of the prior that maximize the likeli-
hood of the demonstrated trajectories. This probabilistic approach has several interesting capabilities:
The movement primitive can be adapted to reach different via points, by conditioning the distribution
accordingly. Also, several primitives can be co-activated and blended by computing their product while
weighting them with time-dependent activation functions. ProMPs were recently applied for learning
interactions between multiple agents in a collaborative assembly task (Maeda et al., 2014).

Reinforcement Learning From Demonstration

For many practical applications, the state space is large and the dynamic model has to be approximated.
If the dynamics are not learned, Imitation Learning can be insufficient to fulfill the task. Reinforcement
Learning can be applied to learn the task by trial-and-error while at the same time learning the dynamic
model. However, exploring the large state space can be too costly, especially if the reward function is
sparse. Learning can be boosted by first learning a policy from demonstrations and afterwards improving
it using Reinforcement Learning (Schaal, 1997). Following up Imitation Learning with Reinforcement
Learning, may not only enable the robot to accomplish the task but also to improve upon the expert
demonstration (Atkeson and Schaal, 1997). Furthermore, by applying Reinforcement Learning the robot
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is able to handle new situations for which the demonstrated behavior would fail, for example, when
new obstacles occur (Guenter et al., 2007). Kober and Peters (2009) used Imitation Learning based on
DMPs in order to initialize their policy search method Policy Learning by Weighting Exploration with the
Returns (PoWER). This approach enabled the robot to reliably succeed in the game of Ball-in-a-Cup. A
similar approach was used by Kormushev et al. (2010) for learning the task of pancake-flipping.

2.1.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning constitutes a different application of Learning from Demonstration by
aiming at learning the reward function of the expert based on its demonstration. By using the learned
reward function for Reinforcement Learning, IRL can be used as a method of Imitation Learning. How-
ever, the IRL-problem should be clearly distinguished from the problem of Imitation Learning, because
learning a reward function can also serve other purposes than imitation. For example, in human-robot
collaboration tasks, the robot might try to infer the intention of the human, not in order to overtake his
task but in order to assist him in achieving it. In a less cooperative way, as mentioned by Ramachan-
dran and Amir (2007), the reward function can be used to model the opponent in adversarial games
like poker, in order to exploit its strategy. More generally, IRL aims at inferring the goals underlying the
observed behavior.
Nevertheless, surveying current research in IRL, one may conclude that it is indeed most often used for
Imitation Learning tasks, both, for experimental evaluations as well as for practical applications. This is
not surprising, because describing a (nearly) optimal behavior in terms of its intention is succinct and al-
lows for generalization. Furthermore, unlike a policy, the reward function remains valid, if the dynamics
change.
In the following, an overview will be given of research in the field of Inverse Reinforcement Learning,
starting with the first MDP formulation of the problem, given by Ng et al. (2000).

The MDP Formulation of Inverse Reinforcement Learning

Similar to Reinforcement Learning, Inverse Reinforcement Learning assumes that the agent is acting in
a Markov Decision Process. However, the reward function of that MDP is not known to the agent. In
exchange, it is given demonstrations of an expert, that tries to maximize this unknown reward. The
goal of IRL is now to learn that reward function from the demonstrations. Hence, instead of addressing
the problem of finding a near-optimal policy for a given reward function, it addresses the problem of
recovering a reward function from demonstrations of a near-optimal policy.
Unfortunately, this problem formulation is ill-posed, because the demonstrations do not suffice to deduce
the underlying intention of the expert with certainty. For example, there is always the, usually extremely
unlikely but always non-zero, possibility that the expert chooses its actions completely randomly. This
would correspond to a constant reward function, for which any behavior would be optimal. Clearly, such
degenerated solutions should be discarded and a more reasonable assumption of the underlying reward
function should be found. However, what would make an assumption reasonable?
Demanding that the expert performs (near) optimal on the learned reward function is a necessary but
not sufficient condition. Ng et al. (2000) proposed to further constrain the solution space by demanding
that any single-step deviation from the observed policy should be maximally punished. Additionally, an
L1-regularization was added to prefer simple solutions. They demonstrated that this approach can be
used to approximately recover the true expert policy on a simple grid world task and the mountain-car
problem.
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Bayesian Inverse Reinforcement Learning

Ramachandran and Amir (2007) propose a Bayesian approach in order to avoid having to decide for a
particular reward function. For that purpose the posterior is computed based on a prior on the reward
parameters and the likelihood of the demonstrations. Possible priors on the reward parameters include
the Gaussian-, Laplace- and Beta-distribution as well as the uniform distribution over a finite interval.
The likelihood of a demonstration for given reward parameters is computed under the assumption that
the expert chooses its action proportional to the exponential of the corresponding expected reward. The
reward function can be inferred from the posterior distribution by computing its mean or Maximum-
A-Posteriori (MAP). More interestingly for Imitation Learning, the policy can also be inferred from the
posterior directly. However, due to the complexity of the posterior distribution, Markov-Chain-Monte-
Carlo (MCMC) (Gilks, 2005) has to be applied for both cases whereby the approach can suffer from the
curse of dimensionality (Bellman, 1957).

Matching Feature Counts

Abbeel and Ng (2004) proposed a new approach to discard degenerated solutions, by demanding that the
optimal policy with respect to the learned reward function should match the observed policy in behavior.
For that purpose, the reward function is assumed to be a linear combination of given time-dependent
features φ t(s,a), i.e.,

rt(s,a) = φ t(s,a)>θ ,

and a reward function is learned, such that the expected feature counts φ̃ match the empirical feature
counts of the expert φ̂,

1
ND

ND
∑

i=1

T
∑

t=1

φ t(s
(i)
t ,a(i)t ) = φ̂

!
= φ̃ =

T
∑

t=1

Ept (s,a)

�

φ t(st ,at)
�

,

where ND denotes the number of demonstrations and s(i)t and a(i)t denote the state and action of the
i-th demonstration at time step t. The expected feature counts φ̃ are computed based on the joint
distributions pt(s,a) that would result from the optimal policy with respect to the learned parameters.
Since the total reward r(s,a) can be written

r(s,a) =
T
∑

t=1

rt(s,a)

=
T
∑

t=1

φ t(s,a)>θ

=

�

T
∑

t=1

φ t(s,a)

�>

θ ,

a policy that produces the same feature counts as the expert would achieve the same reward on the true
reward function independent of its parameters θ .
However, if the joint distribution pt(s,a) for computing φ̃ is based on an optimal, deterministic policy,
it is often not possible to match the empirical feature counts, because they are usually based on samples
and, furthermore, on suboptimal demonstrations. Therefore, IRL approaches that are based on match-
ing feature counts use a stochastic, suboptimal policy for computing the feature expectations. However,
when the expected feature counts are based on a policy, that is suboptimal with respect to the learned
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parameters θ , different reward functions could be learned, depending on which policy has been chosen.
And even though all these reward functions could be used to match the empirical feature counts by em-
ploying their respective policy, they might not infer the correct goals and the optimal policies for these
reward functions thus might perform badly.

Maximum Entropy Inverse Reinforcement Learning

Maximum Entropy Inverse Reinforcement Learning (Ziebart et al., 2008) applies the principle of maxi-
mum entropy (Jaynes, 1957) by choosing the policy that leads to the maximum entropy joint distribution
for matching the feature counts. This is the most principled approach, as it does not presume any un-
grounded constraint on the joint distribution and thereby minimizes the worst-case prediction log-loss
(Grünwald and Dawid, 2004).
Under the maximum entropy model, the likelihood of a given path ζi is proportional to the exponential
of its reward, i.e.,

p(ζi|θ )∝ expθ>φ̃ζ,i.

The reward function θ ? that leads to the maximum entropy state distribution matching the feature
counts, can be found by maximizing the log-likelihood of the demonstrations,

θ ? = argmax
θ

L(θ ) = argmax
θ

Nd
∑

i=1

log p(ζi|θ ),

where Nd denotes the number of demonstrations. The maximum likelihood can be found using gradient
descent, where the gradient is given by the difference between the empirical feature count and the
expected feature count for the current estimate of the reward function, i.e.,

∇L(θ ) = φ̂ − φ̃.

Several recent advances in Inverse Reinforcement Learning are based on Maximum Entropy Inverse
Reinforcement Learning (MaxEnt-IRL), e.g.

• Levine et al. (2011) apply Gaussian Process Regression in order to learn nonlinear reward func-
tions.

• Levine and Koltun (2012) apply a Laplace approximation in order to locally approximate the policy
by a Gaussian along the demonstrated trajectories in a deterministic MDP.

• Boularias et al. (2011) actually use the relative entropy between the empirical distribution and
expected distribution. By estimating the subgradient via Importance Sampling they derive a model-
free method.

