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Abstract
Damage or wear of robot parts or changes in the environment can cause the previously optimal behavior of a robot to
become inadequate. Having backup solutions in such a situation can allow the robot to continue doing its task. The
majority of Reinforcement Learning (RL) algorithms is not designed to find backup solutions. This thesis presents a new
hierarchical RL algorithm that builds on the ideas of the Hierarchical Relative Entropy Policy Search (HiREPS) algorithm
to learn multiple solutions. The policy that is learned is a ’mixed options’ policy, which consists of a gating policy and
option policies. The gating policy selects the option policy, which then chooses an action. The different option policies
represent different solutions.
The presented algorithm mimics the two level structure of the ’mixed options’ policy. It has an upper level which optimizes
the gating and a lower level which optimizes the option policies. Both the upper and the lower level optimization are
extensions of Relative Entropy Policy Search (REPS). Subsequently, the whole algorithm belongs to the group of policy
search algorithms.
The experiments show that the new algorithm finds more versatile solutions than HiREPS and its best solution is in
quality similar to that of HiREPS.

Zusammenfassung
Wenn sich das Verhalten eines Roboters durch Beschädigung oder Abnutzung ändert oder wenn sich die Umgebung
des Roboters ändert, können Bewegungen, die zuvor optimal waren, auf einmal unzureichend sein. In dieser Situation
wäre es nützlich Ersatzlösungen zu haben, die dem Roboter erlauben weiter zu arbeiten. Die meisten Algorithmen für
Reinforcement Learning (RL) sind nicht dafür konzipiert, Ersatzlösungen zu lernen. In dieser Bachelorarbeit wird ein
neuer Algorithmus für das Lernen von unterschiedlichen Lösungen für hierarchische RL Probleme vorgestellt. Dieser
Algorithmus basiert auf dem Hierarchical Relative Entropy Policy Search (HiREPS) Algorithmus und wie bei HiREPS
wird eine ’mixed Options’ Policy gelernt. Diese Policy besteht aus einer Gating Policy und vielen Option Policies, welche
unsere verschiedenen Lösungen darstellen. Die Aufgabe der Gating Policy ist es, eine Option Policy auszuwählen, welche
dann eine Aktion ausführt.
Der vorgestellte Algorithmus spiegelt die zweistufige Hierarchie der ’mixed Options’ Policy wider. Auf der höheren Stufe
wird die Gating Policy optimiert und auf der unteren Stufe werden die Option Policies optimiert. Beide Stufen der
Hierarchie sind jeweils Erweiterungen von Relative Entropy Policy Search (REPS) und dementsprechend gehört der
vorgestellte Algorithmus zur Gruppe der Policy Search Algorithmen.
Die Experimente zeigen, dass der vorgestellte Algorithmus vielseitigere Lösungen als HiREPS findet und die beste Lösung,
die er findet, erziehlt ähnlich hohen Reward wie die beste Lösung die HiREPS findet.
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1 Introduction
In today’s world, many different kinds of robots exist. From household cleaning robots, to manufacturing robots, to a few
humanoid robots, these robots come in different complexities. While for the simpler of these robots programming them
directly can work well, for more complex robots using machine learning techniques to learn the desired behavior can be
more effective. Learning a behavior with machine learning takes some time and generally requires human supervision.
However, after the behavior is learned, the robot can perform the task forever without further learning, at least in theory.
Robots that do not work in a controlled environment, like working with humans, can accidentally get damaged and even
robots in controlled environments will wear out over time. The damaged or worn out parts may change the dynamics
of the robot. Additionally, robots may be used in environments slightly different then the ones they were trained for. As
an example a robot may be moved to a smaller room that requires a more concise behavior than it was trained for. In
all of these examples, the robot could still be able to perform the desired task with the right behavior, but the behavior
that it learned may not work anymore. In this case the only option would be to revert the change, if that is possible, or
retrain the robot. However, retraining could be avoided if alternative solutions for the task had been learned earlier. For
example, for a robot with a damaged or worn out part an alternative solution which minimizes the use of this part may
still work good enough. Having such backup solutions may be especially useful if retraining or replacing the robot is very
expensive or not possible in time, for instance, in case of an emergency.

However, most machine learning algorithms are designed to learn only one optimal solution to a problem and cannot
learn versatile solutions. One of the algorithms that can learn versatile solutions is HiREPS [1]. Unfortunately, it does
not reliably find versatile solutions. It will often find few or no alternative solutions. This effect is not so surprising as the
main goal of HiREPS is not to find backup solutions but to find better solutions by exploiting the hierarchical structure
inherent in many problems. Finding backup solutions is only a secondary interest of HiREPS.

In this thesis, we present a new algorithm to learn versatile solutions more reliably than HiREPS. We call this algorithm
Layered Hierarchical Relative Entropy Policy Search (LHiREPS) because it is an extension of HiREPS and structured in a
two layer hierarchy. The HiREPS algorithm is itself an extension of the REPS algorithm, which is a state of the art policy
search algorithm [2]. HiREPS extends REPS by using a ’mixed options’ policy to learn different solutions. This ’mixed
options’ policy consists of option policies that represent different solutions and a gating policy that chooses one of these
options based on the state of the environment. HiREPS learns this policy by optimizing the whole ’mixed options’ policy
in one optimization procedure.
The main idea of our new algorithm LHiREPS is also to use a ’mixed options’ policy, but to optimize the gating policy and
the options policies individually. This partition allows us to enforce specific constraints for the gating or options policy
in the respective optimization steps more easily. One new constraint we enforce in the gating optimization bounds the
entropy of the distributions over options given the state. This bound is used to regulate the number of options that have
non-zero probability. This extension is important because HiREPS does not learn backup solutions reliably due to the fact
that the probability of all options except the best one often drop to zero. If this unbalanced assignment happens, no more
samples are drawn for these options and they stop being updated. For this reason, we add the constraint to better control
the entropy of the option distribution, which results in a more versatile solution space. To optimize the gating policy, we
estimate a new reward Rso. With this reward the gating policy is optimized in a similar manner as REPS optimizes its
policy. Although, the structure of the reward as well as the structure of our gating policy allow us to slightly simplify the
constraint optimization problem and to directly update our policy.
The option policy optimization problem is very similar to the one of HiREPS, sharing all of its constraints in a slightly
altered form. However, we also explore adding additional constraints to avoid the EM-like procedure that HiREPS does.

In the next chapter of this thesis, we explain what kind of tasks LHiREPS is designed for. In the same chapter, we will
also explain REPS and HiREPS in more detail. In the third chapter, we look at some similar work to ours. The fourth
chapter explains LHiREPS and in the fifth chapter we examine some experimental results. Lastly, the sixth chapter will
conclude this thesis with a summary of the main accomplishments of this work and a short look on possible future work.
The details of the derivation of LHiREPS are left out of the main part of the document, but they can be found in the
appendix.
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2 Foundation
In this chapter, we establish the background for our new approach. Our approach is part of the field of machine learning.
More specifically it is designed for Reinforcement Learning with policy search. In the first sections, we will introduce the
field of Reinforcement Learning and its sub-field policy search. In the second and third section, we introduce the two
algorithms REPS and HiREPS, which are policy search algorithms and, more importantly, they are the basis of our new
algorithm.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a sub-field of machine learning that models the trial-and-error learning we are familiar
with in our everyday lives [3]. In the following we will explain the general task setup, how to update policies in the
sub-field of policy search and how the whole learning process for RL works.

2.1.1 Task Setup

The RL tasks we are considering can be formalized as Markov Decision Process (MDP). A MDP involves an agent and
an environment. The agent interacts with the environment for every time step of a sequence of discrete time steps
(t = 0,1, 2,3, . . . ). At each time step t the agent chooses an actions at ∈ A (st) based on the state st ∈ S of the
environment. Here the set A (st) is the set of all possible actions for state st and the set S is the set of all states. When
the agent chooses an action at the environment changes from state st to the state st+1 based on the transition probability
p(st+1|st , at). Additionally, the agent receives a reward rt+1 ∈ R at the next time step based on the the action chosen and
the state of the environment. We will only consider the episodic case were the interactions end at some time step T . In
the episodic case the goal is to maximize the expected return. The return is given by

R=
T
∑

k=t

rk

To improve the agent a learning algorithm is used. The learning algorithms we present in this thesis are formulated so
that they are only for MDPs with one step, i.e., T = 1. In this case the return is equal to the first reward, so it only
depends on the initial state and the corresponding action. We denote this return as Rsa where s is the initial state and a
is the first action. We will generally refer to Rsa as ”reward” as the return is equal to the only reward we receive.
Nonetheless, we can also indirectly use these learning algorithms on MDPs that require multiple steps by using a function
that can generate multiple actions based on one input parameter. From the learning algorithms point of view the original
MDP with multiple steps combined with the function is a new MDP with only one step. The action the agent produces
for the new MDP is the input parameter of the function, which generates the actions for the original MDP. The reward of
this new MDP is the return of the original MDP.

