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Abstract
Providing adequate models for time series of stochastic semi-observable processes is substantial for solv-
ing a wide variety of problems in machine learning. Most of the data that is observed, e.g., from robotic
systems, does not depict the true states but rather noisy variates of them. Additionally, the observed state
space is generally only a subset of the true state space, as the sensory equipment of most systems is lim-
ited. Hidden Markov models (HMMs) are a widely used probabilistic graphical model for time series of
discrete, partially observable stochastic processes. They make the basic assumptions that a fixed number
of preceding hidden states suffices to reason about the current hidden state (Markovian property) and
that a certain observation is conditionally dependent solely on its corresponding hidden state. A well es-
tablished concept that extends the ideas of HMMs to continuous domains is the Kalman filter (KF), which
assumes linear system dynamics and represents the state as a Gaussian random variable. At its core, the
Kalman filter evolves its belief over the state by advancing it according to the system dynamics (transi-
tion model) and by conditioning on new observations (observation model). In this thesis, we present an
approach that extends the application of Kalman filters to non-linear dynamical systems by embedding
the belief about the state into a reproducing kernel Hilbert space (RKHS). We further provide the Hilbert
space analogs to the transition and the observation model. We evaluate our model on artificial data
obtained from a simulated pendulum and compare the one-step and long-term prediction performances
for different training setups, different initialization methods and different performance measures for the
optimization of the model parameters. We further demonstrate the ability of our model to operate on
high dimensional data sets by predicting artificial video frames. Finally, we compare our model to the re-
cently presented kernel spectral algorithm (Song et al., 2010) and show that our approach outperforms
the kernel spectral methods by means of generalization to previously unseen data.
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1 Introduction
The prediction of future states, filtering and smoothing of observed states and the estimation of latent
states are an important step to solve a wide variety of problems in machine learning and robotics. Exam-
ples for these tasks are manifold: Learning forward and inverse models of the kinematics or dynamics
of robotic systems, where it is not feasible to derive analytic solutions; estimation of missing quantities
from incomplete sensory data, e.g., of robots equipped only with sensors measuring the joint states but
not the joint velocities or torques; or smoothing noisy data from mediocre sensors, to name only a few.

The most prevalent probabilistic method to model the time series emerging from such partially observ-
able stochastic processes is the hidden Markov model (HMM). They have been used on a wide range of
applications such as recognizing human actions and gestures for imitation learning, speech processing
(Rabiner, 1989) or the analysis of human genomes (Haussler and Eeckman, 1996). A hidden Markov
model is a directed probabilistic graphical model that assumes a Markov chain of latent states, i.e., the
conditional probability of a latent state is only dependent on a fixed number of predecessors. Though,
instead of directly observing the latent states, we can only obtain partial, noisy observations. These ob-
servations are emitted from the stochastic process by a given observation probability that depends only
on the corresponding latent state.

Hidden Markov models, however, have the limitation that they are typically defined for discrete latent
states and discrete or Gaussian distributed observations. Moreover, the latent states are in most cases—
due to their nature of being hidden—not available for learning the conditional dependencies of an HMM.
Typically, such incomplete data requires resorting to expectation maximization (EM) methods, which are
time consuming iterative local methods that are not guaranteed to find the optimal solution.

The spectral learning algorithm (Hsu et al., 2012) approaches the above stated learning problem under
incomplete data by providing a one-shot learning method for discrete hidden Markov models. Song et al.
(2010) extend the applicability of the spectral algorithm to continuous observations by embedding it into
reproducing kernel Hilbert spaces (RKHS). However, both of these approaches have the shortcoming
that they inherently assume discrete hidden states. This inherent assumption consequently leads to bad
generalizations to hidden states which were not present in the training data. In addition, the spectral
methods allow only to compute maximum-a-posteriori estimates of future and current observations, but
do not provide proper probability distributions in state space.

In this work, we will present a new approach to model the time series of partially observable processes
that have a continuous domain in both the observations as well as the hidden states. Our work is highly
related to Kalman filters (Kalman, 1960): A state in our model is a data window that covers the current
and an arbitrary number of past and future system states; We express the belief about the current data
window as a Gaussian random variable (GRV) with mean and covariance; And we further assume linear
system dynamics and linear relations between hidden states and observations, which we will learn from
sample data.