In its original formulation, MaxEnt-IRL assumes that all side information was available to the expert at
the beginning of its demonstration. If this is not the case, e.g. whenever the system dynamics are noisy,
Maximum Causal Entropy Inverse Reinforcement Learning (Ziebart et al., 2010) can be used instead,
which chooses the stochastic policy that has the maximum causal entropy while matching the feature
counts. This modification is of main interest for this thesis and is discussed in detail in Chapter 3.
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2.2 Relative Entropy Policy Search

Policy Search is an approach to Reinforcement Learning that does not aim for learning the Value function
but instead learns a policy directly. Policy gradient methods achieve this by using gradient-based opti-
mization to iteratively update the parameters of the policy. However, because the previous experience
is encoded within the current policy, policy updates destroy parts of that experience leading to an infor-
mation loss. Relative Entropy Policy Search (Peters et al., 2010) is based on the optimization problem of
maximizing the expected reward (Equation 2.2a) while bounding the information loss (relative entropy)
between the current and previous iteration (Equation 2.2b), i.e.,

maximize
π(a|s),µ(s)

∑

s,a

µ(s)π(a|s)r(s,a) (2.2a)

subject to
∑

s,a

µ(s)π(a|s) log
µ(s)π(a|s)

q(s,a)
≤ ε, (2.2b)

∑

s′

µ(s′)φ(s′) =
∑

s,a

µ(s)π(a|s)p(s′|a, s)φ(s′), (2.2c)

∑

s,a

µ(s)π(a|s) = 1, (2.2d)

where µ(s) is the stationary (Equation 2.2c) state distribution that is eventually reached when executing
the policy π(a|s) in an infinite horizon MDP. Equation 2.2d is necessary to ensure that π(a|s) and µ(s)
are probability distributions. q(s,a) represents the (estimated) joint distribution of the previous iteration,
thus, the policy that maximizes the problem,

πmax(a|s)∝ q(s,a)exp

�

1
η

�

r(s,a) +
∑

s′

p(s′|s,a)θ>φ(s′)− θ>φ(s)

��

,

corresponds to the best policy update with bounded information loss ε. The Lagrangian Multipliers θ
and η can be found using gradient based optimization.
Encoding the iterative nature of a learning approach by bounding the information loss between the
current and last iteration is a major inspiration for IRL-MSD.
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3 Maximum Causal Entropy Inverse
Reinforcement Learning

The action choices at of the expert for different time steps t might not be consistent with respect to the
complete trajectory, because it might have adapted its planning based on the outcomes of the stochastic
system dynamics pt(s′|s,a). Maximizing the entropy of the whole trajectory distribution does not take
this causality into account.
Maximum Causal Entropy IRL differs from Maximum Entropy IRL by aiming at maximizing the causal
entropy of the policy πt(s,a) instead of the entropy of the joint distribution p(s,a).
The resulting Gaussian policy chooses actions with a probability that increases exponentially with the
expected future reward,

πMCE
t (a|s)∝ exp

�

Qπt (s,a)
�

. (3.1)

For LQG systems, this leads to a noisy linear controller, that differs from the optimal controller only by
its noise.
The state-action Value function Qπ(s,a) and the Value function Vπt (s) can be computed using the equa-
tions 1.2 and 1.3 described in section 1.4.3. However, Ziebart et al. (2010) provide a different way
to compute a Value function Ṽπt (s), that is similar to the computation of the optimal Value function
(Equation 1.4.3) except that the maximum-operator has been replaced by the softmax-operator,

Ṽπt (s) = log

∫

a

exp
�

Qπt (s,a)
�

da (3.2a)

= softmax
a

Qπt (s,a).

The difference between Ṽπt (s) and Vπt (s) will be investigated in section 3.1.
MaxCausalEnt-IRL learns the reward function for which πMCE

t (a|s) matches the empirical feature counts
φ̂ in expectation. This is achieved by minimizing the dual of the optimization problem of maximizing
the causal entropy of the policy constrained on matching the feature counts.
The partial derivative of the dual function with respect to the parameterization of the reward function is
given in (Ziebart et al., 2010) as the difference between the empirical feature count φ̂ of the expert and
the expected feature count φ̃ of πMCE

t (a|s) for the current estimation of θ , i.e.,

∂G
∂ θ
= φ̂ − φ̃. (3.3)

Hence, MaxCausalEnt-IRL proposes to compute the reward parameters iteratively using gradient descent.
Each iteration thereby involves a backward pass and a forward pass. The backward pass computes Ṽπt (s)
for all time steps t starting at the last time step T (based on the current estimate of θ ) as described
in chapter 1.4.3. For that purpose, it applies Equation 1.2 to compute Q̃πt (s,a) and Equation 3.2a to
compute Ṽπt (s). For LQG systems, Q̃ t(s,a) is a convex quadratic function for all time steps t. Hence, the
policies πMCE

t (a|s) can be computed using Equation 3.1. The forward pass starts at the (known) initial
state distribution p1(s) and uses the policies πMCE

t (a|s) to compute the joint distributions pt(s,a) for all
time step based on the system dynamics pt(s′|s,a). These joint distributions are then used to compute
the expected feature counts φ̃ for the current estimate of θ . The feature expectations can then be used
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to compute the gradient using Equation 3.3.
Since the performance of gradient descent depends heavily on the chosen stepsize, it is sensible to look
for ways to adapt it during optimization. In the context of MaxCausalEnt-IRL, the evaluations of the
dual function can serve as a basis for stepsize adaption. Unfortunately, the dual function has not been
published along with the algorithm and, therefore, had to be derived for this thesis (see appendix A).
Fortunately, however, this derivation provides insights into the intrinsics of the algorithm that shall now
be discussed.

3.1 Insights

Based on the description in (Ziebart et al., 2010), the optimization problem can be formulated as

maximize
πt (a|s)

T−1
∑

t=1

∫

s,a

− pt(s)πt(a|s) logπt(a|s) dsda (3.4a)

subject to
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s)φ t(s,a)dsda+

∫

s

pT (s)φT (s,0) ds= φ̂, (3.4b)

∀t>1∀s′

∫

a

pt(s
′)πt(a|s′) da=

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a) dsda, (3.4c)

∀s p1(s) = µ1(s), (3.4d)

∀t<T∀s

∫

a

πt(a|s)da= 1, (3.4e)

where the causal entropy of the policy πt(a|s) should be maximized (3.4a) subject to the constraints
of matching the feature counts (3.4b) and keeping the state distribution consistent (3.4c), whereas the
initial state distribution shall be provided by µ1(s) (3.4d). Furthermore, equation (3.4e) ensures that
the policy is a probability distribution.
The Lagrangian multiplier of the constraint (3.4b) for matching the feature counts will be denoted as
θ as it corresponds to the weight vector of the reward function. The Lagrangian multipliers of the con-
straints (3.4c) and (3.4d) will be denoted by Ṽπ1 (s) and Ṽπ2 (s) . . . ṼπT (s), respectively, as they relate to the
Value function of the policy πt(a|s).

The optimization problem is solved using Lagrange optimization (Boyd and Vandenberghe, 2009) as
demonstrated in Appendix A. The dual function G

�

pt(s),θ , Ṽπt (s)
�

is thereby minimized using the par-
tial derivatives

∂G
�

pt(s),θ ,Ṽπt (s)
�

∂ pt(s)
=











−Ṽπt (s)+log
∫

a
exp

�

−θ>φ(s,a)+
∫

s′
Ṽπt+1(s

′)p(s′|s,a)ds

�

da , if t < T

−ṼπT (s)−θ
>φT (s,0) , if t = T

, (3.5a)

∂G
�

pt(s),θ ,Ṽπt (s)
�

∂ Ṽπt (s)
=







−p1(s)+µ1(s) , if t = 1

−pt(s)+
∫

s,aπt−1(a|s)pt−1(s)pt−1(s′|s,a) , if t > 1
, (3.5b)

∂G
�

pt(s),θ ,Ṽπt (s)
�

∂ θ
= φ̂−φ̃. (3.5c)
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Setting Equation 3.5a equal to zero leads to an update equation for Ṽπt (s) (backward pass),

Ṽπt (s) =











log
∫

a
exp

�

−θ>φ(s,a) +
∫

s′
Ṽπt+1(s

′)p(s′|s,a)ds

�

da , if t < T

−θ>φT (s,0) , if t = T
. (3.6)

Setting Equation 3.5b equal to zero leads to an update equation for pt(s) (forward pass),

pt(s) =







µ1(s) , if t = 1
∫

s,aπt−1(a|s)pt−1(s)pt−1(s′|s,a) , if t > 1
.

As mentioned at the beginning of this chapter, the backward pass and the forward pass are performed
consecutively during each iteration in order to compute the expected feature counts φ̃ of the current ap-
proximation of θ , which can then be used for a single step of gradient descent by using equation (3.5c).
The common way of computing the Value function Vπt (s) of πMCE

t would involve computing the expecta-
tion of the state-action Value function Qπt (s,a) using Equation 1.3. It is therefore interesting to compare
the Value function Vπt (s) that is computed using Equation 1.3 with the Value function Ṽπt (s) that is com-
puted using Equation 3.6. It turns out, that both Value functions have the same state-dependent part,
but differ in an offset that depends on θ ,

Ṽπt (s) = Vπt (s)−
T−1
∑

i=t

1
2
(Na + log |2πΣ−1

a|s,i|), (3.7)

where Σa|s,t denotes the covariance matrix of πMCE
t (a|s). The proof is given in Appendix C. As the offset

does not depend on the state, both backward passes lead to the same policy.

When evaluating the dual function for the current estimates of pt(s), Ṽπt (s) and θ , equation (3.5a)
and (3.5b) equate to zero for all time steps t. In that case, the dual function simplifies greatly and is
given by

G ? (θ ) = φ̂
>
θ −Es′

�

Ṽπ1 (s
′)
�

. (3.8)

The expected total reward Es′
�

Ṽπ1 (s
′)
�

can also be computed based on the expected feature count φ̃,

Es′
�

Ṽπ1 (s
′)
�

= θ>φ̃. (3.9)

Using Equation 3.7, 3.8 and 3.9, the dual function can be expressed in terms of φ̃,

G ? (θ ) = φ̂
>
θ −Es′

�

Ṽπ1 (s
′)
�

.

= φ̂
>
θ −Es′

�

Vπt (s
′)−

T−1
∑

i=t

1
2
(Na + log |2πΣ−1

a|s,i|)

�

.

= φ̂
>
θ −Es′

�

Vπt (s
′)
�

+
T−1
∑

i=t

1
2
(Na + log |2πΣ−1

a|s,i|).