2.1.2 Policy Search and Policies

Policy search is a sub-field of RL [4]. In policy search the actions the agent produces are given by a policy. This policy
is a parameterized function a = fθ (s) or probability p(a|s;θ ). It is improved by the learning algorithm by updating the
parameter θ . An example of a parameterized policy is a Gaussian policy that is linear in features. It has the form

p(a|s;θ ) =N (a|b+ Aφ(s),Σ) with θ = (b, A,Σ).

The function φ is our feature vector which we use to transform our state into a more useful space. The parameter θ is
changed to improve the policy.

Another example of a policy is a ’mixed options’ policy. It consists of a gating policy p(o|s) and many option policies
p(a|s, o). The gating policy generates a discrete option o which determines which option policy generates the action.
An example of an option policy would be a Gaussian policy that is linear in features. Each of these option policy can
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represent a different solution. These many solutions are more versatile than the one solution a single Gaussian policy
can represent. For instance, one option policy could be a forehand stroke and another one could be a backhand stroke
for robot table tennis.

An example of a gating policy would be a softmax distribution, i.e.,

p(o|s) =
exp

�

θ T
o φ(s)

�

∑

o exp
�

θ T
o φ(s)

� .

The parameters θo are altered to change the probability for the different options and φ is again the feature vector.
Note that we wrote p(o|s) instead of p(o|s;θ ). We leave out θ to keep the notation simpler as all policies we will en-
counter will be parameterized, so there is no need to distinguish between unparameterized or parameterized policies.

This kind of mixture model, with softmax gating and Gaussians linear in features as option policies, is what we will be
using for our experiments and the softmax gating will even play an important part in our new algorithm.

2.1.3 Learning Process

The RL process is generally iterative. For our one step MDP, we sample many initial states and generate for each state
an action from our policy independently. For each state-action pair, we obtain a reward. These samples of rewards and
state-action pairs are then used to update the policy with the learning algorithm. After the policy update, the process
repeats. This repetition is necessary because the initial policy will generally be bad. The best samples it obtains will
be far off from the (yet unknown) sample with the highest reward, so changing it to perfectly match the best sample it
currently knows is a bad idea. Instead, we change the policy only slightly to explore more around the most promising
samples in the hope that this exploration leads us to the very best sample. Generally, we can only guarantee to find a
local optimum of the reward function but not a global optimum.

Connected to this iterative approach is the following commonly used notation. The policy we want to improve is denoted
as π. For instance, the Gaussian policy p(a|s) from the previous example, will be written as π(a|s). The state distribution
p(s) is denoted by µ(s). The old distribution, we sampled from, is denoted with q. Any other probability is denoted with
the letter p.

2.2 Relative Entropy Policy Search

Episode-based contextual Relative Entropy Policy Search (in the following just REPS) [2] is an algorithm that can learn
good policies for the kind of RL problem we described in the previous section. Further, REPS is also the basis of LHiREPS
we will introduce later.

The goal of the REPS algorithm is to maximize the expected reward with respect to π(a|s). This maximization is not easy
as it requires that we have many action samples for each state [4]. To deal with this issue, REPS optimizes the expected
reward for p(a, s) = π(a|s)µ(s) instead, i.e,

max
π(a|s)µ(s)

∫∫

a,s

π(a|s)µ(s)Rsa da ds.

The solution p(a, s) of this maximization has to ”respect” µ(s) in the sense that µ(s) =
∫

a p(a, s) da has to hold for all
states s. However, if s is continuous we have an infinite number of constraints, which makes the optimization problem
intractable [5]. This issue is solved in the REPS algorithm by requiring instead that the observed average feature vector
matches the expected feature vector

φ̂ =

∫∫

a,s

π(a|s)µ(s)φ(s) da ds.

Optimizing the constraint optimization problem we currently have would cause the algorithm to converge to the best
sample in the first iteration and it would not explore anymore in any future iterations. This premature convergence can
be avoided -as explained in the previous section- by only allowing small changes in the distribution of the policy in each
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update. To enforce small changes, a notion of distance between the new and the old policy is needed. REPS uses the
Kullback-Leibler divergence (KL-divergence)1 to quantify how much one distribution changed from the other.
The KL-divergence between a distribution p(x) and a distribution q(x) is defined as

DKL (p(x)||q(x)) =
∫

x

p(x) log
�

p(x)
q(x)

�

dx .

REPS controls how much the policy can change in each iteration by setting an upper bound on the average KL-divergence
between the new and the old joint distribution.

Lastly, it is also requires that p(a, s) is a proper distribution that means it has to integrate to 1.
Combining theses three constraints yields the REPS optimization problem

max
π(a|s)µ(s)

∫∫

a,s

π(a|s)µ(s)Rsa da ds,

s.t: ε ≥ DKL (π(a|s)µ(s)||q(a, s)) ,

φ̂ =

∫∫

a,s

π(a|s)µ(s)φ(s) da ds,

1=

∫∫

a,s

π(a|s)µ(s) da ds.

It can be solved using the method of Lagrangian multipliers [6], which gives a closed form solution for p(a, s)

p(a, s)∝ q(a, s)exp

�

Rsa − θ Tφ(s)
η

�

.

The parameters η and θ are the Lagrangian multipliers. The parameter θ corresponds to the φ-constraint. It creates a
baseline θ Tφ(s) which offsets the reward Rsa depending on the state. The parameter η corresponds to the KL-divergence-
constraint. It guarantees that p(a, s) does not differ too much from q(a, s) by scaling the offset reward appropriately.
The Lagrangian multipliers are obtained by minimizing the dual function for η > 0. The dual function is given by

g(η,θ ) = η log

�

∫∫

a,s

q(a, s)exp

�

Rsa − θ Tφ(s)
η

�

da ds

�

+ηε + θ T φ̂.

After optimizing the dual function, we have the optimal probability p(a, s) for our samples. To generalize this probability
to all samples, we change the parametric model of our policy (e.g., our Gaussian linear in features) to be close to these
optimal probabilities. This policy update is done by minimizing the KL-divergence between the optimal probabilities and
the parametric model times the state distribution. This minimization can simplified by

min
πm(a|s)

DKL (p(a, s)||πm(a|s)µ(s))

= min
πm(a|s)

∫∫

a,s

p(a, s) log
�

p(a, s)
πm(a|s)µ(s)

�

da ds

= min
πm(a|s)

∫∫

a,s

−p(a, s) logπm(a|s) + C(a, s) da ds

≈ max
πm(a|s)

1
N

N
∑

i=1

p(a[i], s[i])
q(a[i], s[i])

logπm(a
[i]|s[i])

with C(a, s) = log
�

p(a,s)
µ(s)

�

. The parametric model of our policy is denoted by πm(a|s). The second equation can be
understood as an expectation, which is why it can be approximated by taking the average over the samples. The index
(·)[i] denotes the i-th sample. The number N is the total number of samples.
After simplifying, the minimization of the KL-divergence turns out to be equivalent to updating our policy with weighted
maximum likelihood.

1 The Kullback-Leibler divergence is not a distance metric because it is not symmetric.
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2.3 Hierarchical Relative Entropy Policy Search

The HiREPS [1] algorithm is an extension of REPS. As with REPS, we only look at HiREPS for episodic problems. The
main idea of HiREPS is to use a hierarchical policy to deal with problems that non-hierarchical policies struggle with,
for instance, averaging over multiple local optima. The hierarchical policy we consider here is the ’mixed options’ policy
introduced in the ’Reinforcement Learning and Policy Search’ section.

HiREPS learns this policy by using a similar optimization problem as REPS but, instead of optimizing for the joint of just
the action and states p(a, s) = π(a|s)µ(s), it also optimizes for the options p(a, s, o) = π(a, o|s)µ(s).

Furthermore, HiREPS also adds a new constraint to make the different options diversify. This constraint is important
because learning two identical options (i.e., both produce the same kind of actions) is useless.

To force diverse options, HiREPS uses the entropy of the responsibilities p(o|s, a) because the entropy of a distribution
is higher if the distribution is closer to being uniformly distributed and lower if the distribution is more spiked. For the
responsibilities p(o|s, a) being more uniformly distributed for a state-actions pair (a, s) means many of our options could
have produced the action a for that state s. On the other hand, if the responsibility distribution is very spiked, then only
those options for which p(o|s, a) spiked are likely to have produced the action a in the state s. All other options are
unlikely to have produced a for s which means the options are diverse for a and s. Bringing these ideas together we see
that a lower entropy for the responsibilities means more diverse solutions. HiREPS uses exactly this property to enforce
diversity with the constraint

κ≥
∫∫

a,s

p(a, s)Hp[o|s, a] da ds with Hp[X ] = −
∑

x

p(x) log p(x).

The operator Hp[ · ] is the entropy with respect to the probability p.

This constraint together with the others yields the following optimization problem (which is not the final HiREPS opti-
mization problem):

max
π(a,o|s)µ(s)

∫∫

a,s

∑

o

π(a, o|s)µ(s)Rsa da ds,

s.t: ε ≥
∫∫

a,s

∑

o

π(a, o|s)µ(s) log
p(a, s)
q(a, s)

da ds,

κ≥ −
∫∫

a,s

p(a, s)
∑

o

p(o|s, a), log p(o|s, a) da ds,

φ̂ =

∫∫

a,s

∑

o

π(a, o|s)µ(s)φ(s) da ds,

1=

∫∫

a,s

∑

o

π(a, o|s)µ(s) da ds.