The linear assumption is yet a strong constraint on the range of systems for which our model yields a
sufficient approximation. Therefore, we embed the probability distributions of our model in a reproduc-
ing kernel Hilbert space (RKHS), a concept that only recently emerged (Smola et al., 2007; Sriperumbudur
et al., 2008) in the area of machine learning. The basic idea behind this concept is to represent proba-
bility density functions as points in possibly infinite dimensional Hilbert spaces. A framework of linear
Hilbert space operators and rules (Song et al., 2013) allows to manipulate these densities entirely in
Hilbert space. Computationally, the embeddings are represented using a basis of data samples and the
“kernel trick” allows to express the Hilbert space operators in terms of Gram matrices.
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In contrast to most approaches that employ RKHS embeddings, we embed the distribution over a
data window using both an embedding of the mean and of the covariance. By doing so, we constrain the
embeddings to Gaussian distributions, which is a cutback to the diversity of probability densities that can
be expressed by Hilbert space embeddings. Nevertheless, it allows us to reconstruct the fully probabilistic
belief of the data window in state space. For this reconstructions we assume a linear operator from
Hilbert space to state space that can be applied to the mean embedding and the covariance operator alike.
The ability to project from Hilbert space into state space allows us further to condition on observations
using the standard equations for conditional multivariate Gaussian distributions.

We evaluated our approach on artificial data from a simulated pendulum, where we compared the
performances for different configurations of our model. We scrutinized different heuristics for the opti-
mization of the model parameters and different initialization methods and compared the impact of noisy
training data on the results to models trained with smooth data. We further evaluated the long-term
prediction performances of our model by providing only a certain number of observations and predict
the succeeding states by iteratively applying solely the transition model. Finally, we demonstrate the
scalability of our model to high dimensional data and the ability to generalize for previously unseen data
by making predictions on video frames rendered from the movements of a simulated pendulum. In both
experiments we compare our model to the kernel spectral algorithm (Song et al., 2010).

1.1 Related Work

As we already noted previously, our method is highly inspired by the Kalman filter. We use a similar
representation of state as Gaussian random variable and similar update methods to advance our belief
over time according to the system dynamics and to update it when new observations are available.

Two widely known and applied approaches to extend the Kalman filter to nonlinear systems are the ex-
tended Kalman filter (EKF) and the unscented Kalman filter (UKF) (Wan and Van Der Merwe, 2000; Julier
and Uhlmann, 1997). Equally to the standard Kalman filter, both treat the system states as Gaussian
random variables (GRV) and—in contrast to our method—assume that the non-linear system functions
are known. As a GRV, the system state is expressed sufficiently by a mean and a covariance matrix. Both
the EKF and the UKF update the mean by applying the nonlinear system functions, which is, however,
not possible for the covariance matrix. The extended Kalman filter solves this problem by linearizing
the system functions at the current state. Though, this technique can lead to poor performance if the
nonlinear system dynamics are not close to linear within the range of an update step. In contrast, the
unscented Kalman filter describes the covariance by a set of sample-points (sigma points) and transforms
each of these points individually using the non-linear system functions.

As an effective and fast method to learn hidden Markov models, Hsu et al. (2012) recently proposed
the spectral learning algorithm, a one-shot learning method that avoids the tedious iterative search of
the Baum-Welch algorithm. At its core, the algorithm adopts from clustering methods (Vempala and
Wang, 2002) by presuming well separated distributions over the observations for each hidden state.
They exploit the spectral properties of observable measures to derive an observable representation of
the hidden Markov model. This observable representation is based on the observable operator model
(Jaeger, 2000), which allows to approximate a joint distribution over the observations as well as a
conditional distribution over future states without any notion of the hidden states.

To extend its applicability to time series of a continuous domain, the spectral learning algorithm was
later embedded into reproducing kernel Hilbert spaces (Song et al., 2010). However, the algorithm
still assumes the probability densities over the observations to be separable in the RKHS, which is a far
more restrictive assumption for continuous valued time series than for discrete observations and hidden
states. In contrast to our model, they update the state estimates entirely in the RKHS and don’t provide
a mapping back into the state space. Instead, they search for a sample that maximizes the a-posteriori
belief within their training data set. We will describe the spectral learning algorithm in Section 2.3 and
the RKHS-embedded spectral learning method in Section 3.2.
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An approach to predict the state of controlled stochastic processes are the predictive state representa-
tions (PSRs) (Littman et al., 2002). A PSR is a set of state-action sequences (tests) that is sufficient to
describe the success probability of any test sequence at the time of the PSR. Here, a test is considered
successful if the execution of the actions defined by the test leads to the corresponding observations.
The PSRs were initially defined on discrete actions and observations, but were only recently embedded
into reproducing kernel Hilbert spaces (Boots et al., 2013) to extend their applicability to continuous
domains.