= φ̂
>
θ − φ̃>θ +

T−1
∑

t=1

log |2πΣ−1
a|s,i|+ const. (3.10)

The empirical feature count φ̂ and the expected feature count φ̃ have to be computed anyway in order to
evaluate Equation (3.5c), and the covariances Σa|s,t of the stochastic policies πt(a|s) are a side product
of the backward pass. Therefore, the dual function can be evaluated at each iteration for the current
approximation of θ without any noticeable computational overhead.
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3.2 Implementation

This section discusses the practical challenges that arose when employing MaxCausalEnt-IRL for the
purpose of learning a non-stationary reward function and how they have been coped with. Applying
the algorithm for learning time-dependent reward functions is straightforward and is achieved by in-
troducing independent sets of features for each time step. Thereby, however, the number of features
is increased significantly, and learning becomes infeasible if the duration of the demonstrations is dis-
cretized into too many partitions. Radial Basis Functions (RBFs) are employed in order to learn a smooth,
time-continuous reward function based on a coarse discretization. Additionally, the insights discussed in
section 3.1 are utilized by adapting the stepsize based on the dual function (3.10).

3.2.1 Learning a Non-Stationary Reward Function

MaxCausalEnt-IRL is applied to learn T independent, quadratic reward functions

rt(s,a) = −(s− gt)
>Rt(s− gt)− a>Ha

= −s>Rts+ s>rt − a>Ha+ const,

where Rt must be positive semi-definite and H must be positive definite. The goal positions gt relate to
the linear coefficients rt via rt = 2Rtgt . The action penalty matrix H is assumed to be a time independent
diagonal matrix in order to reduce the amount of features.
The features φ are divided into T+1 subsets φ = [φ>0 ,φ>1 , . . . ,φ>T ]

>, where φ0 aggregates the quadratic

actions, i.e. φ0 =
T−1
∑

t=1
[a2

1,t , . . . , a2
Na ,t]

>. The remaining subsets encode the linear, quadratic and mixed

state features for their corresponding time step, i.e.,

∀t ∈ [1, T] : φ t = [s1,t , . . . , sNs ,t , s1,t · s1,t , . . . , s1,t · sNs ,t , s2,t · s2,t , . . . , s2,t · sNs ,t , . . . , sNs ,t · sNs ,t]
>.

The total reward can then be expressed as a linear combination of these features,

r(s,a) =
T
∑

t=1

rt(s,a),

= −θ>φ + const.

The entries of θ thereby correspond to the entries of the parameters rt , Rt and H depending on the
feature they weight:

• if the feature is a quadratic action term, it corresponds to the respective diagonal element of H.

• if the feature is a quadratic state term, it corresponds to the respective diagonal element of Rt .

• if the feature is a mixed state term, it corresponds to the respective off-diagonal entry times two.

• if the feature is a linear state term, it corresponds to the respective element of rt .

Where t corresponds to the index of the subset that contains the feature.
Thus, the parameters of the time dependent reward functions rt(s,a) can be learned, by learning θ via
MaxCausalEnt-IRL as described in chapter 3.
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3.2.2 Towards a Compact Representation Using Radial Basis Functions

Learning an independent set of features for each time step increases the number of parameters signifi-
cantly. In order to soften this increase, the T time dependent reward functions are expressed using Nϕ
radial basis functions ϕi(t), i.e.

rϕt (s,a) =
Nϕ
∑

i=1

ϕi(t)
�

−s>Ris− s>ri

�

− a>Ha,

where ϕi(t) are normalized gaussian radial basis functions

ϕi(t) = wie
− 1

2

� t−ci
σi

�2

,

with equally spaced centers ci and variances σi. The weights wi are chosen to normalize the radial basis
functions on the interval [1, T], i.e.,

∀i ∈ [1, Nϕ] :
T
∑

t=1

ϕi(t) = 1.

By employing radial basis functions, only Nϕ+1 subsets of features are required instead of T +1. Again,
the first subset, φ0, shall encode the quadratic actions as shown in section 3.2.1. The remaining subsets,
however, now aggregate the linear, quadratic and mixed state features, with respect to the responsibilities
of the respective radial basis function, i.e.,

∀i ∈ [1, Nϕ] : φϕi =
T
∑

t=1

ϕi(t)[s1,t , . . . , sNs ,t , s1,t · s1,t , . . . , s1,t · sNs ,t , s2,t · s2,t , . . . , s2,t · sNs ,t , . . . , sNs ,t · sNs ,t]
>.

By composing the feature vector φϕ of these subsets, the total reward is again a linear combination of
the features,

r(s,a) =
T
∑

t=1

rϕt (s,a)

= −θ>φϕ,

and the parameters of the time dependent reward functions can thus be learned via θ .
Besides decreasing the number of parameters, the RBF-based representation leads to time continuous
reward functions by assuming a reward function that changes smoothly over time.

3.2.3 Ensuring a Positive Semi-Definite Reward Function

As the entries of θ directly correspond to the elements of the parameters rx , Rx and H, the gradient
based optimization may lead to non-positive semidefinite state costs Rx , which would violate the LQG
assumption and thereby lead to failure.
This can be avoided by applying gradient descent for learning the entries of a lower triangular matrix Lx
instead of learning the entries of Rx directly. Rx can then be constructed by

Rx = LxL>x .
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As Cholesky has shown, any positive semi-definite matrix can be decomposed into such a matrix product
and any such product yields a positive semi-definite matrix.
In order to learn the entries of Lx an additional weight vector θ̃ of the same size as θ is introduced, such
that each entry of that weight vector corresponds to a different entry of the respective triangular matrix
Lx , goal position gx or action cost matrix H. Gradient descent is then applied to update θ̃ instead of θ
using

∂G
�

pt(s),θ , Ṽπt (s)
�

∂ θ̃
=
∂G

�

pt(s),θ , Ṽπt (s)
�

∂ θ

dθ

dθ̃
.

The gradient dθ
dθ̃

can be solved in closed form and produces a block diagon matrix

dθ

dθ̃
=

















dθ0
dθ̃0

0 . . . 0

0 dθ1
dθ̃1

. . .
...

...
. . . . . . 0

0 . . . 0 dθN
dθ̃N

















,

where θ i and θ̃ i indicate the subsets of θ and θ̃ that correspond to the respective subset φ i of φ.

3.2.4 Adapting the Stepsize Based on the Dual Function

As shown in section 3.1, the dual function can be evaluated very efficiently using Equation 3.10. There-
fore, it makes sense to take these evaluations as a basis for stepsize adaption during gradient descent.
This is done by checking after each gradient step, whether the dual function did indeed decrease. Only
then, the gradient step is accepted and the stepsize is increased by a fixed factor α. Whenever the dual
function did not decrease, the last gradient step is withdrawn and the stepsize is decreased by β . The
parameters α and β are chosen such that the relative increase after a successful step is smaller than the
relative decrease after an unsuccessful step in order to avoid having to withdraw too often.
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4 Inverse Reinforcement Learning by Matching
State Distributions

This chapter presents a novel approach for learning non-stationary reward functions from demonstra-
tions. In contrast to Maximum Causal Entropy Inverse Reinforcement Learning it is not based on match-
ing the feature expectations of the learned policy with the observed feature counts. Instead, it aims
at matching the state distributions that result from the learned policies, pπt (s) with the observed state
distributions, qt(s). By defining the objective in terms of distributions instead of defining them in terms
of feature counts, the features do not have to be explicitly defined. Instead, the structure of the reward
is automatically determined based on the structure of the distributions. Matching the state distribution
is achieved by minimizing the relative entropy between those probability distributions. Additionally,
inspired by Relative Entropy Policy Search (REPS), the relative entropy of the current policy πt(a|s) is
minimized with respect to the last policy q0,t(a|s) in order to reduce the loss of information between
iterations.

4.1 The Optimization Problem

Inverse Reinforcement Learning by Matching State Distributions is based on the following optimization
problem:

minimize
πt (a|s)

T
∑

t=1

∫

s

pt(s) log
pt(s)
qt(s)

ds+
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s) log
πt(a|s)
q0,t(a|s)

dads (4.1a)

subject to ∀t>1∀s′

∫

a

pt(s
′)πt(a|s′)da=

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a)dsda, (4.1b)

∀s p1(s) = µ1(s), (4.1c)

∀t<T∀s

∫

a

πt(a|s)da= 1. (4.1d)

The constraints (4.1b, 4.1c, 4.1d) are exactly the same as their counterparts in the Maximum Causal
Entropy optimization problem (3.4c, 3.4d, 3.4e). The goal of the optimization (4.1a), however, is dif-
ferent, as it aims at minimizing the two Kullback-Leibler divergences (KLs). It is to note, that the target
policy qt(a|s) does not have to be set to the policy of the last iteration, but could be set to a fixed dis-
tribution instead. In this case, the corresponding KL does not lead in learning action costs, but serves
as regularization instead. Again, the Lagrangian multipliers for the constraints (4.1b) and (4.1c) relate
to the Value function of the policy πt(a|s) and will be therefore denoted by Ṽπt (s). As the constraint of
matching the feature counts has been dropped, the optimization problem does not possess a Lagrangian
multiplier that corresponds to the parameters of the reward function.
Indeed, it might look like the optimization problem does not refer to any form of reward at all, giving
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rise to the question of how it can be employed to tackle the problem of IRL. This question can be best
answered by looking at the partial derivatives of the dual function,

∂G (pt(s), Ṽt(s))
∂ pt(s)

=







ṼT (s) + log pt (s)
qt (s)
+ 1 , if t = T

Ṽt(s)− log
∫

a exp
�

log q0,t(a|s) +
log qt (s)
log pt (s)

− 1+
∫

s′ Ṽt+1(s′)p(s′|s,a)ds′
�

, if t < T

(4.2a)

∂G (pt(s), Ṽt(s))
∂ Ṽt(s)

=







−p1(s) +µ1(s) , if t = 1

−pt(s) +
∫

s,aπt−1(a|s)pt−1(s)pt−1(s′|s,a) , if t > 1
. (4.2b)