Unfortunately, the marginal p(a, s) and the responsibilities p(o|s, a) inside the logarithms do not allow for a closed
form solution. HiREPS solves this issue by expressing the marginal in terms of responsibilities and joint distribution
p(a, s) = p(a, s, o)/p(o|s, a) and by keeping the responsibilities inside the logarithms fixed. Fixing the responsibili-
ties works because it creates a lower bound on the original optimization problem. The lower bound means that we
get an algorithm closely related to the Expectation-Maximization (EM) algorithm. The E-step is the estimation of the
responsibilities and the M-step consists of solving the optimization problem with fixed responsibilities.

The HiREPS optimization problem with fixed responsibilities is given by
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max
π(a,o|s)µ(s)

∫∫

a,s

∑

o

π(a, o|s)µ(s)Rsa da ds,

s.t: ε ≥
∫∫

a,s

∑

o

π(a, o|s)µ(s) log
π(a, o|s)µ(s)

q(a, s)p̃(o|s, a)
da ds,

κ≥
∫∫

a,s

p(a, s)
∑

o

p(o|s, a) log p̃(o|s, a) da ds,

φ̂ =

∫∫

a,s

∑

o

π(a, o|s)µ(s)φ(s) da ds,

1=

∫∫

a,s

∑

o

π(a, o|s)µ(s) da ds.

The responsibilities with a tilde p̃(o|s, a) are the ones we keep fixed during the optimization.
Solving this optimization problem with the method of Lagrangian multipliers yields a closed form solution for p(a, s, o)

p(a, s, o)∝ q(a, s)p̃(o|s, a)1+ξ/η exp

�

Rsa − θ Tφ(s)
η

�

.

The parameters η, θ and ξ are the Lagrangian multipliers. They are obtained by minimizing the dual function

g(η,θ ,ξ) = εη+ κξ+ θ Tφ(s) +η log

�

∫∫

a,s

q(a, s)
∑

o

p̃(o|s, a)1+ξ/η exp

�

Rsa − θ Tφ(s)
η

�

da ds

�

for η > 0 and ξ > 0.

After optimizing the dual function, the joint probabilities p(a, s, o) are used in a similar manner as in REPS to update the
parametric model of the policy by minimizing DKL (p(a, s, o)||πm(a, o|s)µ(s)) for πm(a, o|s). The ’mixed options’ policy is
denoted by πm(a, o|s).
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3 Related Work
The idea of hierarchical RL is not new and other authors have developed algorithm and frameworks for hierarchical RL
[7, 8, 9, 10]. In this section we want to go over some of these and see how LHiREPS fits in.
We start by looking at the motion templates framework [7]. This framework structures the policies for RL in form of a
two level hierarchy. The lower level policies are called motion templates. They correspond to our concept of ”options”.
The upper level policies are selection policies that choose which motion template is executed and with which parameters
it is executed. What sets this framework apart from other frameworks -like the option framework [8], MAXQ framework
[10] or HAM [9]- is that it is designed for learning the motion templates as well as the selection policies from the same
samples. Our approach fits very well into this framework as it has the proposed two level hierarchy and it is an algorithm
that learns the policies of both levels with the same samples.

Besides the motion template framework, there have been many other frameworks for hierarchical RL. One of the most
well known ones is the options framework by Sutton et al. [8]. Unlike the motion template framework, it considers
arbitrary hierarchies. The policies in the options framework are probabilities over abstract options or concrete actions
where only the actions are actually executed in the environment. The abstract options are policies themselves which will
execute either other options or actions. This hierarchy is more flexible than our two level hierarchy, but in the framework
the options are only learned with the help of subgoals. This approach is different from our algorithm, which learns
options without the help of subgoals.
Regarding how to learn these options with subgoals, there is an interesting extension of the options framework by Stolle
et al. [11] that answers this question. It learns options by randomly generating subtasks of the form ’starting in state s
find a way to change the state of the environment to state t ’. For these randomly generated tasks, it learns how to best
get from s to t. The states that were visited most often are probably important and become target states for options.
For all target states, the algorithm learns a policy to reach these target states. These policies are the new options. What
is interesting about this idea is that the options are learned without the task that they will be used for. This concept of
learning without the actual task is similar to the ideas of Intrinsically Motivated Reinforcement Learning (IMRL) [12]. In
IMRL the agent generates internal rewards called ’intrinsic rewards’ whose purpose it is to promote interesting actions.
These intrinsic rewards are used to learn useful options -called skills in IMRL- that may help solve the task at hand and
future tasks faster.
In both of these approaches, a goal of learning options is to use them for unknown future tasks. This goal is very similar
to our goal of finding options as backup solutions for (unknown) future tasks in which the goal is still the same but
the environment has changed. However, our approach only uses rewards from the environment and does not generate
rewards for interesting actions itself. Since our algorithm does not use intrinsic rewards, it is not an IMRL algorithm,
even though its ideas are related to IMRL.
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4 Layered Hierarchical Relative Entropy Policy Search

4.1 Overview

In this section, we will explain our new approach LHiREPS. We begin with an overview of the optimization process.
Like HiREPS, we want to optimize a ’mixed options’ policy. Although, unlike HiREPS, we want to reliably find multiple
solutions. To enforce that multiple options should be learned we will add a new constraint to the optimization problem.
However, rather than adding this constraint to the already quite large HiREPS optimization problem, we choose to split
up the learning process into a two level hierarchy. For the gating policy, we solve an optimization problem and for each
individual option policy we solve an optimization problem. This hierarchy nicely mimics the hierarchical nature of our
policy and -as we will see later- makes it easy to add our new constraint to the gating optimization.

An overview of the learning process can be seen in Figure 4.1.

Optimize Option 1

max
u�(u�|u�,u�1)u�u�1(u�)

∬
u�,u�

𝜋(𝑎|𝑠, 𝑜1)𝜇u�1
(𝑠)𝑅u�u� d𝑎 d𝑠

Optimize Option 2

max
u�(u�|u�,u�2)u�u�2(u�)

∬
u�,u�

𝜋(𝑎|𝑠, 𝑜2)𝜇u�2
(𝑠)𝑅u�u� d𝑎 d𝑠

⋯

Optimize Option K

max
u�(u�|u�,u�u�)u�u�u�

(u�)
∬

u�,u�
𝜋(𝑎|𝑠, 𝑜u�)𝜇u�u�

(𝑠)𝑅u�u� d𝑎 d𝑠

Estimate Reward per Option

𝑅u�u� = 𝜃u�
u� 𝜙(𝑠)

Optimize Gating

max
u�(u�|u�)

∫
u�

∑u� 𝜋(𝑜|𝑠)𝜇(𝑠)𝑅u�u� d𝑠

𝑝(𝑎, 𝑠|𝑜1)
𝑝(𝑎, 𝑠|𝑜2) 𝑝(𝑎, 𝑠|𝑜u�)

𝑅u�u�

1. Optimize Options:

2. Estimate Reward: 3. Optimize Gating:

Figure 4.1.: An overview of how the gating and option policies are updated. The option policies π(a|s, o) are updated
first. The reward Rso is estimated second and the gating policy π(o|s) is updated last. The constraints for the
option and the gating optimization problems are omitted. K is the total number of options.

We can see that the first step is to optimize all option policies. This optimization will give us the optimal probability
p(a, s|o) which we use to update the parametric model of the option policy, but we also use them to estimate the reward
Rso. This reward is necessary because, to optimize the gating policy, we want a reward with respect to state-option pairs
rather than state-action pairs. With Rso estimated we can optimize the option policies. All these optimization procedures
are done on the whole set of samples, which is especially important for the option policy optimizations. The option
policies are optimized with all generated samples and not just with the samples that were generated by the specific
option being optimized. In a certain sense this sample sharing allows the options to learn from the successes and failures
of each other.
Furthermore, it can make sense to repeat this whole process. The reason is that changing the gating probability p(o|s)
will change the result of the option policy optimization p(a, s|o). These new results can be used again to estimate Rso and
p(o|s), so this optimization process can be repeated many times. However, this repetition increases the required time,
which will generally only be useful if the sampling process takes even longer. If that is not the case, then using more
iterations may yield better result than repeating the optimizations.

In the following three sections, we will explain the three steps from figure 4.1 in more detail.
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4.2 Option Policy Optimization

First, we take a look at how to optimize the option policies π(a|s, o). Even though we optimize only part of the whole
policy (only one option) we can still use the typical REPS structure, discussed in the Foundation chapter. We define the
problem as a constraint optimization problem with the typical REPS constraints:

• We only want to make small steps in each iteration so we bound the KL-divergence.

• We want our estimated joint probability p(a, s) to respect the state distribution, so the expectation of the state
features has to match the observed average state features.

• We want the joint to be a proper probability distribution, so we require it to sum to 1.