Another technique for solving the problem of predicting the state of a controlled stochastic process is
employed by the policy search method PILCO (probabilistic inference for learning control) (Deisenroth
et al., 2014). A crucial step of policy search methods is the time consuming execution of the intermediate
policy on the system to receive an estimate about how well the policy performs. PILCO alleviates the
number of tedious real-world policy evaluations by optimizing the policy on simulated trajectories of
the system. For the simulation they propagate a probabilistic state estimate through a learned Gaussian
process (GP) model of the system dynamics. They provide two methods for this propagation, similar
to the EKF and UKF, respectively. The first one uses a linearization of the Gaussian process around the
current state of the system whereas the latter uses characteristic points of the state estimate that are
propagated through the Gaussian process individually.

Finally, a promising concept that may be employed for modeling incomplete time series data is the
recently emerging reservoir computing (Lukoševičius and Jaeger, 2009), a new approach to facilitate the
learning of recurrent neural networks (RNN, a variety of neural networks that allows cyclic connections).
The key idea behind the reservoir computing concept is to initialize an RNN with randomly connected
nodes (dynamic reservoir) and train only a mapping from all nodes of the network to an output layer.
Additionally, a feedback of the output into the RNN may be established. Due to its recurrent nature
and the possible output feedback, the state of the reservoir is not only dependent on the input, but also
memorizes the history of in- and outputs as an implicit internal state. A prominent example for reser-
voir computing are the Echo State Networks (Jaeger, 2001), which use neurons with sigmoid activation
functions and a linear mapping from the network to the output. Another important example are the
Liquid State Machines (Maass et al., 2002), which are inspired by the insights of biology in that they use
concepts to mimic the mechanics found in real neurons.

1.2 Overview

In Section 2, after defining some notational conventions, we will present the standard hidden Markov
models in more depth and sketch the spectral algorithm for HMMs (Hsu et al., 2012). In Section 3,
we will introduce reproducing kernel Hilbert spaces (RKHS) and describe the concept of embedding
distributions into an RKHS (Song et al., 2013). We will further sketch the RKHS-embedded version of
the spectral algorithm (Song et al., 2010) in Section 3.2. In Section 4, we illustrate a weight-based
version of the Kalman filter before we present our RKHS-embedded approach to Kalman filtering in
Section 4.3. We present experimental results in which we compare our method to the RKHS-embedded
spectral algorithm in Section 5 and conclude in Section 6.
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2 Preliminaries
After defining some notational conventions, we explain the hidden Markov models more precisely in
Section 2.2 and point out, where traditional approaches to learning HMMs, e.g., the expectation maxi-
mization (EM) algorithm, have their shortcomings. In Section 2.3, we will sketch the spectral learning
algorithm (Hsu et al., 2012) for HMMs, a recently proposed one-shot learning method, which addresses
most of the drawbacks of EM.

2.1 Notation

In this work, we will make use of the following notational conventions: x1:t denotes a set {x1, . . . , x t} of
t consecutive data points x i. Capital letters in regular font weight denote random variables, e.g., X , Y ,
and lower case letters their instantiations, e.g., x , y . We will make the simplification, that all random
variables are of the same domain Ω. A capital P denotes the distribution of a random variable, e.g., P(X ),
and a lowercase p stands for the probability of its instantiation, e.g., p(x). Bold lower case letters denote
vectors, e.g., x, and upper case bold letters represent matrices, e.g., X. We denote the m-dimensional
identity matrix as Im and an all-ones vector of the same dimension as 1m.

2.2 Hidden Markov Models

Hidden Markov models (Barber, 2012; Murphy, 2012) are a probabilistic graphical model, widely used
to formulate the conditional dependencies in time series of partially observable stochastic processes.
The typical graphical structure of a hidden Markov model is shown in Figure 2.1. They are based on
the assumption that the probability density over a hidden state ht is conditionally dependent only on
a fixed number L of the preceding hidden states ht−L:t−1, which is also called the Markovian property.
In the following, we will assume first-order HMMs, for which the hidden state is conditionally depen-
dent only on its immediate predecessor, i.e., L = 1. This dependency is expressed by the transition
probability distribution P(Ht+1|Ht). Additionally, an observation (emission) X t that is emitted from the
process is conditionally dependent only on the corresponding hidden state Ht , which is expressed by
the observation probability distribution P(X t |Ht). The initial hidden state H1 of the system from which
the observations emerge is distributed according to the distribution π(H1). The joint probability of an
observed time series x1:T is then given by

p(x1:T ) =

∫

h1:T∈ΩT

p(x1|h1)π(h1)
T
∏

t=2

p(x t |ht)p(ht |ht−1)dh1:T . (2.1)