The derivations are given in Appendix B. Setting the derivative with respect to the state distribution
(4.2a) to zero leads to the backward pass to compute Ṽπt (s), while setting the derivative with respect to
the Value function (4.2b) equal to zero leads to the forward pass to compute pt(s). Actually, the forward
pass is exactly the same for MaxCausalEnt-IRL (3.5b) and IRL-MSD. More interestingly, however, the
backward pass of IRL-MSD is the same as the backward pass of MaxCausalEnt-IRL (3.5a) except that the
reward function −θ>φ(s,a) has been replaced by the term

rt(s,a) = log(q0,t(a|s)) + log (qt(s))− log (pt(s))− 1, (4.3)

that serves as reward signal for the optimal policy π?t (a|s), which is again, as in MaxCausalEnt-IRL,
proportional to the exponential of the state action Value function Q t(s,a),

π?t (a|s)∝ exp (Q t(s,a)) = exp



rt(s,a) +

∫

s′

Ṽt+1(s
′)p(s′|s,a)ds′



 . (4.4)

Hence, the reward function depends directly on the target policy q0,t(a|s), the target state distribution
qt(s), and pt(s), the state distribution that results from the policy that minimizes the objectives (4.1a).
As the state distribution pt(s) depends on the policy, and the policy depends on the Value function
Ṽt(s), the reward function is actually defined recursively. The features of the reward function thus
evolve naturally, depending on the types of the involved probability distributions. Most notably, if all
distributions are Gaussian, and the system dynamics are linear with Gaussian noise, the reward function
is quadratic in states and actions. For LQG systems, π?t (a|s) always takes the form of a linear PD controller
with Gaussian noise. Therefore, in the following, the target policy is assumed to be of the same form,
i.e. q0,t(a|s) =N (a|K0,ts+ k0,t ,Σq0,t). Then, the parameters of the reward function

rt(s,a) = −





s

a





>



Rt Ft

F>t Ht









s

a



+





s

a





>



rt

ht



+ const (4.5)

can be computed by

Rt =
1
2

�

Σ−1
q,t +K>0,tΣ

−1
q0,tK0,t −Σ−1

p,t

�

, (4.6a)

rt = Σ
−1
q,tµq,t −K>0,tΣ

−1
q0,tk0,t −Σ−1

p,tµp,t , (4.6b)

Ft = −
1
2

K>0,tΣ
−1
q0,t , (4.6c)

Ht = −
1
2
Σ−1

q0,t , (4.6d)

ht = Σ
−1
q0,tk0,t . (4.6e)

The derivations can be found in Appendix B.
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4.2 The Proposed Algorithm

The partial derivatives of the dual function (equation 4.2a and equation 4.2b) lead to an iterative algo-
rithm similar to MaxCausalEnt-IRL. Starting with an initial estimate of the reward function, the softmax
Value functions Ṽπt (s) as well as the corresponding policies πt(a|s) are computed via the backward pass
(4.2a), and the resulting state distributions pt(s) are computed via the forward pass (4.2b). However,
IRL-MSD utilizes these state distributions in order to compute the parameters of the reward function,
that is optimal with respect to the current estimates, in one shot, whereas MaxCausalEnt-IRL utilizes
them merely to update the parameters by a single step of gradient descent. It should be noted, that the
computational cost of computing the optimal parameters (Equations 4.6a to 4.6e) does not exceed the
cost of computing the gradient of the parameters via feature expectations.
The IRL-MSD optimization problem allows different interpretations regarding q0,t , that lead to two dif-
ferent variants of the algorithm. The first variant treats q0,t as an estimate of the optimal policy, that
is updated after each iteration, whereas the second variant treats q0,t as a regularization on the policy
which is not changed during optimization. The effects of these different point of views shall be discussed
in the following subsections.

4.2.1 Using the Policy KL for Learning Action Costs

The first variant of IRL-MSD, which will be referred to by MSD-ACL in the following, regards q0,t as an
estimate of the optimal policy. It is updated after each iteration by setting it equal to the policy that
was computed during that iteration. Thereby, similar to REPS, the current policy should stay close to
the last one. However, in contrast to REPS the relative entropy is not bounded. This allows for faster
convergence but does not give any guarantee, that the policy is indeed close to the last one. Therefore,
if such a guarantee is needed, e.g. when learning a local linearization of the state dynamics, a bound
on that KL should be introduced by reformulating it as a constraint. In the following, however, it will
be assumed that no such bound is necessary. The relative entropy then merely serves the purpose of
learning the policy that matches the target state distribution as close as possible.
MSD with Action Cost Learning (MSD-ACL) would per default not regularize the actions at all, however,
it can be easily augmented with action regularization by adding a fixed offset Hreg,t to the action cost
matrix Ht (equation 4.6d) whenever computing the reward function. This corresponds to adding a
corresponding punishment term to the objective of the optimization problem.
A more serious disadvantage of MSD-ACL comes from the fact, that setting q0,t(a|s) equal to a noisy
PD-controller, leads to learning state-dependent action costs Ft and potentially non-zero action goals
ht . While this might be fine for many cases, it has the drawback that it leads to a reward function that
is difficult to interpret. When state dependent action costs should be avoided, the second variant of
IRL-MSD can be employed.

4.2.2 Using the Policy KL for Regularization

The second variant, which is in the following named “MSD with KL-based Regularization (MSD-REG)”,
uses q0,t for regularization. The controller gains K0,t and k0,t are set to zero, and its noise Σq0,t serves as
weight of the regularization. If the covariance is high, deviations from the zero action are punished less
and the regularization is thus low. Respectively, a low covariance would result into strong regularization.
However, misusing a KL for regularization comes at a cost, because minimizing the relative entropy
might actually result in increasing the action costs artificially just for the purpose of matching Σq0,t
which might lead to suboptimal learning. Nevertheless, it allows to learn a state-dependent reward
function for a given action cost matrix Ht . Such a reward function has the advantage, that goal states as
well as their relevance can be directly inferred.
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The effects on the performance, that result from using the KL for regularization will be investigated in
chapter 5.

4.2.3 Ensuring a Positive Definite Reward Function

Computing Rt or Ht according to equation 4.6a or 4.6d does not guarantee positive semi-definite cost
matrices. Such reward functions should be avoided, because they break the LQG assumption and may
lead to non-Gaussian policies. For IRL-MSD, a non-positive semi-definite reward function indicates that
the variance with respect to the goal position is smaller than the target variance. The goal position then
is no longer an attractor, but serves as detractor instead, i.e. the reward increases with the distance to
that position. As it is not admissible to allow such reward functions, the cost matrices can be checked
immediately after computation for positive definiteness. If they are not positive definite, spectral decom-
position can be utilized in order to replace all negative eigenvalues by a small positive number and then
to transform the matrix back into its original basis.

4.2.4 Disregarding Features by Matching Marginals

In some cases, it is not desirable to match the demonstrations with respect to all state trajectories. For
example, kinesthetic teaching might be used in order to demonstrate the via points of a movement
regarding only the task space positions, but not the corresponding velocities. It might seem to be a
drawback of IRL-MSD, that the features cannot be chosen directly, but are rather implicitly defined by
the target distribution. However, defining the type of the target distribution pt(s) does not need to be
less intuitive than defining the type of the reward function. It could be argued, that defining the type
of the target distribution is more intuitive, since it can be directly estimated based on the trajectories,
whereas inferring the structure of the reward function from the trajectories is slightly less direct. How-
ever, for many practical applications it probably does not make any difference in the end and the problem
of choosing the proper features and the problem of choosing the proper target distributions are just two
different views on the same problem.
Ignoring certain state dimensions for MaxCausalEnt-IRL is achieved by ignoring the corresponding fea-
tures when computing the feature counts, whereas for IRL-MSD it is achieved by ignoring the corre-
sponding dimensions of the random variable when computing the KL. This leads to a slightly more
general formulation of the objective of the optimization function, i.e. Equation 4.1a becomes

minimize
πt (a|s)

T
∑

t=1

∫

s

pt(s) log
p̃t(s)
q̃t(s)

ds+
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s) log
πt(a|s)
q0,t(a|s)

dads, (4.7)

where p̃t(s) and q̃t(s) are the respective marginal distributions. The only difference that results from
this small modification is that the entries of Rt and rt that correspond to the disregarded states have to
be filled up with zeros, i.e. they have to be computed by

Rt =
1
2

�

D>(Σ−1
q̃,t −Σ

−1
p̃,t)D+K>0,tΣ

−1
q0,tK0,t

�

, (4.8a)

rt = D>(Σ−1
q̃,tµq̃,t −Σ−1

p̃,tµp̃,t)−K>0,tΣ
−1
q0,tk0,t , (4.8b)

where D is constructed by removing all rows of the Ns-by-Ns identity matrix, that correspond that disre-
garded states.