Beyond these constraints, we also want -like HiREPS- that our options are diverse because obtaining the same option
policy twice is useless. Here, we have to first consider in which optimization step we want to enforce the diversity con-
straint. Is it better to enforce the diversity in the gating optimization or in the option optimization? It would be nicer to
add this constraint to the gating optimization step because diversity is not a property of a single option but a property
of a group of options. The gating optimization would be better suited for this property as it optimizes over all options.
However, the gating optimization only optimizes which option policy to choose and has no control over the actions of
these option policies. Without this control, we cannot add the diversity constraint to the gating optimization. We have to
add it to the option policy optimization problem.

To enforce diversity in the option policies, we use the same constraint as HiREPS, which is given by

κ≥ −
∫∫

a,s

p(a, s)
∑

o

p(o|s, a) log p(o|s, a) da ds.

As explained in the HiREPS section, this constraint forces the option policies to specialize. However, it does not allow for
a closed form solution for the policy of HiREPS and we have the same problem.
One solution to the problem is to do what HiREPS does, i.e., estimating p(o|s, a) at the start of an iteration and not
changing it during the optimization. This process works for HiREPS because it is an EM-style algorithm that optimizes a
lower bound. For the option policies, we can also follow this process because we also get a lower bound from keeping
p(o|s, a) fixed (see appendix A.4 for proof).
That said, we choose a different approach. Rather than keeping p(o|s, a) fixed throughout the optimization, we say
p(o|s, a) is a new variable which is independent of π(a|s, o). The fact that p(o|s, a) is now independent of π(a|s, o) lets
us find a closed form solution for p(a, s|o). There is one obvious problem, though: The probability p(o|s, a) actually
depends on π(a|s, o). We solve this problem by adding this dependence as a constraint to the optimization problem. The
dependency we want to have is

p̂(o|s, a) =
p(a, s, o)
p(a, s)

,

where p̂(o|s, a) is our new variable which only depends on π(a|s, o) through the new constraint we are introducing.
We add this new constraint in the form

p(a, s, o) = p̂(o|s, a)p(a, s).

This equation is equivalent to the previous equation, but allows for easier derivation of the Lagrangian. Of course, this
constraint is not one constraint, but actually an infinite number of constraints. However, when we later approximate the
dual function we effectively get one constraint for each sample and option.
Using this constraint should be more effective at enforcing diversity compared to the EM-style approach as p(o|s, a) will
actually change according to how π(a|s, o j) changes during the optimization.
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The optimization problem for the j-th option π(a|s, o j) is now given by

max
π(a|s,o j )µo j (s),p̂(o|s,a)

∫∫

a,s

π(a|s, o j)µo j
(s)Rsa da ds,

s.t: εo j
≥ DKL

�

π(a|s, o j)µo j
(s)||q(a, s|o j)

�

,

κ≥ −
∫∫

a,s

p(a, s)
∑

o

p(o|s, a) log p̂(o|s, a) da,

p(a, s, o) = p̂(o|s, a)p(a, s),

φ̂o j
=

∫∫

a,s

π(a|s, o j)µo j
(s)φ(s) da ds,

1=

∫∫

a,s

π(a|s, o j)µo j
(s) da ds.

The distribution µo j
(s) = p(s|o j) denotes the state distribution given the j-th option and φ̂o j

is the observed average
feature for the j-th option.

Solving the optimization problem for p(a, s|o j) with the method of Lagrangian multipliers yields the solution

p(a, s|o j)∝ q(a, s|o j)exp





Rsa − θ T
o j
φ(s) + q(o j)

�

ξo j
log p̂(o j |s, a) +

∑

o[ζo j
(a, s, o)p̂(o|s, a)]− ζo j

(a, s, o j)
�

ηo j



 .

The parameters ηo j
, θo j

, ξo j
, ζo j

(a, s, o) are obtained by optimizing the dual function. Like REPS and HiREPS the
parameter ηo j

scales our offset reward and the term θ T
o j
φ(s) offsets the reward depending on the state. We also subtract

the self-information of the responsibilities −ξo j
log p̂(o j |s, a) similar to HiREPS, but unlike HiREPS we also scale it with

q(o j). This scaling is because we optimize for p(a, s|o) rather than p(a, s, o). Completely new is the ζo j
-part we get from

our new constraints, which is not as easily interpretable as the other terms that offset the reward because ζo j
(a, s, o) can

change the exponent arbitrarily. However, we can at least see that this freedom is important because in a given situation
the constraint p(a, s, o) = p̂(o|s, a)p(a, s) may only be violated for some samples but not all, making it necessary that the
Lagrangian multiplier ζo j

adapts to these samples.
We find these parameters by minimizing the dual function (for the derivation see appendix A.2) for ηo j

> 0 and ξo j
> 0.

The dual function is given by

g(ηo j
,θo j

,ξo j
,ζo j
) =

ηo j
log





∫∫

a,s

q(a, s|o j)exp





Rsa − θ T
o j
φ(s) + q(o j)

�

ξo j
log(p̂(o j |s, a)) +

∑

o[ζo j
(a, s, o)p̂(o|s, a)]− ζo j

(o j , a, s)
�

ηo j



 da ds





+ηo j
εo j
+ξo j

κ+θ T
o j
φ̂o j
+
∑

ok 6=o j

∫∫

a,s

q(a, s|ok)q(ok)

�

ξo j
log(p̂(ok|s, a)) +

∑

o

[ζo j
(a, s, o)p̂(o|s, a)]− ζo j

(a, s, ok)

�

da ds.

We can see the dual function still contains p̂(o|s, a) as we cannot compute a closed form solution of p̂(o|s, a). We cannot
compute one because our extremum for p̂(o|s, a) is

p̂(o|s, a) = −
ξo j

p(o|s, a)

ζo j
(a, s, o)

, where p(o|s, a) =
p(a, s|o)q(o)

∑

ok
p(a, s|ok)q(ok)

.

For o = o j we have p(a, s|o j) in the denominator, which is our closed form solution for p(a, s|o j). We can see that it
depends again on p̂(o j |s, a) in complicated ways.
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Without a closed form solution, we cannot compute p̂(o|s, a) easily. Instead, we use the derivative of the Lagrangian with
respect to ζo j

and solve it for p̃(o|s, a), which gives us the equation

p̂(o|s, a) =
p(a, s, o)
p(a, s)

.

We use this equation to update p̂(o|s, a) during the optimization.

To update the value of ζo j
we do the opposite. We take the derivative of the Lagrangian with respect to p̃(o|s, a) (see

appendix A.3 for derivation) to get

ζ∗o j
(a, s, o) = −

ξo j
p(o|s, a)

p̂(o|s, a)
.

We use the value of ζ∗o j
to compute a gradient

gζo j
(a, s, o) = (ζo j

(a, s, o)− ζ∗o j
(a, s, o)),

and then use line search with ζo j
(a, s, o) as starting point and gζo j

(a, s, o) as search direction to find the value for ζo j
that

minimizes the dual function along our search direction. The minimum is our updated ζo j
value.

The experiments show that this update rule works half well. On the low dimensional task in our experiments section, it
leaves little to be desired in terms of diversity, but in terms of convergence it is a lot slower than HiREPS. On the higher
dimensional task from our experiment section, it converges not too much slower than HiREPS and is on average more
diverse.
We also explored the more intuitive possibility of using the derivative of the Lagrangian w.r.t. p̂(o|s, a) to update p̂(o|s, a)
and the derivative of the Lagrangian w.r.t. ζo j

to update ζo j
, but the optimization took much longer and did not yield

better results.

There is one more thing which we have to watch out for: The expected entropy constraint and the KL-divergence con-
straint may be impossible to fulfill at the same time because we would have to change the policy too much to decrease
the expected entropy below κ. This issue can be solved by increasing κ whenever the diversity constraint is not satisfied
after the optimization. With the increased κ we retry optimizing the dual.

To update our policies, we also minimize DKL

�

p(a, s|o j)||πm(a|s, o j)µo j
(s)
�

for πm(a|s, o j) similar to REPS. This mini-
mization also turns into a weighted maximum likelihood estimation.

4.3 Option Reward Estimation

Next, we want to optimize our gating policy π(o|s) so that it maximizes the expected reward of state-option pairs E[Rso].
To do this optimization, we have to first estimate the reward Rso itself. The model we use for Rso is

Rso = θ
T
o φ(s),

where θo is the parameter we will estimate and φ(s) is the feature vector we will use in the gating policy. This is impor-
tant. As we will see in the next section, this structure will enable us to update the gating policy directly. Additionally, it
will also allow us to remove one constraint from the constrain optimization problem.

To estimate Rso we optimize θo with weighted maximum likelihood, i.e,

θ ∗o = argminθo

N
∑

i=1

p
�

a[i], s[i]|o
�

(R[i]sa − θ
T
o φ

�

s[i]
�

)2.

Here, the probabilities p(a[i], s[i]|o) are the ones we estimated in the previous step when we optimized the option policies.
The index (·)[i] denotes the i-th sample and N is the total number of samples.