Typically, hidden Markov models are defined for a discrete and finite domain for both the hidden
variables as well as the emissions. Assuming the hidden domain is of cardinality m and the observable
domain is of cardinality n, where usually the number of observable states is greater than or at least
equal to the number of hidden states (n≥ m), the transition probability distribution and the observation
probability distribution can be expressed as a square matrix T ∈ Rm×m and as a matrix O ∈ Rn×m,
respectively. An entry Ti j of the transition matrix holds the probability p(Ht = hi|Ht−1 = h j), i, j ∈
{1, . . . , m} of transitioning from the hidden state h j to hi. Likewise, the observation matrix has as entries
Oi j = p(X t = x i|Ht = h j), i ∈ {1, . . . , n}, j ∈ {1, . . . , m} the probability of observing the emission x i given
the hidden state h j.
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H1 Ht−1 Ht Ht+1 HT

X1 X t−1 X t X t+1 XT

. . . . . .P(Ht+1|Ht)

P(X t |Ht)

π= P(H1)

Figure 2.1.: Graphical structure of a first-order hidden Markov model. White nodes represent the latent
states hi that are internal to the underlying system. Shaded nodes represent the observations
x i that are emitted by the system.

However, in most cases, the dynamics of the underlying system and, hence, the transition and ob-
servation matrices are not known. Also, the hidden states are usually—due to their nature of being
hidden—not available to the learner and, thus, the transition and observation matrices cannot be in-
ferred directly from data. A common practice is to apply the Baum-Welch algorithm, an expectation
maximization (EM) method, to iteratively compute a belief over the hidden states and, based on that,
derive a maximum-likelihood estimate of the transition matrix T, of the observation matrix O and of
the distribution π over the initial hidden states. Nevertheless, the Baum-Welch algorithm, like other EM
methods, is a time consuming iterative algorithm that relies on a good initialization to find the optimal
or a near-optimal solution. Moreover, it requires the knowledge of the number of hidden states, which
is not always available.

2.3 The Spectral Learning Method for Hidden Markov Models

To overcome the problems connected to the EM algorithm, Hsu et al. (2012) proposed the spectral
learning algorithm for HMMs. They employ recently developed methods for clustering (Vempala and
Wang, 2002) that assume distinct (i.e., separable) distributions for each cluster. Hsu et al. (2012) adopt
this concept for hidden Markov models by requiring distinct distributions of the observable quantity for
each of the discrete hidden states.

They base their algorithm upon the observable operator model (OOM) (Jaeger, 2000), an approach
that allows to model an HMM entirely in observation space and, hence, renders the explicit modeling of
the hidden states unnecessary. They define the observable operator as

Ax = T diag(Ox1, . . . ,Oxm), (2.2)

with the observation x , the transition matrix T and a diagonal matrix consisting of the x-th row the
observation matrix O. Thus, the observable operator combines the transitional probabilities of the hidden
state with the probabilities of the current observation into a joint probability over the hidden state
and the observation. Consequently, the joint probability distribution of an observed time series (c.f.
Equation (2.1)) can be represented more compactly as

p(x1:T ) = 1ᵀmAx t
. . .Ax1

π= 1ᵀmAx t:1
π, (2.3)

where π is the distribution of the initial hidden states p(H1) and the multiplication with the all-ones
vector 1m serves as a marginalization over the hidden states. From this OOM, Hsu et al. (2012) derive
an HMM representation that is computed solely on observable data. The following paragraphs briefly
sketch the derivations of the spectral learning method for hidden Markov models.
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Based on observation triples (x1, x2, x3), Hsu et al. (2012) define the observable quantities

P1 := P(X1), (2.4)

P2,1 := P(X2, X1), (2.5)

P3,x ,1 := P(X3, X2 = x , X1), (2.6)

where P1 is a vector with the probability distribution over the first state x1, P2,1 is a matrix with the joint
probability distribution of observing a tuple (x1, x2) and P3,x ,1 is a family of n matrices, with a single
matrix for each instance of x2 = x , holding the probabilities of observing a triple (x3, x2 = x , x1).