4.2.5 A Pseudo-code Implementation of IRL-MSD

A pseudo-code implementation of IRL-MSD for LQG systems is given in Algorithm 1 for the variants dis-
cussed in section 4.2.1 and 4.2.2. The modifications given in section 4.2.3 and 4.2.4 can be incorporated
by computing the rewards accordingly.
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input : q(s) ; /* target state distributions for all time steps */

q(0)0 (a|s) ; /* target policies for all time steps */

p(s′|s,a) ; /* system dynamics for all time steps */

µ0(s) ; /* state distribution of the first time step */

T ; /* time horizon */

learnActionCosts ; /* boolean indicating whether action costs should be learned
*/

output: H(i), h(i), F(i), R(i), r(i) ; /* reward parameters for all time steps */

/* Initialize reward parameters */

[H(0), h(0), F(0), R(0), r(0) ]← initialize()
i← 0
while not converged do
/* compute the Value functions and policies using equation 4.2a and 4.4 */

[V (i)(s),π(a|s)(i)]← backward_pass(H(i), h(i), F(i), R(i), r(i) ) ; /* See Appendix B */

/* compute the state distributions using equation 4.2b */

p(i)(s)← forward_pass(π(i)(a|s), p(s′|s,a), µ0(s))

/* set next target policies */

if learnActionCosts then
q(i+1)

0 (a|s)← π(i)(a|s)
else

q(i+1)
0 (a|s)← q(i)0 (a|s)

/* compute reward parameters for the next iteration using equation 4.6a to 4.6e

*/

[H(i+1), h(i+1), F(i+1), R(i+1), r(i+1) ]← compute_reward(q(s), q(i)0 (a|s), p(i)(s)

/* iterate */

i← i + 1

Algorithm 1: Pseudo-code Implementation of IRL-MSD
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5 Evaluation
The different approaches are evaluated on a double integrator as toy example. A double integrator is a
dynamics model of an underactuated systems that possesses twice as many state dimensions as action
dimensions, where these two states correspond to the first and second integration of the corresponding
action. Thereby the actions can be interpreted as accelerations and the states as velocities and positions.
The velocity at time step t, vt , can be approximated using the velocity and acceleration of the last time
step, i.e. vt = vt−1 +∆v ≈ vt−1 + at−1∆t, where ∆t is the difference in time between two time steps.
Similarly, the position at time step t, x t can be approximated x t ≈ x t−1+vt−1∆t. For a single action and
a time discretization ∆t = 0.1, this corresponds to linear system dynamics st+1 = As+Ba, with

A=





1 0.1

0 1



 and B=





0

0.1



 . (5.1)

The dimensions can be increased by adding additional actions and their corresponding pairs of states.
The matrices of such higher dimensional systems are block-diagonal and composed of the blocks given
in Equation 5.1.
The approximation error is modeled as Gaussian noise, leading to non-deterministic system dynamics.

5.1 Assuming Known Statistics of the Expert

The evaluations within this section assume that the true policy of the expert is known. Therefore, the
state distributions resulting from that policy are used in order to compute the empirical feature counts
φ̂ for MaxCausalEnt-IRL and, respectively, are used as target distributions qt(s) for IRL-MSD. The effects
of the sampling error are thereby removed when comparing the different approaches.
The system dynamics are given by a double integrator with Na action dimensions and, thus, Ns = 2Na
state dimensions. The MDP lasts for T = 50 time steps. The true reward function is quadratic in states
and actions. The action costs are not correlated with the states and are time-independent. The action
cost matrix is given by H = σ2

aI
Na , where INa denotes the Na-by-Na identity matrix and σ2

a = 0.01. State
costs are only given at time step 25 and time step 50, and are based on a projection of the seven positions
to a three-dimensional space. This relates to the problem of task space control of a Na-link manipulator,
whereat the forward kinematics are given by the projection matrix.
For the following experiments, the number of links was set to three. The target distribution was com-
puted using optimal control on the true reward function. Figure 5.1 shows the resulting state distribution
of the first dimension in task space. The shaded area corresponds to the 2σ confidence interval. The
right side shows an estimate based on seven samples.

5.1.1 IRL by Matching State Distributions

MSD-REG and MSD-ACL are evaluated for different initial covariance matrices Σq0,t . The mean of the
target policy q0(a) is set equal to zero, independent of the state. Only a single parameter, σ0, has to be
chosen by setting Σq0,t = σ2

0I
Na .

MSD-REG uses σ2
0 to control regularization, whereat high values of σ2

0 correspond to low regularization
and vice versa. MSD-ACL uses σ2

0 as initial guess of the target policy that is updated during optimization.
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Figure 5.1.: The expert trajectory distributions of the first dimension in task space plotted over time.
Left: true distribution, Right: estimate based on seven samples
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Figure 5.2.: The expected reward for MSD-REG and MSD-ACL are shown for different initializations.
Left: MSD-REG achieves a good performance already after the first iteration, however con-
verges to a solution that performs worse. Right: The expected reward of MSD-ACL converges
to the one of the expert. The higher initialization has a faster speed of convergence.

Figure 5.2 shows the expected reward of the optimal controller with respect to the learned reward func-
tion for good values of σ2

0. As for all other conducted experiments in this chapter, the expected reward
is computed based on the true reward function. The values for σ2

0 have been found in a previous exper-
iment. Higher values have led to instabilities for both approaches.
Interestingly, MSD-REG attains the best performing reward functions after only a few iterations and sub-
sequently converges to a solution that performs slightly worse.
MSD-ACL converges smoothly to the expert performance. The speed of convergence is faster for the
initialization with higher variance.
The state distributions of the optimal controller on the learned reward functions are depicted in Fig-
ure 5.3. The initialization was set to σ2

0 = 1000 for MSD-REG and to σ2
0 = 10 for MSD-ACL. The plot

on the left side shows the state distributions after one (red) and after five thousand iterations (blue) of
MSD-REG. The distribution after a single iterations has clearly lower variance than the baseline distribu-
tion (black). The state distribution after five thousand iterations matches the baseline distribution better,
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Figure 5.3.: The trajectories of the first dimension in task space are shown for MSD-REG (left) and MSD-
ACL (right). The initial estimate of MSD-REG (red) has clearly lower variance than the baseline
distribution. The state distribution of MSD-ACL after five thousand iterations (blue) is indis-
tinguishable from the baseline distribution.

even though it performs worse in terms of expected reward.
The plot on the right side shows the corresponding distributions for MSD-ACL. The state distribution
after a single iteration (red) approximates the target distribution worse than the respective distribution
of MSD-REG because it started with a higher regularization. The state distribution after five thousand
iterations (blue) matches the baseline distribution exactly.

5.1.2 Comparison with Maximum Causal Entropy IRL

MSD-ACL with σ2
0 = 10 is compared to MaxCausalEnt-IRL. The modification based on radial basis func-

tion (Chapter 3.2.2) is not shown, because it does not lead to significant differences for the given task
(except, of course, if the number of centers is chosen very low, which impairs the performance signifi-
cantly). For MaxCausalEnt-IRL the action costs are assumed to be known in order to reduce the amount
of features. The step size is adapted after each iteration of gradient descent by multiplying it with
α = 1.01 or β = 0.5 respectively, as described in chapter 3.2.4. The algorithms are compared with re-
spect to the number of performed iterations. An additional comparison based on the computational time
spent would be uninspiring, because both algorithms need approximately the same time per iteration.
Figure 5.4 shows the expected rewards after each iteration. The blue curve relates to MSD-ACL and is the
same as the corresponding curve in Figure 5.2. The red curve shows the performance of MaxCausalEnt-
IRL. It converges significantly slower than MSD-ACL.
Figure 5.5 shows the resulting state distributions for MaxCausalEnt-IRL after one thousand (red) and
after ten thousand iterations (blue). These distributions are based on the greedy, optimal controller. The
corresponding distribution for the true reward function is shown in black. MaxCausalEnt-IRL succeeds
in matching the mean very accurately already after thousand iterations, but has too high variance at the
goal positions. After ten thousand iterations the variances are matched more closely, however, they are
still slightly to large at the goal positions.
It is also interesting to inspect the learned parameters directly. Both approaches learn reward function
that only assign high rewards at time steps that are close to the critical time steps 25 and 50, thus, the
remaining time steps can be neglected. MSD-ACL learns state-dependent action costs and is therefore
difficult to interpret. Hence, MSD-REG and MaxCausalEnt-IRL are analyzed, based on the reward func-
tions that have been learned after ten thousand iterations. The learned reward matrices Rt and goal
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Figure 5.4.: The expected reward of MSD-ACL and MaxCausalEnt-IRL is compared after each iteration
based on the true reward function. MSD-ACL converges significantly faster to the expected
reward of the expert.

positions gt are mapped to the task space using the projection matrix. This transformation yields the low
dimensional reward parameters RTS

t and gTS
t that can be compared to the true reward function. For ease

of illustration, only the first task space dimension is considered and reward correlations are ignored.
Figure 5.6 shows the first dimension of the task space goal positions (solid line) and the corresponding
entries of RTS

t (radius of shaded area) for the interesting time steps. Interestingly, MaxCausalEnt-IRL
learns goal positions that are distant from the desired trajectory, especially at time steps shortly before
the critical ones. The goal positions are given in table 5.1. MSD-REG succeeds in extracting the true goal
positions at the critical time steps 25 and 50. The goal positions learned by MaxCausalEnt-IRL are very
different from the true goal positions even for high-reward time steps.

time step 23 24 25 26 27 48 49 50

actual 0 0 10 0 0 0 0 20

MSD-REG 4.1 7.4 9.9893 11.5 12.2 17.9 19 19.9991

MaxCausalEnt-IRL 1.2E5 -174.6 238.8 12.2 10.5 7.4E3 -7.9E5 891

Table 5.1.: The table compares the goal positions around the critical time steps for the first dimension in
task space. MSD-REG extracts the actual goal positions at the critical time steps (25 and 50)
very accurately. These values are given with higher precision.
MaxCausalEnt-IRL learns wrong goal positions at the critical time steps and compensates this
by choosing goal positions that are very different from zero for the preceding time steps.
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Figure 5.5.: The state distribution of the optimal controller based on the reward learned by Maximum
Causal Entropy IRL is shown after 1000 iterations (red) and after 10000 iterations (blue).
The state distribution for the true reward function is shown in black. The learned reward
functions lead to a variance that is slightly too high at the goal positions.

5.2 Learning Based on Samples

This section covers the more realistic scenario where the policy and the resulting joint distribution of the
expert are not known.
The experiments are based on the same system as the one described in section 5.1. The empirical feature
counts and the target distribution respectively are estimated based on demonstrations. All experiments
use the same twenty sets of seven demonstrations.