With the reward Rso we can now update the gating policy.
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4.4 Gating Policy Optimization

In this section, we will look at how to optimize the gating. We want to optimize it in such a way that we do not have the
problem of HiREPS, which was that we generally end up with only few or no alternative solutions. However, before we
look at how to make the options keep their probability, we first look at how we can maximize the expected reward.
We already know how a policy can be optimized with REPS. So the REPS optimization problem will be the starting point.
The REPS optimization problem for p(o, s) is given by

max
π(o|s)µ(s)

∫

s

∑

o

π(o|s)µ(s)Rso ds,

s.t: ε ≥ DKL (π(o|s)µ(s)||q(o, s)) ,

φ̂ =

∫

s

∑

o

π(o|s)µ(s)φ(s) ds,

1=

∫

s

∑

o

π(o|s)µ(s) ds.

Using this optimization problem we can optimize the expected reward as explained in the Foundation chapter. However,
we can make the optimization simpler by leaving out the φ-constraint. This constraint can be left out because we will
not optimize for the joint p(o, s) but optimize for the policy π(o|s) directly. The reason we can use π(o|s) is because of
the special form of our reward Rso and the structure of our gating policy. We will look at that later when we discuss how
to update the policy after the optimization.

With the basic setup in place, we now take a look at how to make the options keep their probability. The problem we have
so far is the same as HiREPS: There is no trade-off or constraint that prohibits one option from having 100% probability
and all others having 0% probability. This freedom means whenever one option is better in every state than any other
option, then this one option will end up with 100% probability. With only one option being optimized, we end up with
no backup options.
We can avoid this problem by forcing the policy π(o|s) to keep the options more uniformly distributed. We can restrict
the probabilities to be more uniform by setting a lower bound on the expected entropy of the policy Es[Hπ[o|s]] because
-as discussed in the HiREPS section- the higher the Entropy is the more uniform the distribution has to be. With this
constraint, we can enforce that at least K options retain some probability. We achieve this goal by setting the lower
bound of the constraint to a value slightly above the logarithm of K − 1. The reason this setting works is that the highest
value of Es[Hπ[o|s]] for K − 1 options is log(K − 1). This value is only achieved when all K − 1 options are uniformly
distributed. When we set the value of the lower bound slightly higher than log(K − 1) the only way the constraint can
be satisfied is if more than K −1 options have some probability. This insight gives us a nice way to control the number of
backup options we want to have.

Now, we can formulate the constraint optimization problem for the gating policy. It is given by

max
π(o|s)

∫

s

∑

o

π(o|s)µ(s)Rso ds,

s.t: ε ≥ Es[DKL (π(o|s)||q(o|s)) ,
α≤ Es[Hπ[o|s]],

1=

∫

s

∑

o

π(o|s)µ(s) ds.

Solving the optimization problem with the method of Lagrangian multipliers yields a closed form solution π(o|s)

π(o|s)∝ q(o|s)
η
η+β exp

�

Rso

η+ β

�

.

The parameters η and β are Lagrangian multipliers. We can see that η controls how close the new policy π(o|s) is to the
old policy q(o|s). The higher η is, the closer π(o|s) is to q(o|s).
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On the other side we have β , which is the Lagrangian multiplier for the new constraint α≤ Es[Hπ[o|s]] and controls how
uniform the distribution π(o|s) will be. The higher β is, the more uniform π(o|s) becomes.
We get η and β by optimizing the dual function

g(η,β) = (η+ β) log

�∫

s

∑

o

(q(o|s))
η
η+β µ(s)exp

�

Rso

η+ β

�

ds

�

+ηε−αβ

for η > 0 and β > 0. The derivation can be found in the appendix A.5.

To update our policy, we do not minimize the KL-divergence this time. Instead -as mentioned earlier- we can compute
and update π(o|s) directly. To understand how we can update π(o|s) directly, we just have to remind ourselves of the
structure of Rso and q(o|s) and insert them in the closed form solution:

Rso models the reward per option which we estimated in the previous section. It is given by

Rso = θ
T
o φ(s).

The distribution q(o|s) is a softmax which we can simplify by using

q(o|s) =
exp(θ̄ T

o φ(s))
∑

o exp(θ̄ T
o φ(s))

∝ exp(θ̄ T
o φ(s)).

Inserting them both in the closed form solution for the new gating policy gives us

π(o|s) ∝ exp

�

�

ηθ̄o + θo

η+ β

�T

φ(s)

�

.

We see that the solution is proportional to a softmax of the same form exp(θ Tφ(s)). This form allows us to update π by
updating θ̄o to its new value θ̄ ∗o with the equation

θ̄ ∗o =
ηθ̄o + θo

η+ β
.

This direct update spares us from calculating a weighting, which in turn allows us to skip the φ-constraint. However,
skipping the φ-constraint is just a nice bonus. It is also possible to calculate weightings p(o, s) in the normal REPS style
by including the φ-constraint.

4.5 Relation to REPS

If we use a single option o1, then using LHiREPS becomes equivalent to using the REPS algorithm. This equality is because
the option policy π(o|s) is always 1 for the only option we have, meaning the gating optimization and Rso estimation are
irrelevant. For the option policy the probability p̂(o1|s, a) and q(o1) are always 1 and q(a, s|o1) is equal to q(a, s) for one
option. With these values the closed form solution simplifies to that of REPS.
The dual function becomes nearly identical to that of REPS with the exception of the term ξo1

κ being added to it.
However, the other Lagrangian multipliers and p(a, s, o) are independent of the value of κ or ξo1

and so the solution for
ηo1

and θo1
are the same as optimizing the REPS dual function.
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5 Experiments

5.1 Illustration

We first examine some of the properties of LHiREPS on a simple toy task and then look at a more complex task. The
toy task can be seen in Figure 5.1. Since the reward function is a mixture of Gaussians we will refer to this task as the
Gaussian Task. We can see the Gaussian Task is a one dimensional task with a few modes. We will remove some of these
modes to see if LHiREPS actually learned backup solutions and compare the backup solutions against those that HiREPS
learned, but first we will explain the setup.

For all experiments we carried out 20 trials. Each trial ran 70 iterations and in each iteration we generated 500 new sam-
ples and used them with the 500 samples generated in the previous iteration to train our algorithm. The plots show the
average over these trials as lines and the standard deviation of the trials as shaded regions around the lines. The policy
we trained was a ’mixed options’ policy, which we described in the Foundation chapter. Examples of the initialization of
our option policies can be seen in Figure 5.1 and Figure 5.3. The gating policy was initialized to be uniformly distributed.
For LHiREPS and HiREPS we used the following parameters: For HiREPS we used ε = 0.5 and κ was set to the ob-
served expected Entropy of q(o|s, a) i.e. Es,a[Hq[o|s, a]]. For our algorithm in the gating optimization we set ε = 0.5 and
α= log(K−0.5), where K is the number of options. In the option optimization we set εo j

= 0.5 for all options j and κ was
set like in HiREPS. We used both variants of our algorithm. The variant with the constraint p(a, s, o) = p̂(o|s, a)p(a, s) as
well as the EM variant. We will refer to these just as non-EM and EM variant. The number of options we learned was
10, but we also trained with more and less options and we will look at the differences between the number of options
later. Regarding the parameters we also tried different values and the mentioned values were the best. As base for the
logarithms we used e.
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Figure 5.1.: The reward function in blue with the dif-
ferent option policies. The plot shows the
random initialization of the option policies
for 10 options for one of the trials.
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Figure 5.2.: The number of options that have non-zero
probability for the HiREPS algorithm on
the Gaussian Task plotted over the itera-
tions.

Before we look at diversity it is interesting to first examine how good the best solution of our algorithm is and how it
compares to that of HiREPS. In Figure 5.4 we have plotted the normalized average reward for each iteration of the best
option, where we mean by ”best option” the option that had the highest average reward in the last iteration.
What we can see is that all three algorithms find the best reward, but HiREPS and the EM variant of our approach con-
verge much faster to the maximum reward than the non-EM variant. The fact that the EM approaches are better makes
sense as they replace the real p(o|s, a) with p̃(o|s, a) in the constraints, allowing them to be less diverse in favor of being
more greedy. Another reason is also that the dual function of HiREPS and our EM variant are a lot easier to optimize
numerically than the dual of the non-EM variant. Further HiREPS has the advantage that it has no constraint to keep
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Figure 5.4.: The normalized reward for the best option
on the Gaussian Task from Figure 5.1 plot-
ted for HiREPS, our EM variant and our
non-EM variant.

the probability of options more uniform, meaning the good options will have higher probability and thus more samples.
This can be seen in Figure 5.2, where we plotted the number of options with non-zero probability for HiREPS. After less
than ten iterations many of the options have zero probability. For our approach we choose a high α value to keep some
probability for all options.

Next we look at how well LHiREPS achieves our goal of finding backup solutions. We test the diversity of the found
solutions by training HiREPS and our new approach on the Gaussian Task, but evaluating them on an altered version
of the task (seen in Figure 5.5). The altered version is missing the highest mode. In Figure 5.6 we again plotted the
normalized average reward for the best option on the altered task. We can see that the best option of our new approach
in both variants always converged to the maximum, whereas the best option of HiREPS for this case does not converge
to it. The reason is that generally all options except one have zero probability (see again Figure 5.2). The only option
that does not have zero probability is the one that converged to the maximum of the Gaussian Task which is missing in
the altered version. The other options cannot reliably converge to other modes before they end up with zero probability
and so the second-best option is not always found.
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Figure 5.5.: The reward function of our simple Gaus-
sian Task without the highest mode.
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Figure 5.6.: The normalized reward for the best option
on the modified Gaussian Task (Figure 5.5)
after training on the normal Gaussian Task
(Figure 5.1) plotted for HiREPS, our EM
variant and our non-EM variant.