They further introduce a matrix U ∈ Rn×m which projects the observation matrix O into an m-
dimensional subspace and obeys the condition that the projected observation matrix UᵀO is invertible.
Note that the assumption of UᵀO being invertible implies linearly independent observation probabilities
for each hidden state, which is not true for all systems. Therefore, it is often necessary to represent a
state by data windows instead of single data points.

Hsu et al. (2012) show that the matrix U can be obtained from the singular value decomposition (SVD)
of P2,1 by taking the m left singular vectors corresponding to the m largest singular eigenvalues. They
further state that m can be estimated by the number of eigenvalues that differ significantly from zero
and that m corresponds to the number of distinct, i.e., well separable, hidden states.

Using the observable quantities (2.4) - (2.6) and the projection matrix U, they define an observable
representation of an HMM by

b1 := UᵀP1, (2.7)

b∞ :=
�

Pᵀ2,1U
�†

, (2.8)

Bx :=
�

UᵀP3,x ,1

��

UᵀP2,1

�†
, (2.9)

where † denotes the Moore-Penrose pseudo-inverse of a matrix. It can be shown that the observable rep-
resentation in (2.7)-(2.9) suffices to compute not only the joint probability of a sequence of observations
(Hsu et al., 2012; Hesse, 2014)

p(x1, . . . , xT ) = bᵀ∞Bx t
. . .Bx1

b1, (2.10)

but also to compute the conditional probability of future observations (i.e., predicting future emissions)
as

p(x t+1|x1:t) =
bᵀ∞Bx t+1

bt+1
∑

x bᵀ∞Bxbt+1
. (2.11)

Here, the history of observations x1:t is incorporated into an internal state bt+1 that evolves over time by
(Hsu et al., 2012)

bt+1 =
Bx t

bt

bᵀ∞Bx t
bt

. (2.12)

To extend this method to continuous domains, it can be embedded into reproducing kernel Hilbert spaces
(Song et al., 2010). We will sketch this approach in Section 3.2, but beforehand, we will give an overview
of the embedding of probability distributions into Hilbert spaces in the following section.
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3 Reproducing Kernel Hilbert Spaces
Roughly said, Hilbert spaces are an extension of euclidean spaces, which have two or three dimensions,
to vector spaces with an arbitrary, maybe infinite, number of dimensions. More formally, Hilbert spaces
are inner product spaces of real or complex numbers, where inner product spaces are vector spaces with
an associated inner product, which is a function that maps two elements of the vector space to a scalar.
Since functions are equivalent to vectors of infinite dimensions, where the elements of the vectors are
the function values, it is also possible to define a Hilbert space of functions.

Our work is based on embeddings of probability distributions into so called reproducing kernel Hilbert
spaces (RKHS). An RKHS is a Hilbert space of functions f : Ω → R with a scalar product 〈·, ·〉 that is
implicitly defined by a kernel function k : Ω×Ω→ R as 〈φ(x),φ(y)〉 := k(x , y). Here, φ(x) is a feature
mapping into a possibly infinite dimensional space, intrinsic to the kernel function. Particularly for
infinite dimensional feature spaces, φ(x) can also be regarded as a function f (·) = k(x , ·) = 〈φ(x),φ(·)〉
of one argument (·), that maps from Ω to R. The functions f that form the elements of an RKHS are
weighted sums

f (y) =
N
∑

i=1

αik(x i, y), (3.1)

of kernel evaluations of the function argument y and given samples x i with weights αi ∈ R. The kernel
k has to satisfy the reproducing property (Aronszajn, 1950) that is

f (y) = 〈 f (·), k(y, ·)〉 (3.2)

=





m
∑

i=1

αik(x i, ·)




T

k(y, ·)

=





m
∑

i=1

αiφ(x i)
T



φ(y) (3.3)

=
m
∑

i=1

αiφ(x i)
Tφ(y)

=
m
∑

i=1

αik(x i, y).

The Moore-Aronszajn theorem (Aronszajn, 1950) proofs that every symmetric, positive definite kernel
function obeys the reproducing property and, thus, defines a reproducing kernel Hilbert space.