5.2.1 IRL by Matching State Distributions

The employed reward function does not depend on the velocities directly. As the velocities are usually
very noisy, it is sensible to exclude them from the target distribution as described in chapter 4.2.4. The
effect of removing the velocities from the target distribution was tested both, for MSD-ACL as well as for
MSD-REG.
The version of MSD-ACL that tries to match the complete state distribution was initialized with σ2

0 = 10;
the version that ignores the velocities uses σ2

0 = 1. These values were chosen based on preliminary
experiments. The averaged expected rewards and their 2σ confidence intervals are shown in Figure 5.7.
The variant that does not try to match the velocities converges slower, but seems to converge to a better
solution.
Both variants of MSD-REG have been tested with σ2

0 = 10000. Similar to the experiments based on the
known expert distribution, the averaged expected rewards did not change much after the first iteration.
The results of the optimization are therefore shown in a table (5.2). By ignoring the noisy velocities, the
performance could be improved.
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Figure 5.6.: The plots show the learned goal positions and their associated rewards for the interesting
time steps at the middle and end of the demonstration. The top row illustrates the reward
parameters learned by MSD-REG. The bottom row shows those learned by MaxCausalEnt-IRL.
Both approaches associate high reward to the critical time steps 25 and 50. The learned goal
positions by MaxCausalEnt-IRL are very different from zero at the time steps that precede the
critical ones. The goal positions are shown in Table 5.1.

variant averaged reward 2σ-confidence

matching velocities -90884 ± 24974

ignoring velocities -69314 ± 10583

expert demonstrations -67418 ± 26437

Table 5.2.: The expected averaged reward is shown after thousand iterations. The performance of MSD-
REG is similar to the one demonstrated by the expert when the velocities are ignored.
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Figure 5.7.: The red curve shows the averaged expected rewards of MSD-ACL when matching both, posi-
tions and velocities. The blue curve shows averaged expected rewards of MSD-ACL when the
velocities are ignored. The average expected rewards of the demonstrations is illustrated by
the black line. The shaded areas correspond to 2σ confidence. The variant that ignores the
velocities converges slower. However it seems to converge to a better solution. The slower
convergence can be explained with the higher initial regularization.

time step 23 24 25 26 27 48 49 50

actual 0 0 10 0 0 0 0 20

MSD-REG 112.1 5.1 10.1015 4.6 111.9 -11.3 -119.1 20.7220

MaxCausalEnt-IRL 1.2E4 31.9 13.4 65.8 41.2 3.6 35.5 43.1

Table 5.3.: The table compares the goal positions around the critical time steps for the first dimension in
task space. MSD-REG approximately learns the true goal positions at the critical time steps (25
and 50).

5.2.2 Comparison with Maximum Causal Entropy IRL

Figure 5.8 compares the expected rewards of MSD-ACL and MaxCausalEnt-IRL. Both approaches try
to match all states. MSD-ACL is initialized with σ2

0 = 10. As for the setting where the expert state
distribution is known, MSD-ACL converges significantly faster.
Again, the reward parameters learned by MSD-REG are compared to those learned by MaxCausalEnt-
IRL. Figure 5.9 shows the goal positions for the first dimension in task space as well as the associated
rewards for time steps that are close to the critical ones.
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Figure 5.8.: MaxCausalEnt-IRL (blue curve) is compared to MSD-ACL (red curve) on the same sets of 7
samples. MSD-ACL converges significantly faster.

5.3 Discussion

A simple toy task was used to evaluate both variants of IRL-MSD and to compare them with
MaxCausalEnt-IRL. Both, MSD-ACL and MSD-REG converged significantly faster than MaxCausalEnt-
IRL. This is not surprising, given that IRL-MSD does not rely on gradient descent but directly computes
the reward parameters that are optimal with respect to the current estimations.
When properly initialized, both variants of IRL-MSD seem to converge to similar solutions. MSD-REG
converges almost instantly. The expected reward based on the initial estimates of the parameters was
always close to the best one found over all iterations. However, the initialization has a huge impact
on the performance (Figure 5.2 left) because it corresponds to a regularization. MSD-ACL updates the
target policy after each iteration and, thus, the initial parameter is less influential (Figure 5.2 right).
The parameters of the reward function have been inspected in order to assess how well the true goal
positions of the expert have been matched. MSD-REG was able to approximately recover the true goal
positions at the important time steps even for the sample-based estimate of the target state distribution.
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Figure 5.9.: The goal positions of the first dimension in task space and corresponding reward coefficient
are shown for time steps close to the critical ones. The upper corresponds to MSD-REG and
the bottom row corresponds to MaxCausalEnt-IRL. MSD-REG captures the sparseness of the
true reward function better that MaxCausalEnt-IRL. The goal positions are shown in Table 5.3.
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6 Future Work
Due to the good results in the experiments, IRL-MSD suggests itself for future research. This chapter
discusses some open problems and how they might be addressed.

6.1 Learning Context Dependent Reward Functions

The goal state for a given time step t may depend on a context that is not modeled via the system dy-
namics. For example, the control of the racket for the task of playing table tennis may depend on the
last observation of the ball. Therefore, the learned reward function should also be a function of that
observation. IRL-MSD can be applied straightforwardly to learn such reward functions by adjusting the
corresponding KL of the optimization goal (4.1a). For example, a conditional distribution qt(s|o) could
serve as a target state distribution that depends on the last observation o. The parameters of the mean
µq,t = Kq,to+ kq,t could be learned from the demonstrations, for example by linear regression.
By modifying the optimization goal similarly as shown in chapter 4.2.4, but using conditional distribu-
tions instead of marginals, the linear terms of the reward functions would become context dependent.
More generally, it might also be useful to choose parametrized distributions.

6.2 Dropping the LQG Assumption

Only LQG systems have been considered within this thesis. As these assumptions rarely hold for real
robot applications, ways have to be found to deal with the resulting implications. If the involved dis-
tributions are no longer Gaussian, both, the backward pass as well as the forward pass could no longer
be solved in closed form. However, this problem is not specific to IRL-MSD but concerns other IRL
methods as well. Methods for coping with non-LQG systems often include approximations. Local IRL
methods (Levine and Koltun, 2012) apply Laplace approximations to approximate the policy by a Gaus-
sian distribution along the demonstrated path. If the changes of the policy are sufficiently small, linear
approximations of the system dynamics may provide satisfying results.
The reward function given in Equation 4.3 does not require the distributions to be Gaussian and, thus,
may provide some insights.

6.3 Bounding the Policy-KL

The formulation of the optimization problem given in Equation 4.1a minimizes the KL between the
policy and the target policy as part of the objective function. However, similarly to REPS, an inequality
constraint could be introduced to bound the information loss between iterations. This could be especially
useful when using linear approximations of the dynamics.

6.4 Learning State Independent Action Costs

MSD-REG does not learn any action costs at all whereas MSD-ACL learns quadratic action costs, but
also state-dependent and linear ones (corresponding to non-zero action goal positions). It would be
interesting to only learn the quadratic costs while keeping the linear and state depend costs equal to
zero. It seems like this could be achieved by using the variance of the last policy as target policy,
while keeping the target mean equal to zero. This corresponds to a hybrid of MSD-REG and MSD-ACL.
However, quick tests did not produce meaningful learning.
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7 Conclusion
An observed behavior can not always be explained by underlying a non-stationary policy. Even if it can
be explained, the non-stationary policy may lead to increased complexity. This thesis investigated how to
efficiently learn a time-dependent reward function from demonstrations. Furthermore, it was analyzed
how well the actual goals could be recovered.
Two different approaches have been employed, namely MaxCausalEnt-IRL and IRL-MSD. Striving for an
efficient implementation, the dual function corresponding to the MaxCausalEnt-IRL optimization prob-
lem was derived. The evaluation of the dual function can be used to adapt the step size during gradient
descent. By exploring the difference between the actual Value function and the softmax Value function,
it was shown that the dual function can be evaluated with negligible overhead.
IRL-MSD is a novel approach that has been developed as a part of this thesis. Inverse Reinforcement
Learning by Matching State Distributions aims to minimize the relative entropy between the state dis-
tribution that results from the learned policy and the observed state distribution. This formulation does
not require a constraint for matching feature counts. Therefore, in contrast to MaxCausalEnt-IRL, the
corresponding optimization problem does not possess a Lagrangian multiplier θ and no gradient-based
optimization is necessary. Instead, the reward parameters are expressed directly in terms of the learned
state distribution.
Two different variants of IRL-MSD have been presented, MSD-ACL and MSD-REG. MSD-ACL learns state-
dependent action costs by updating the target policy for each iteration. Similar to REPS, the target policy
is set to the policy of the previous iteration. The state-dependent action costs make it harder to interpret
the learned reward function, but enable the algorithm to converge to a better solution than MSD-REG
while being less sensitive to the initialization. MSD-REG treats the target policy as regularization and
thereby learns only a state-dependent reward function.
Both variants have been compared to MaxCausalEnt-IRL on a toy task. Even though the task was rel-
atively simple, it served well in making the advantage of dropping the necessity of gradient descent
evident. Both variants of IRL-MSD converged significantly faster than MaxCausalEnt-IRL during all
conducted experiments. MSD-REG converges almost instantly and changes only slightly after the first it-
eration. Interestingly, with good initialization, it was able to perform similar to MSD-ACL. Furthermore,
by inspecting the learned parameters of the reward function, it could be shown that MSD-REG is able to
infer the true goals of the expert for the important time steps.
As these results are very promising, the method should be further investigated. Slight reformulations of
the optimization problem can be used to (1) bound the relative entropy of the policies similar to REPS,
(2) learn context dependent reward functions or (3) learn state independent action costs. The arguably
most interesting next step is to evaluate IRL-MSD on a real robot. Within this thesis it was only applied
to a simple toy task which was accomplished convincingly.
Can it master the challenges of a real robot application?
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A Derivations for Maximum Causal Entropy
Inverse Reinforcement Learning

maximize
πt (a|s)