The same is true if we train and evaluate in the same manner as before, but this time remove the best and second-best
mode (see Figure 5.7). In Figure 5.8 we can see the average reward of the best option for both algorithm. Both LHiREPS
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variants find the third-best mode often but not always. However, the difference to HiREPS is a lot more clear now, as
it never finds the third-best mode. We can also notice here that on average the non-EM variant is slightly more diverse
than the EM-variant.
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Figure 5.7.: The reward function of our simple Gaus-
sian Task without the two highest modes.
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Figure 5.8.: The normalized reward for the best option
on the modified Gaussian Task (Figure 5.7)
after training on the normal Gaussian Task
(Figure 5.1) plotted for HiREPS, our EM
variant and our non-EM variant.

Lastly we want to quantify how many of the modes of our Gaussian task were found. Instead of continuing to go over
each individual mode, we try to measure the overall diversity. We measure diversity by summing over the rewards of
the options with the highest reward per mode. In other words, we evaluate all options on only one of the Gaussians of
our Gaussian Task and then for each of the Gaussians we select the highest reward achieved for this Gaussian. All these
highest rewards are normalized by dividing by the maximum value of the respective Gaussian. We then take the average
over the modes. After this procedure we get a useful measure of diversity. When the options are all converged to the
same Gaussian, the maximum reward would be about 1/6 because only 1 out of the 6 Gaussians was found1, whereas if
for each Gaussian there is an option that sits exactly on the mode the overall score would be 6/6 because all modes were
found.
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Figure 5.9.: The normalized reward summed over the
best option per mode plotted for each iter-
ation of our non-EM variant with options
5, 10 and 20 and of HiREPS with 20 op-
tions.
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1 Even when all options converge to one Gaussian, the score is a little bit higher than 1/6. The reason is that the options will also get a some
score for being in the tail of another Gaussian.
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This diversity score is plotted in Figure 5.9 for the non-EM variant and the HiREPS trials that started with 20 options
(which were the most diverse HiREPS trials). We also plotted the diversity for the EM variant of our approach, which can
be seen in Figure 5.10.
What we can see here is that the diversity of the EM variant rises fast, but always decreases again between the 10th and
20th iteration. The non-EM variant on the other hand does not decrease again generally and also finds more modes on
average. The difference is especially large for 10 options where on average the non-EM variant reaches up to 85% and
the EM variant only reaches a bit above 75%. This difference indicates that our odd treatment of p̂(o|s, a) and ζo j

in our
dual function works with respect to diversity (not so much with respect to fast convergence). In the end, for this task the
EM variant seems to be a good compromise between the speed of HiREPS convergence and the diversity achieved by our
non-EM variant.
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5.2 Evaluation

We use a planar reaching task to evaluate our algorithm. The goal is to move the end effector of a three joint three link
robot arm to certain positions at certain time points. The first reaching points are at time 50 and the second reaching
points are at time 100. They can be seen in Figure 5.11 as blue and red dots respectively. At each of these times the robot
has to only reach one of the many possible reaching points. Figure 5.11 shows one possible movement of the robot. A
score is given based on the squared distance of the end effector to the closest reaching point at the specified time (50 or
100). The reward is the sum of these scores plus a penalty for high acceleration.
The robots initial position has all joints aligned pointing to the left with a random offset of 0.5 radians (≈ 29◦) up or
down(see Figure 5.12). This randomness makes this task state-dependent. The only part of the system state we pass to
the algorithm as the environments state s is the value of the angle that is randomly varied. To generate a trajectory we
use Dynamic Movement Primitives (DMP)[13]. We have one DMP for each joint. The DMPs generate the angle of the
joints. The goal position is set so that the arm points to the right. Each DMPs use five basis function. The linear weights
of these five basis functions are the actions our options policies generate. To track the generated trajectory we use a PD
controller with a feedforward term [14].

x-axis [m]

y-
ax

is
 [m

]

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 5.11.: A trajectory that reaches one of the
reaching points at the correct time steps.
The robot arm is drawn for each time
step. The shade of gray indicates which
time step: The lighter the gray the closer
to zero, the darker the gray the closer to
the final time step. The blue dots are the
points that have to be reached at time 50
and the red dot is the point that has to
be reached at time 100.
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Figure 5.12.: 15 different samples of the initial position
of the robot arm in 15 shades of gray.

For all experiments 20 trials were used with each trial consisting of 100 iterations. In each iteration 500 new samples
were generated and the algorithms were trained on the 500 samples generated in the previous iterations and the 500
newly generated samples. The plots show the average over these trials as lines and the standard deviation of the trials
as shaded regions around the lines. The policy we trained was a ’mixed options’ policy and the parameters used for the
algorithms were the same as the ones for the Gaussian Task explained in the Illustration section.
As features for the options policies we just used the state:

φ1(s) = s

As features for the gating policy and our algorithm we used squared features

φ2(s) =









1

s

s2









The number of options we used were 2, 5 and 10.
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Like in the previous section, we will first examine the best option performance of each algorithm. In Figure 5.13 we
have 4 plots showing the reward for the best option. The first three compare the three algorithms for different numbers
of options. The fourth plot compares different numbers of options for just the non-EM variant. Looking at these plots
we can see that the difference between our EM and our non-EM variant is very small for this task. For two options the
EM-variant is slightly better, but for five and ten options the non-EM variant is slightly better.
We can also see that the difference between HiREPS and our two variants is not that big for two options, but becomes
progressively bigger the more options we use. For 10 options HiREPS is slightly better than our two variants. Further it
also seems that using more options improves the learning speed of our algorithm.
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Figure 5.13.: The plot in the lower right shows the best option for just the non-EM variant for different numbers of
options. The other three plots show the best option of each algorithm for a certain number of options

Now we want to look at the diversity of the solutions found. To asses diversity we removed one of the reaching points
at time 50 and evaluated all the options we found after training on the remaining reaching points. For each of these
evaluations we took the best option and summed these. Figure 5.14 shows these sums averaged over the trails. The
bounds indicate the standard deviation. The cyan, green and yellow plots are for 2, 5 and 10 options respectively. For the
evaluation we used 20 samples per option and we removed the acceleration penalty. For HiREPS we only used options
that had non-zero probability.
What Figure 5.14 shows is that HiREPS does not benefit from using more options for this task. The reason is again that
most options end with zero probability. We can see this issue in Figure 5.15. On the other hand our EM and non-EM
improve in diversity the more options are used. For 5 and 10 options our variants are better than HiREPS in terms of
average diversity. Comparing our two variants we see that the non-EM variant has much higher standard deviation than
the EM variant. The high standard deviation shows that it finds diverse solutions less reliably than the EM variant.
Lastly we want to point out that despite using 1000 samples per Iteration for 100 Iterations not all options converged.
This fact may sound odd at first because this setup should be enough for each option. However, each option only uses
all 1000 samples in the beginning, when the option distributions still have a lot of overlap. In later iterations when the
options diversify the number of effective samples is a smaller. To be precise each option learns more from a sample when
q(o|s, a) is large. For very small q(o|s, a) the options learns very little and for q(o|s, a) = 0 the sample is effectively not
used (this effect can be seen when looking at the dual approximation in appendix A.2).
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In Figure 5.16 we have plotted for each option o the number of samples with q(o|s, a) > 1e − 10. In the beginning both
options can use effectively 1000 samples, but after 50 iterations option 1 has only about 700 effective samples (samples
with q(o|s, a) > 1e − 10) and option 2 has only about 300. We see the probability q(o|s, a) becomes mutually exclusive.
The red graph, which is the sum of the two option graphs, shows this problem best. In Figure 5.17 we have plotted these
sums for all algorithms and number of starting options. We can see here that for all algorithms the sum is below 2000 at
the 40th iteration. This value means that, for instance, when we have 10 options many of these options will effectively
get less than 2000

10 = 200 samples. Of course, the best option will get much more effective samples and the worst options
much less. This conflict shows us that there is a trade-off between having more options (with non-zero probability) and
finding better options.
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6 Conclusion and Future Work
In this thesis, we have presented a new algorithm to find versatile solutions. The algorithm itself is a two level hierarchy.
The lower level of this hierarchy is responsible for learning the option policies of a ’mixed options’ policy and the upper
level is responsible for learning the gating policy. Both the upper level optimization as well as the lower level optimiza-
tions follow the REPS framework. The lower level optimizations are also very closely related to HiREPS, building on
many of HiREPS ideas.
We used this algorithm on a very simple task with 6 local optima. On this task our options diversified enough to find
many of the local optima. When we removed the two best local optima, we still had decent backup solutions whereas
HiREPS did not. Our algorithm could also find versatile solutions on a more complex planar reaching task. The best
solution it found were comparable in terms of reward to those of HiREPS, but it found more diverse solutions than
HiREPS. However, of the two variations of our algorithm the non-EM variation was not as reliable as the EM variant in
that respect. We also highlighted that there is trade-off between how many options are used and how many effective
samples each option receives over the later iterations. In the end, we have seen that having backup solutions certainly
helps when the previous optimum disappears. The algorithm we present managed to find such backup solution and the
best solution it found are still very good.
In the future, we hope to try this algorithm on more complex tasks. In particular, we want to test if we can learn forehand
and backhand strokes in a table tennis simulation.
Regarding more the structure of the algorithm, we think that the partition of the learning algorithm in upper and lower
level allows for many extension. Using and adapting this structure to learn hierarchies which are more complex than the
’mixed option’ policy, would be interesting.
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A Appendix