3.1 Embedding Distributions into Reproducing Kernel Hilbert Spaces

Many probabilistic methods in machine learning are based on Gaussian distributed random variables.
This has a strong background in the fact that normal distributions provide a sufficiently accurate model to
most real-world probabilistic quantities. Yet, also the charming simplicity of the mathematical operations
related to normal distributions and the compact representation with mean and variance contributed to
a prevalent assumption of Gaussian distributed random variables.
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Nevertheless, Gaussian distributions are not an appropriate model for all stochastic processes. The
concept of embedding functions into reproducing kernel Hilbert spaces leverages the generalization of
machine learning methods to arbitrary probability densities by providing a uniform representation of
functions and, thus, probability densities as elements of an infinitely dimensional Hilbert space. More-
over, it is also possible to embed joint and conditional distributions (Song et al., 2009; Grünewälder
et al., 2012) into an RKHS and manipulate the probability densities, by means of the chain, sum and
Bayes’ rule (Song et al., 2013), entirely in Hilbert space.

In the following sections we will sketch the methodologies of embedding probability distributions into
reproducing kernel Hilbert spaces (Smola et al., 2007; Song et al., 2013).

3.1.1 Embedding of a Marginal Distribution

The kernel-embedding of a marginal distribution P(X ) (Smola et al., 2007) of the random variable X ∈ Ω
is the expected feature mapping of its random variates

µX := EX
�

φ(X )
�

=

∫

Ω

φ(x)dp(x). (3.4)

Note that the resulting embedding µX is, as an integral over infinite dimensional feature vectors φ(x),
again a function of the RKHS. Similar to the estimation of the mean of a distribution, the kernel-
embedding of a marginal distribution, also called the mean map, can be estimated using a finite sample
estimator

µ̂X =
1

m

m
∑

i=1

φ(x i). (3.5)

In general, given a set of feature mappings Φ = [φ(x1), . . . ,φ(xm)], any distribution q(x) over the
domain of x i may be embedded as a linear combination of these feature mappings

µ̂q = Φβ , (3.6)

with a column weight vector β . The mean embedding of a distribution can be used to evaluate expecta-
tions over functions that are in the RKHS, i.e., f = Φα, as

Eq[ f (x)] = 〈µ̂q, f 〉= βᵀΦᵀΦα= βᵀKα, (3.7)

where K= ΦᵀΦ is the Gram matrix with Ki j = k(x i, x j).

3.1.2 Embedding of a Joint Distribution

The kernel-embedding of a joint distribution p(X , Y ) (Baker, 1973; Smola et al., 2007) of two random
variables X ∈ ΩX and Y ∈ ΩY is defined as the expected tensor product (outer product) of the feature
mappings of the random variates of X and Y :

CX Y := EX Y
�

φ(X )⊗φ(Y )� (3.8)

=

∫

ΩX×ΩY

φ(x)⊗φ(y)dp(x , y), (3.9)

where ⊗ denotes the tensor product of two vectors with a⊗ b = abᵀ. The corresponding finite sample
estimator is here

ĈX Y =
1

m

m
∑

i=1

φ(x i)⊗φ(yi). (3.10)
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However, the joint distribution is not embedded into the same Hilbert space as the marginal distribution
in the previous section. Instead, the joint distribution is embedded into a tensor-product RKHS, whose
elements are functions f : ΩX ×ΩY → R of the form

f (·, ·) =
m
∑

i=1

αik(·, x i)⊗ k(yi, ·). (3.11)

3.1.3 Embedding of a Conditional Distribution

Similar to the embedding of a marginal distribution, shown in Section 3.1.1, the embedding of a condi-
tional distribution (Song et al., 2009, 2013) is defined as

µY |x := EY |x
�

φ(Y )
�

=

∫

y∈Ω
φ(y)dp(y|x). (3.12)

Here, the embedding is not a single element of the RKHS but rather a family of elements. A particular
element of the family is chosen by conditioning on a specific value of x . To obtain the conditional
embedding for a specific value of x , Song et al. (2013) additionally introduced a conditional embedding
operator CY |X with

µY |x = CY |Xφ(x). (3.13)

Applied to an element φ(x) of the RKHS, the conditional operator provides the embedding of the distri-
bution P(Y |x) over the variable Y conditioned on x . Given a finite set of m samples

D =
�

(x1, y1), . . . , (xm, ym)
	

(3.14)

of the underlying distribution P(Y, X ), the conditional embedding operator can be estimated as

ĈY |X = Φ(K+λIm)
−1Υᵀ, (3.15)

with the Gram matrix K = ΥTΥ, the matrices of the implicit feature mappings of the data Φ :=
(φ(y1), . . . ,φ(ym)) and Υ := (φ(x1), . . . ,φ(xm)), and regularization parameter λ. By applying the
conditional operator to a feature vector φ( x̄) of a sample x̄ , it can be seen that the resulting term
describes again an element of the RKHS as