T−1
∑

t=1

∫

s,a

− pt(s)πt(a|s) logπt(a|s) dsda

subject to
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s)φ t(s,a)dsda+

∫

s

pT (s)φT (s,0) ds= φ̂,

∀t>1∀s′

∫

a

pt(s
′)πt(a|s′) da=

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a) dsda,

∀s p1(s) = µ1(s),

∀t<T∀s

∫

a

πt(a|s)da= 1,

Lagrangian:

L (pt(s),πt(a|s),θ ,λ, Vt(s)) =−
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s) logπt(a|s) ds da

+ θ>



φ̂ −
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s)φ t(s,a) ds da−
∫

s

pT (s)φT (s, 0) ds





+
T−1
∑

t=1

∫

s

λt(s)



1−
∫

a

πt(a|s) da



 ds

+
T
∑

t=2

∫

s′

Vt(s
′)





∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a) da ds−
∫

a

pt(s
′)πt(a|s′) da



 ds′

+

∫

s

V1(s) (µ1(s)− p1(s)) ds

∂L (pt(s),πt(a|s),θ ,λ, Vt(s)
∂ πt(a|s)

= −pt(s) logπt(a|s)− pt(s)− θ>pt(s)φ t(s,a)−λt(s)− 1t>1Vt(s)pt(s)

+

∫

s′

Vt+1(s
′)pt(s)p(s

′|s,a) ds′
!
= 0

⇒ πt(a|s) = exp



−1− θ>φ t(s,a)−
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′





∝ exp



−θ>φ t(s,a) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′
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Dual Problem:

G (pt(s),θ ,λ, Vt(s)) = −
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s)



−1− θ>φ t(s,a)−
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 ds da

+ θ>



φ̂ −
T−1
∑

t=1

∫

s,a

pt(s)πt(a|s)φ t(s,a) ds da−
∫

s

pT (s)φT (s, 0) ds



 (A.2)

+
T−1
∑

t=1

∫

s

λt(s)



1−
∫

a

πt(a|s) da



 ds

+
T
∑

t=2

∫

s′

Vt(s
′)





∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a) ds da−
∫

a

pt(s
′)πt(a|s′) da



 ds′

+

∫

s

V1(s) (µ1(s)− p1(s)) ds

= T − 1+ θ>φ̂ − θ>
∫

s

pT (s)φT (s, 0) ds+
T−1
∑

t=1

∫

s

λt(s) ds+

∫

s

V1(s) (µ1(s)− p1(s)) ds−
∫

s

pT (s)VT (s) ds

(A.3)

Removing λt(s):

∫

a

exp



−1− θ>φ t(s,a)−
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 da= 1

exp
�

λt(s)
pt(s)

+ 1+ 1t>1Vt(s)
�

=

∫

a

exp



−θ>φ t(s,a) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 da

⇒ λt(s) = pt(s)



−1− 1t>1Vt(s) + log

∫

a

exp



−θ>φ t(s,a) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 da



 (A.4)

Substituting (A.4) in (A.3):

G (pt(s),θ , Vt(s)) = T − 1+ θ>φ̂ − θ>
∫

s

pT (s)φT (s, 0) ds+

∫

s

V1(s) (µ1(s)− p1(s)) ds−
∫

s

pT (s)VT (s) ds

+
T−1
∑

t=1

∫

s

pt(s)



−1− 1t>1Vt(s) + log

∫

a

exp



−θ>φ t(s,a) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 da



 ds

= θ>φ̂ − θ>
∫

s

pT (s)φT (s, 0) ds+

∫

s

V1(s)µ1(s) ds−
∫

s

pT (s)VT (s) ds

+
T−1
∑

t=1

∫

s

pt(s)



−Vt(s) + log

∫

a

exp



−θ>φ t(s,a) +

∫

s′

Vt+1(s
′)p(s′|s,a) ds′



 da



 ds
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Partial Derivatives:

∂G (pt(s),θ , Vt(s))
∂ θ

= φ̂ −
T−1
∑

t=1

∫

s,a

pt(s)

exp

�

−θ>φ t(s,a) +
∫

s′
Vt+1(s′)p(s′|s,a) ds′

�

∫

a
exp

�

−θ>φ t(s,a) +
∫

s′
Vt+1(s′)p(s′|s,a) ds′

�

da

φ(s,a) ds da−
∫

s

pT (s)φT (s, 0) ds

= φ̂ −
T−1
∑

t=1

Ept (s,a)[φ(s,a)]−EpT (s)[φ(s,0)] = φ̂ − φ̃

∂G (pt(s),θ , Vt(s))
∂ Vt(s)

=























−pt(s) +µ1 , if t = 1

−pt(s) +
∫

s̃,a
pt−1(s̃)

exp

�

−θ>φ(s̃,a)+
∫

s′
Vt (s′)p(s′|s̃,a) ds′

�

∫

a
exp

�

−θ>φ(s̃,a)+
∫

s′
Vt (s′)p(s′|s̃,a) ds′

�

da

p(s|s̃,a) d s̃ , if t > T

=







−p1(s) +µ1(s) , if t = 1

−pt(s) +
∫

s,aπt−1(a|s)pt−1(s)p(s′|s,a) , if t > 1

∂G (pt(s),θ , Vt(s))
∂ pt(s)

=











−Vt(s) + log
∫

a
exp

�

−θ>φ(s,a) +
∫

s′
Vt+1(s′)p(s′|s,a) ds′

�

da , if t < T

−VT (s)− θ>φT (s,0) , if t = T
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B Derivations for Inverse Reinforcement
Learning by Matching State Distributions

minimize
πt (a|s)

T
∑

t=1

∫

s

pt(s) log
pt(s)
qt(s)

ds+α
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s) log
πt(a|s)

qreg,t(a|s)
ds da

subject to ∀t<T∀s

∫

a

πt(a|s)da= 1,

∀t>1∀s′

∫

a

pt(s
′)πt(a|s′)da=

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a)dsda,

∀sp1(s) = µ1(s).

Lagrangian:

L (pt(s),πt(a|s),λt(s), Vt(s)) =
T
∑

t=1

∫

s

pt(s) log
pt(s)
qt(s)

ds+α
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s) log
πt(a|s)

qreg,t(a|s)
ds

+
T−1
∑

t=1

∫

s

λt(s)

�

1−
∫

a

πt(a|s)
�

+
T
∑

t=2

∫

s′
Vt(s

′)

�

∫

a

pt(s
′)πt(a|s′)−

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a)

�

+

∫

s

V1(s) (p1(s)−µ1(s))

Gradient of Lagrangian: (t < T)

∂L (pt(s),πt(a|s),λt(s), Vt(s))
∂ πt(a|s)

= αpt(s) log
πt(a|s)

qreg,t(a|s)
+αpt(s)−λt(s) + 1t>1pt(s)Vt(s)−

∫

s′
Vt+1(s

′)pt(s)p(s
′|s,a)

!
= 0

⇒ π?t (a|s) = qreg,t(a|s)exp

�

1
α

�

−α+
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′
Vt+1(s

′)p(s′|s,a)

��

(B.1)

Elimination of λ:

∫

a

π?t (a|s) =
∫

a

exp

�

1
α

�

α log qreg,t(a|s)−α+
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′
Vt+1(s

′)p(s′|s,a)

��

= 1

⇒ exp
�

1−
λt(s)
αpt(s)

+ 1t>1
Vt(s)
α

�

=

∫

a

qreg,t(a|s)exp

�
∫

s′ Vt+1(s′)p(s′|s,a)ds′

α

�

λt(s) = pt(s)

�

α+ 1t>1Vt(s)−α log

∫

a

qreg,t(a|s)exp

�
∫

s′ Vt+1(s′)p(s′|s,a)ds′

α

��

(B.2)
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Dual (using (B.1) and (B.2)):

G (pt(s), Vt(s)) =
T
∑

t=1

∫

s

pt(s) log
pt(s)
qt(s)

ds+α
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s)
�

1
α

�

−α+
λt(s)
pt(s)

− 1t>1Vt(s) +

∫

s′
Vt+1(s

′)p(s′|s,a)

��

+
T−1
∑

t=1

∫

s

λt(s)

�

1−
∫

a

πt(a|s)
�

+
T
∑

t=2

∫

s′
Vt(s

′)

�

∫

a

pt(s
′)πt(a|s′)−

∫

s,a

pt−1(s)πt−1(a|s)p(s′|s,a)

�

+

∫

s

V1(s) (p1(s)−µ1(s))

=
T
∑

t=1

∫

s

pt(s) log
pt(s)
qt(s)

ds

+
T−1
∑

t=1

∫

s

pt(s)

�

Vt(s)−α log

∫

a

qreg,t(a|s)exp

�
∫

s′ Vt+1(s′)p(s′|s,a)ds′

α

��

+

∫

s′
VT (s

′)

∫

a

pT (s
′)πT (a|s′)

−
∫

s

V1(s)µ1(s)

Gradients of Dual:

∂G (pt(s), Vt(s))
pt(s)

=







VT (s) + log pt (s)
qt (s)
+ 1 , if t = T

Vt(s) + log pt (s)
qt (s)
+ 1−α log

∫

a qreg,t(a|s)exp
�

1
α

∫

s′ Vt+1(s′)p(s′|s,a)ds′
�

, if t < T

=







VT (s) + log pt (s)
qt (s)
+ 1 , if t = T

Vt(s)−α log
∫

a exp
�

1
α

�

α log(qreg,t(a|s)) +
log (qt (s))
log (pt (s))

− 1+
∫

s′ Vt+1(s′)p(s′|s,a)ds′
��

, if t < T

∂G (pt(s), Vt(s))
Vt(s)