A.1 Trajectories from the Reaching Task
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Figure A.1.: There are always two plots showing the trajectory of the end effector along the x-dimension and y-dimension
respectively. The top row of plots show trajectories generated after learning with HiREPS. The middle row
shows trajectories from our non-EM and the bottom row from our EM variant. On the left are always the two
plots for a run were the algorithms started with 2 options and on the right are the two plots for a run started
with 5 options. The different colors indicate trajectory generated by different options. For each option 5
trajectories are plotted. In the case of HiREPS only options were plotted that had non-zero probability after
the learning. The black dots are the reaching points.
We can see that not all options have converged. Also, sometimes options converge to the same reaching
point. This convergence is possible if the variance of the Gaussian distribution of one or both of the options
is small enough.
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A.2 Option Optimization

The constraint optimization problem for an option is given by

max
π(a|s,o j )µo j (s),p̂(o|s,a)

∫∫

a,s

π(a|s, o j)µo j
(s)Rsa da ds,

s.t: εo j
≥ DKL

�

π(a|s, o j)µo j
(s)||q(a, s|o j)

�

,

κ≥ −
∫∫

a,s

p(a, s)
∑

o

p(o|s, a) log p̂(o|s, a) da,

p(a, s, o) = p̂(o|s, a)p(a, s),

φ̂o j
=

∫∫

a,s

π(a|s, o j)µo j
(s)φ(s) da ds,

1=

∫∫

a,s

π(a|s, o j)µo j
(s) da ds.

The distribution µo j
(s) = p(s|o j) denotes the state distribution given the j-th option and φ̂o j

is the observed average
feature for the j-th option.

The Lagrangian of this optimization problem is

L(πµo j
,ηo j

,ξo j
,ζo j

,θo j
,λo j
) =

∫∫

a,s

π(a|s, o j)µo j
(s)Rsa da ds

+ηo j

�

εo j
−
∫∫

a,s

π(a|s, o j)µo j
(s) log

�

π(a|s, o j)µo j
(s)

q(a, s|o j)

�

da ds

�

+ ξo j

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a) log p̂(o|s, a) da ds

�

+

∫∫

a,s

∑

o

ζo j
(a, s, o)

�

∑

ok

[p(a, s, ok)] p̂(o|s, a)− p(a, s, o) da ds

�

+ θ T
o j

�

φ̂o j
−
∫∫

a,s

π(a|s, o j)µo j
(s)φ(s) da ds

�

+λo j

�

1−
∫∫

a,s

π(a|s, o j)µo j
(s) da ds

�

.

We treat the product πµo j
of the policy π and the state distribution µo j

as one input variable to the Lagrangian. This
treatment makes sense because we want to solve for this product, meaning we are not interested in the value of π or µo j
independently.
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We can simplify this Lagrangian to a smaller more workable version

L(πµo j
,ηo j

,ξo j
,ζo j

,θo j
,λo j
) =

∫∫

a,s

π(a|s, o j)µo j
(s)

�

Rsa −ηo j
log

�

π(a|s, o j)µo j
(s)

q(a, s|o j)

�

+ q(o j)ξo j
log(p̂(o j |s, a))

+ q(o j)
∑

o

�

ζo j
(a, s, o)p̂(o|s, a)

�

− q(o j)ζo j
(a, s, o j)

−θ T
o j
φ(s)−λo j

�

+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+λo j

+

∫∫

a,s

ξo j

∑

o 6=o j

q(a, s, o) log p̂(o|s, a) da ds

+

∫∫

a,s

∑

o

ζo j
(a, s, o)p̂(o|s, a)

 

∑

ok 6=o j

q(a, s, ok)

!

−
∑

o 6=o j

ζo j
(a, s, o)q(a, s, o) da ds

=

∫∫

a,s

π(a|s, o j)µo j
(s)

�

Rsa −ηo j
log

�

π(a|s, o j)µo j
(s)

q(a, s|o j)

�

+ Ao j
(a, s)− θ T

o j
φ(s)−λo j

�

+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+λo j

+ Bo j
(a, s)

with:

Ao j
(a, s) = q(o j)

�

ξo j
log(p̂(o j |s, a)) +

∑

o

�

ζo j
(a, s, o)p̂(o|s, a)

�

− ζo j
(a, s, o j)

�

,

Bo j
(a, s) =

∫∫

a,s

∑

o 6=o j

q(a, s, o)

�

ηo j
log p̂(o|s, a) +

∑

ok

�

ζo j
(a, s, ok)p̂(ok|s, a)

�

− ζo j
(a, s, o)

�

da ds.

Note that Bo j
is independent of πµo j

.

The simpler Lagrangian allows us to easily take the derivative w.r.t. π(a|s, o j)µo j
(s) which is

∂

∂ π(a|s, o j)µo j
(s)

L(πµo j
,ηo j

,ξo j
,ζo j

,θo j
,λo j
) = Rsa −ηo j

log

�

π(a|s, o j)µo j
(s)

q(a, s|o j)

�

+ Ao j
(a, s)− θ T

o j
φ(s)−λo j

−ηo j
.

By setting the gradient of the Lagrangian w.r.t. π(a|s, o j)µo j
(s) to zero we obtain the closed form solution

π(a|s, o j)µo j
(s) = q(a, s|o j)exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

exp

�

−
λo j
+ηo j

ηo j

�

.
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If we insert π(a|s, o j)µo j
(s) in the probability constraint, we can solve for exp

�

−
λo j+ηo j
ηo j

�

, so that we have

1=

∫∫

a,s

q(a, s|o j)exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

exp

�

−
λo j
+ηo j

ηo j

�

. da ds

⇔





∫∫

a,s

q(a, s|o j)exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

da ds





−1

= exp

�

−
λo j
+ηo j

ηo j

�

.

We can now insert π(a|s, o j)µo j
(s) into the Lagrangian to obtain the dual function

g(ηo j
,ξo j

,ζo j
,θo j

,λo j
) =

∫∫

a,s

π(a|s, o j)µo j
(s)
�

Rsa −ηo j
log









q(a, s|o j)exp

�

Rsa−θ T
o j
φ(s)+Ao j (a,s)

ηo j

�

exp
�

−
λo j+ηo j
ηo j

�

q(a, s|o j)









+Ao j
(a, s)− θ T

o j
φ(s)−λo j

�

da ds+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+λo j

+ Bo j
(a, s)

=

∫∫

a,s

π(a|s, o j)µo j
(s)

�

log

�

exp

�

−
λo j
+ηo j

ηo j

��

−λo j

�

da ds+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+λo j

+ Bo j
(a, s).

At this point we use the probability constraint to remove
∫∫

a,sπ(a|s, o j)µo j
(s) da ds and we insert the solution for the

expression exp
�

−
λo j+ηo j
ηo j

�

, which gives us

g(ηo j
,ξo j

,ζo j
,θo j

,λo j
) =−ηo j

log









∫∫

a,s

q(a, s|o j)exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

da ds





−1



−λo j
+ηo j

εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+λo j

+ Bo j
(a, s)

=ηo j
log

 

∫∫

a,s

q(a, s|o j)exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

da ds

!

+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j
+ Bo j

(a, s).

The parameter λ cancels out and we can approximate the integral and sum inside the logarithm. To approximate them,
we notice that they can be seen as an expectation w.r.t. the probability q(a, s). We have access to samples from q(a, s), so
by using these we approximate the expectation with the average over the samples (a[i], s[i]) to get

g(ηo j
,ξo j

,ζo j
,θo j
)≈ ηo j

log

 

N
∑

i=1

q(a[i], s[i]|o j)

q(a[i], s[i])
exp

 

R[i]sa − θ
T
o j
φ(s[i]) + Ao j

(a[i], s[i])

ηo j

!

da ds

!

+ηo j
εo j
+ ξo j

κ+ θ T
o j
φ̂o j

+
N
∑

i=1

∑

o 6=o j

q(a[i], s[i]|o)
q(a[i], s[i])

q(o)
�

ηo j
log p̂(o|s[i], a[i]) +

∑

ok

�

ζo j
(a[i], s[i], ok)p̂(ok|s[i], a[i])

�

− ζo j
(a[i], s[i], o)

�

.
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The variable N is the number of samples. To solve the original optimization problem we minimize the dual function
g(ηo j

,ξo j
,ζo j

,θo j
) such that ηo j

> 0 and ξo j
> 0 [6].

The dual function can be computed without knowledge of q(s) by using the equation

q(a, s|o)
q(a, s)

=
q(o|s, a)

q(o)
.