µ̂Y | x̄ = ĈY |Xφ( x̄)

= Φ(K+λIm)
−1Υᵀφ( x̄) (3.16)

= Φ(K+λIm)
−1k x̄ , (3.17)

with kernel vector k x̄ ,i = k(x i, x̄). As an element of the RKHS, µ̂Y | x̄ is represented as a weighted sum of
feature vectors, where the weights are obtained from the term (K+λIm)−1k x̄ ∈ Rm×1. Likewise, the con-
ditional operator can also be applied to an embedding of a probability distribution, which results in the
kernel version of the sum rule. Given an embedding µ̂Q =Ψβ , with a sample basis Ψ= φ(z1), . . . ,φ(z1),
of a distribution Q(X ) ∈ Ω, Song et al. (2013) define the kernel sum rule as

µ̂Y |Q = ĈY |X µ̂Q

= Φ(K+λIm)
−1ΥᵀΨβ (3.18)

= Φ(K+λIm)
−1Gβ , (3.19)

with Gram matrix Gi j = k(x i, z j). Additionally, Song et al. (2013) also define kernel analogs of the chain
rule and of the kernel Bayes’ rule, which allows to perform Bayesian inference entirely in Hilbert space.
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3.2 Embedding the Spectral Algorithm into Reproducing Kernel Hilbert Spaces

The spectral algorithm discussed in Section 2.3 has the drawback that it is only defined for hidden and
observable variables with discrete domains. However, this is not applicable for most of the systems we
are interested in. Song et al. (2010) presented an embedding of the spectral algorithm into reproducing
kernel Hilbert spaces to evade these limitations. In the following sections, we will coarsely retrace the
steps of their derivations.

3.2.1 Embedding the Observable Representation in Hilbert Space

Analog to the spectral algorithm for discrete HMMs, Song et al. (2010) begin with an observable operator
representaion of the HMM. Assuming an RKHS F with kernel k(x , x ′) = 〈ϕ(x),ϕ(x ′)〉F defined on the
observations and an RKHS G with kernel l(h, h′) = 〈φ(h),φ(h′)〉G defined on the hidden states, they
propose an operator Ax : G 7→ G such that

Axφ(ht) = p(X t = x |ht)EHt+1|ht
[φ(Ht+1)]. (3.20)

This equation can be read as follows: If applied to an element of the RKHS G, which is in the equation
above the embedding φ(ht) of a sample ht , we obtain the expected embedding of the succeeding state
EHt+1|ht

[φ(Ht+1)] multiplied with the probability of observing the emission x given ht .
They further show that the embedding of the predictive distribution µX t+1|x1:t

given the preceding
emissions x1:t can be expressed using the observable operator as

µX t+1|x1:t
= CX t+1|Ht+1

 

t
∏

τ=1

Axτ

!

µH1
=O

 

t
∏

τ=1

Axτ

!

µH1
, (3.21)

with the embedding of the initial distribution µH1
and the observation operator O. The observation

operator is defined as a conditional operator CX t+1|Ht+1
= CX |H that maps a distribution over the hidden

states embedded into G to a distribution over the emissions embedded in F . From Equation (3.20) it
becomes clear that the computation of the observable operator Ax would require the embedded tran-
sition probability of the hidden states as well as the conditional probability of an observation given the
hidden state. However, since the hidden states are generally not available, neither of these densities
can be estimated from data and, thus, the same holds for the observable operator. Instead, Song et al.
(2010) derive a representation for the predictive embedding µX t+1|x1:t

, similar to the spectral algorithm
for discrete HMMs, that is based solely on observable data. They define

µ1 :=EX t

�

ϕ(X t)
�

= µX t
, (3.22)

C2,1 :=EX t+1X t

�

ϕ(X t+1)⊗ϕ(X t)
�

= CX t+1X t
, (3.23)

C3,x ,1 := p(X t+1 = x)EX t+2,X t |X t+1=x
�

ϕ(X t+2)⊗ϕ(X t)
�

= p(X t+1 = x)C3,1|2ϕ(x), (3.24)

where they made use of the conditional operator C3,1|2 = CX t+1X t |X t+1
of the tensor product RKHS F ⊗F .