=







p1(s)−µ1(s) , if t = 1

pt(s)−
∫

s,aπt−1(a|s)pt−1(s)p(s′|s,a) , if t > 1

Let qreg,t(a|s) =N
�

a|µqreg,t
(s),Σqreg,t

�

and µqreg,t
(s) = Kreg,ts+kreg,t . The reward function can now be defined

as

rt(s,a) = α log(qreg,t(a|s)) + log (qt(s))− log (pt(s))− 1

= −
α

2

�

log |2πΣqreg,t |+ (a−µqreg,t(s))
>Σ−1

qreg,t(a−µqreg,t(s))
�

−
1
2

�

log |2πΣq,t |+ (s−µq,t)
>Σ−1

q,t(s−µq,t)
�

+
1
2

�

log |2πΣs,t |+ (s−µs,t)
>Σ−1

s,t (s−µs,t)
�

− 1

= −
α

2

�

log |2πΣqreg,t |+ (a−Kreg,ts− kreg,t)
>Σ−1

qreg,t(a−Kreg,ts− kreg,t)
�

−
1
2

�

log |2πΣq,t |+ (s−µq,t)
>Σ−1

q,t(s−µq,t)
�

+
1
2

�

log |2πΣs,t |+ (s−µs,t)
>Σ−1

s,t (s−µs,t)
�

− 1

= −s>Rts− s>Fta− a>F>t s− a>Hta+ s>rt + a>ht + const,

with Rt =
1
2

�

Σ−1
q,t +αK>reg,tΣ

−1
qreg,tKreg,t −Σ−1

s,t

�

, rt = Σ−1
q,tµq,t −αK>regΣ

−1
qreg,tkreg,t −Σ−1

s,t µs,t ,

Ft = −
α
2 K>reg,tΣ

−1
qreg,t , Ht = −

α
2Σ
−1
qreg,t and ht = αΣ−1

qreg,tkreg,t.
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C The Difference between Ṽπt (s) and Vπt (s)
Let rt(s,a) = −s>Rts−s>Fta−a>F>t s−a>Hta+s>rt+a>ht denote the reward function for time step t. Further
assume linear system dynamics s′ ∼N (s′|Ats+Bta+ bt,Σs′,t). The state-action Value function can then be
computed in closed form,

Qt(s,a) = rt(s,a) +Es′
�

Vt+1(s
′)
�

= −s>Rts− s>Fta− a>F>t s− a>Hta+ s>rt + a>ht +Es′ [Vt+1(s)]

= −s>Rts− s>Fta− a>F>t s− a>Hta+ s>rt + a>ht

− (Ats+Bta+ bt)
>Vt+1(Ats+Bta+ bt)− Tr (Vt+1Σs′,t) + v>t+1(Ats+Bta+ bt)− vt+1

= −s>Rts− s>Fta− a>F>t s− a>Hta+ s>rt + a>ht

− s>A>t Vt+1Ats− s>A>t Vt+1Bta− s>A>t Vt+1bt − a>B>t Vt+1Ats

− a>B>t Vt+1Bta− a>B>t Vt+1bt − b>t Vt+1Ats− b>t Vt+1Bta− b>t Vt+1bt − Tr (Vt+1Σs′,t)

+ v>t+1Ats+ v>t+1Bta+ v>t+1bt − vt+1

= −
1
2

s>Its−
1
2

s>Jta−
1
2

a>J>t s−
1
2

a>Kta+ s>lt + a>mt + ct ,

where It = 2
�

Rt +A>t Vt+1At

�

, Jt = 2
�

A>t Vt+1Bt + Ft

�

, Kt = 2
�

Ht +B>t Vt+1Bt

�

, lt =
�

rt − 2A>t Vt+1bt +A>t vt+1

�

,
mt =

�

ht − 2B>t Vt+1bt +B>t vt+1

�

and ct = −b>t Vt+1bt − Tr (Vt+1Σs′,t) + v>t+1bt − vt+1.

Using z=





s

a



, Ct =





It Jt

Jt
> Kt



 and ct =





lt

mt



 the state-action value function can be written

Q t(s,a) = −
1
2

z>Ctz+ z>ct + ct .

This induction is used for computing the Value function of the maximum entropy policy Vπ(s,a) =
Eπ [Qπ t+1(s,a)] as well as for computing the Lagrangian multiplier Ṽπt (s,a) = softmax

a
Q̃πt (s,a) for

MaxCausalEnt-IRL or IRL-MSD.

C.1 Derivation of Vπt (s)

The softmax-policy πt(a|s)∝Q t(s,a) can be computed as conditional of the joint distribution
N [z|c,C]∝Q t(s,a),

πt(a|s) =N [a|mt − J>t s,Kt] =N (a|K−1
t mt −K−1

t J>t s,K−1
t ) =N (a|µa,t ,Σa,t).
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The policy can then be employed to compute the corresponding Value function,

Vπt (s) = Eπ(a|s)[Q t(s,a)]

= −s>
1
2

Its− s>
1
2

Jtµa,t −µ>a,t
1
2

J>t s−µ>a,t
1
2

Ktµa,t + s>lt +µ
>
a,tmt + c − Tr

1
2
(KtK

−1
t )

= −s>
1
2

Its− s>
1
2

JtK
−1mt + s>

1
2

JtK
−1
t J>t s−m>t K−1

t
> 1

2
J>t s+ s>JtK

−1
t
> 1

2
J>t s

−m>t K−1
t
> 1

2
KtK

−1
t mt +m>t K−1

t
> 1

2
KtK

−1
t J>t s

+ s>JtK
−1
t
> 1

2
KtK

−1
t mt − s>JtK

−1
t
> 1

2
KtK

−1
t J>t s

+ s>lt +m>t K−1
t
>

mt − s>JtK
−1
t
>

mt + ct −
1
2

Na

= −s>Vts+ v>t s− vt ,

with Vt =
1
2 (It − JtK

−1
t J>t ), vt = lt − JtKt

−1mt and vt = −
1
2m>t K−1

t mt − ct +
1
2 Na.

C.2 Derivation of Ṽπt (s)

The exponential of the state-action Value function can be regarded as unnormalized Gaussian joint dis-
tribution

exp
�

Q̃πt (s,a)
�

= exp
�

−
1
2

z>Ctz+ z>ct + ct

�

=
|2πC−1

t |
1
2

exp (−ct −
1
2c>t C−1

t ct)
N [z|ct,Ct].

The Lagrangian multiplier Ṽt(s) can now be computed,

Ṽπt (s) = log

∫

a

exp
�

Q̃πt (s,a)
�

= log

∫

a

|2πC−1
t |

1
2

exp (−ct −
1
2c>t C−1

t c)
N [z|c,C]

= log
|2πC−1|

1
2

exp (−ct −
1
2c>t C−1

t ct)
+ logN [s|lt − JtK

−1
t mt, It − JtK

−1
t J>t ]

= log
|2πC−1

t |
1
2

exp (−ct −
1
2c>t C−1

t ct)

−
1
2

�

log |2π(It − JtK
−1
t J>t )

−1|+ (lt − JtK
−1
t mt)

>(It − JtK
−1
t J>t )

−1(lt − JtK
−1
t mt)

+s>(It − JtK
−1
t J>t )s− 2s>(lt − JtK

−1
t mt)

�

= −s>Vts+ v>t s− vt ,
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with Vt(s) =
1
2 (It − JtK

−1
t J>t ), vt(s) = (lt − JtK

−1
t mt) and vt = −ct−

1
2c>t C−1

t ct−
1
2 Na log(2π)− 1

2 log
|V−1

t |
|C−1

t |
+ 1

4v>t V−1
t vt .

The state-independent term can be further simplified,

vt = −ct −
1
2

c>t C−1
t ct −

1
2

Na log(2π)−
1
2

log
|V−1

t |
|C−1

t |
+

1
4

v>t V−1
t vt

= −ct −
1
2





lt

mt





>



(It − JtK
−1
t J>t )

−1 −(It − JtK
−1
t J>)−1JtK

−1
t

−K−1
t J>t (It − JtK

−1
t Jt)−1 (Kt − J>t I−1

t Jt)−1









lt

mt



−
1
2

Na log(2π)−
1
2

log |K−1
t |+

1
4

v>t V−1
t vt

= −ct −
1
2





lt

mt





>



1
2V−1

t − 1
2V−1

t JtK
−1
t

1
2K−1

t JtV
−1
t K−1

t −K−1
t J>t (−It + JtK

−1
t J>t )JtK

−1
t









lt

mt



−
1
2

log |2πK−1
t |+

1
4

v>t V−1
t vt

(C.1a)

= −ct −
1
2





lt

mt





>



1
2V−1

t − 1
2V−1

t JtK
−1
t

1
2K−1

t JtV
−1
t K−1

t + (JtK
−1
t )
>V−1

t (JtK
−1
t )









lt

mt



−
1
2

log |2πK−1
t |+

1
4

v>t V−1
t vt

= −ct −
1
2

m>t K−1
t mt −

1
4

v>t V−1
t vt −

1
2

log |2πK−1
t |+

1
4

v>t V−1
t vt

= −ct −
1
2

m>t K−1
t mt −

1
2

log |2πK−1
t |.

Equation C.1a can be derived by using the Woodbury matrix identity (Woodbury, 1950).

C.3 Comparison of Vπt (s) and Ṽπt (s)

Comparing Vπt (s) and Ṽπt (s) reveals, that both functions have the same state dependent parts, whereas
the computed state-independent parts differ at each time step by 1

2 (Na + log |2πK−1
t |). This difference is

inherited by the state-action Value function and thereby passed to Vπt−1(s). Hence the difference at time
step t between the Value function of the maximum entropy policy, Vπt (s), and the Lagrangian multiplier
Ṽπt (s) is given by

Vπt (s)− Ṽπt (s) =
T−1
∑

i=t

1
2
(Na + log |2πK−1

i |),

which corresponds to the sum of the log partition functions of the current policy and all following ones
plus a constant offset.
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