We can optimize the dual function using a numeric solver. To use the solver efficiently, we can compute the gradients
of the Lagrangian multipliers. Although, they will only be accurate for the EM variant. For the non-EM variant they are
not because we assume that p̂(o|s, a) is independent of the Lagrangian multipliers, which is not true. That said we used
these gradients for the non-EM variant of our approach in the experiments and at least for the Reaching Task there was
no major difference between the performance of the EM and non-EM variant.

The gradients are

∂ g
∂ θo j

= φ̂o j
−

∑N
i=1 Co j

(a[i], s[i])
�

φ(s[i])
�

∑N
i=1 Co j

(a[i], s[i])
,

∂ g
∂ ηo j

≈ εo j
+ log

�

1
N

N
∑

i=1

Co j
(a[i], s[i])

�

−

∑N
i=1 Co j

(a[i], s[i])

�

R[i]sa −θ T
o j
φ(s[i])+Ao j (a

[i],s[i])

η

�

∑N
i=1 Co j

(a[i], s[i])
,

∂ g
∂ ξo j

≈ κ+

∑N
i=1 Co j

(a[i], s[i])
�

q(o j) log p̂(o j |s[i], a[i])
�

∑N
i=1 Co j

(a[i], s[i])
+

1
N

N
∑

i=1

∑

o 6=o j

q(o|s[i], a[i])
q(o)

q(o) log p̂(o|s[i], a[i]),

with

Co j
(a, s) =

q(o|s, a)
q(o)

exp

 

Rsa − θ T
o j
φ(s) + Ao j

(a, s)

ηo j

!

.

We do not need a gradient for ζo j
as we are using a different way to update it.

A.3 Derivation of the Update Rule

We are taking the derivate of the Lagrangian w.r.t p̂(o|s, a) and solve for ζo j
to get our odd update rule. The derivation

is

∂ L
∂ p̂(o|s, a)

=
∂

∂ p̂(o|s, a)
ξo j

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a) log p̂(o|s, a) da ds

�

+
∂

∂ p̂(o|s, a)

∫∫

a,s

∑

o

ζo j
(a, s, o)

�

∑

ok

[p(a, s, ok)] p̂(o|s, a)− p(a, s, o) da ds

�

=
ξo j

p(a, s, o)

p̂(o|s, a)
+ ζo j

(a, s, o)p(a, s).

Setting the derivative to zero gives us the equation we have used to in the option optimization section ,i.e.,

ζo j
(a, s, o) = −

ξo j
p(o|s, a)

p̂(o|s, a)
.
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A.4 Derivation of the Lower Bound

We want to show that we get a lower bound for our Lagrangian by approximating p(o|s, a) inside the logarithm. Re-
member that for the EM-approach we do not need the constraint p(a, s, o) = p̂(o|s, a)p(a, s), so the p(o|s, a) inside the
logarithm is the only p(o|s, a) we want to replace with a fixed value.
To show that we have a lower bound for the Lagrangian by fixing p(o|s, a) it is enough to show that fixing it gives us a
lower for only the part of the Lagrangian, which we change. The relevant part we are referring to is

ξo j

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a) log p(o|s, a) da ds

�

.

To this expression we can add the term

−ξ
∫∫

a,s

p(a, s)DKL (p(o|s, a)||p̃(o|s, a)) da ds.

This term is always negative or zero, because the KL-divergence is always greater or equal to zero. Adding it to the
Lagrangian gives us a lower bound, which we can see here:

ξ

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a) log p(o|s, a) da ds

�

− ξ
∫∫

a,s

p(a, s)
∑

o

p(o|s, a) log
�

p(o|s, a)
p̃(o|s, a)

�

= ξ

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a)
�

log p(o|s, a) + log
�

p̃(o|s, a)
p(o|s, a)

��

da ds

�

= ξ

�

κ+

∫∫

a,s

p(s, a)
∑

o

p(o|s, a) log p̃(o|s, a) + da ds

�

This equation shows that replacing p(o|s, a)with a fixed value p̃(o|s, a) (that still fulfills the requirements of a probability)
creates a lower bound for the Lagrangian.
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A.5 Gating Optimization

The constraint optimization problem for the gating is given by

max
π(o|s)

∫

s

∑

o

π(o|s)µ(s)Rso ds,

s.t: ε ≥ Es[DKL (π(o|s)||q(o|s)) ,
α≤ Es[Hπ[o|s]],

1=

∫

s

∑

o

π(o|s)µ(s) ds.

We can compute the Lagrangian of this optimization problem, which is

L(π,η,β ,λ) =

∫

s

∑

o

π(o|s)µ(s)Rso ds

+η

�

ε −
∫

s

∑

o

π(o|s)µ(s) log
�

π(o|s)
q(o|s)

�

�

+ β

�

−α−
∫

s

∑

o

π(o|s)µ(s) log (π(o|s)) ds

�

+λ

�

1−
∫

s

∑

o

π(o|s)µ(s) ds

�

=

∫

s

∑

o

π(o|s)µ(s)
�

Rso −η log
�

π(o|s)
q(o|s)

�

− β log (π(o|s))−λ
�

ds+ηε −αβ +λ

=

∫

s

∑

o

π(o|s)µ(s)



Rso −η log

 

π(o|s)
η+β
η

q(o|s)

!

−λ



 ds+ηε −αβ +λ.

Taking the derivative of the Lagrangian w.r.t. π gives us

∂

∂ π
L(π,η,β ,λ) = µ(s)



Rso −η log

 

π(o|s)
η+β
η

q(o|s)

!

−λ−η− β



 .

Setting the derivative to zero gives us a closed form solution for π(o|s), i.e.,

π(o|s) = q(o|s)
η
η+β exp

�

Rso

η+ β

�

exp
�

−
λ+η+ β
η+ β

�

.

If we insert π(o|s) in the probability constraint, we can solve for exp
�

−λ+η+βη+β

�

to get

1=

∫

s

∑

o

q(o|s)
η
η+β exp

�

Rso

η+ β

�

exp
�

−
λ+η+ β
η+ β

�

µ(s) ds

⇔
�∫

s

∑

o

q(o|s)
η
η+β µ(s)exp

�

Rso

η+ β

�

ds

�−1

= exp
�

−
λ+η+ β
η+ β

�

.
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We can now insert π(o|s) into the Lagrangian to obtain the dual function, which is

g(η,β ,λ) =

∫

s

∑

o

π(o|s)µ(s)









Rso −η log









�

q(o|s)
η
η+β exp

�

Rso
η+β

�

exp
�

−λ+η+βη+β

�
�

η+β
η

q(o|s)









−λ









ds+ηε −αβ +λ

=

∫

s

∑

o

π(o|s)µ(s)



Rso −η log
�

Rso

η

�

−η log

 

�

exp
�

−
λ+η+ β
η+ β

��

η+β
η

!

−λ



 ds+ηε −αβ +λ

=

∫

s

∑

o

π(o|s)µ(s) ds
�

−(η+ β) log
�

exp
�

−
λ+η+ β
η+ β

��

−λ
�

+ηε −αβ +λ.

At this point we can use the probability constraint to remove
∫

s

∑

oπ(o|s)µ(s) ds and we can insert exp
�

−λ+η+βη+β

�

, which
we calculated earlier to get

g(η,β ,λ) =− (η+ β) log

�

�∫

s

∑

o

q(o|s)
η
η+β µ(s)exp

�

Rso

η+ β

�

ds

�−1�

−λ+ηε −αβ +λ

= (η+ β) log

�∫

s

∑

o

q(o, s)q(o|s)
�

η
η+β −1

�

exp
�

Rso

η+ β

�

ds

�

+ηε −αβ .

The parameter λ cancels out and we can approximate the integral and sum inside the logarithm. To approximate them,
we notice that they can be seen as an expectation w.r.t. the probability q(o, s). We have access to samples from q(o, s),
so by using these we can approximate the expectation with the average over the samples (o[i], s[i]). This approximation
gives us

g(η,β)≈ (η+ β) log

�

1
N

N
∑

i=1

q(o[i]|s[i])
−β
η+β exp

�

R[i]so

η+ β

�

�

+ηε −αβ .

The variable N is the number of samples. We solve this dual function for η > 0 and β > 0 [6] to get the Lagrangian
multipliers for the closed form solution.

The dual function can be optimized numerically. Using gradients the optimization can be sped up. The gradients are

∂ g(η,β)
∂ η

≈ ε + log

�

1
N

N
∑

i=1

X (s[i], o[i])

�

−

∑N
i=1 X (s[i], o[i])

�

R[i]so −β log q(o[i]|s[i])
η+β

�

∑N
i=1 X (s[i], o[i])

,

∂ g(η,β)
∂ β

≈ −α+ log

�

1
N

N
∑

i=1

X (s[i], o[i])

�

−

∑N
i=1 X (s[i], o[i])

�

R[i]so +η log q(o[i]|s[i])
η+β

�

∑N
i=1 X (s[i], o[i])

,

with

X (s[i], o[i]) = exp

�

R[i]so − β log q(o[i]|s[i])
η+ β

�

.
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