This is necessary, since P(X t+2, X t+1 = x , X t) is an improper probability distribution, which cannot be
embedded into an RKHS. However, according to the chain rule, this improper distribution can be split
into P(X t+2, X t |X t+1)p(X t+1 = x) and, hence, be embedded as the conditional operator C3,1|2 multiplied
with the probability p(X t+1 = x).

Analog to the discrete algorithm, they continue by defining a subspace projection U which obeys the
condition that UᵀO is invertible. This projection can again be obtained by a singular value decom-
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position of the joint embedding C2,1. With the projection U and the observable quantities defined in
Equations (3.22)-(3.24) they define the embedded observable representation of an HMM as

β1 := Uᵀµ1 = (U
ᵀO)µ1, (3.25)

β∞ := C2,1

�

UᵀC2,1

�†
=O (UᵀO)−1 , (3.26)

Bx :=
�

UᵀC3,x ,1

��

UᵀC2,1

�†
= (UᵀO)Ax (U

ᵀO)−1 . (3.27)

It is straightforward to see that the embedded representation (β1, β∞ and Bx) can express the embedded
predictive density µX t+1|x1:t

equivalent to Equation (3.21) as

µX t+1|x1:t
= β∞Bx t:1

β1. (3.28)

Since x is of a continuous domain (i.e., there are infinitely many possible values for x), it is infeasible to
estimate C3,x ,1, as this would require a distinct operator C3,x ,1 for each instance of x . Instead they use the
conditional operator C3,1|2 applied to the embedding ϕ(x), which is a multiple of C3,x ,1 by the probability
p(X t+1 = x), and replace the quantity from Equation (3.27) with

B̄x := (UᵀC3,1|2ϕ(x))(U
ᵀC2,1)

†. (3.29)

Consequently, they obtain the embedded representation

µX t+1|x1:t
∝ β∞B̄x t:1

β1 (3.30)

of the embedded predictive density. Note that this representation is only proportional to the predic-
tive embedding as the probabilities p(X t+1 = x) are in general not available and, thus, omitted in the
modified quantities B̄x t:1

.
The following section shows how to employ the “kernel-trick” for the RKHS-embedded spectral meth-

ods to derive a computationally feasible algorithm.

3.2.2 The Kernel Spectral Algorithm for Hidden Markov Models

Because the feature mapping which is implicit to the kernel function is usually a mapping into
an infinitely dimensional domain, it is generally not possible to compute neither the observ-
able quantities as stated in Equations (3.22) - (3.24) nor the observable representation in Equa-
tions (3.25), (3.26) and (3.29). Also the singular value decomposition (SVD) of C2,1 is not performable.
However, by making use of a finite set of samples and employing the “kernel trick” (i.e., expressing all
operations in the infinite feature space in terms of scalar products that evaluate to kernel matrices of fi-
nite (cardinality of sample set) size), the methods can be resolved to simple Gram matrix manipulations.
In the following paragraphs we will sketch the derivations of the observable representation (Song et al.,
2010) based on observed data and show how it can be used to predict future states.

To implement the kernel spectral algorithm, Song et al. (2010) assume a training set “of m i.i.d. triples
(x l

1, x l
2, x l

3)
m
l=1”. They define the feature matrices Υ = (ϕ(x1

1), . . . ,ϕ(xm
1 )), Φ = (ϕ(x

1
2), . . . ,ϕ(xm

2 )) and
Ψ = (ϕ(x1

3), . . . ,ϕ(xm
3 )) of the first, second and third triple states respectively, where Υ,Φ,Ψ ∈ R∞×m.

Using the definition from Equation (3.10) and the feature matrices Υ and Φ, the joint operator can be
estimated as

Ĉ2,1 =
1

m
ΦΥᵀ. (3.31)

Without loss of generality, they set the singular vectors vi of the joint embedding Ĉ2,1 equal to a linear
combination vi = Φαi of the features of the second states in the triples with a weight vector αi ∈ Rm.
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By exploiting the relation of the eigendecomposition to SVD, the singular values vi can be obtained by
solving the generalized eigenvalue problem

ΦΥᵀΥΦᵀv= wv (3.32)

⇔ ΦKΦᵀΦα= wΦα (3.33)

⇔ ΦKLα= wΦα (3.34)

⇔ ΦᵀΦKLα= wΦᵀΦα (3.35)

⇔ LKLα= wLα, (3.36)

with w ∈ R and the kernel matrices K = ΥᵀΥ ∈ Rm×m and L = ΦᵀΦ ∈ Rm×m. While, in general, it is not
possible to compute the embedding C2,1, the kernel matrices can be obtained from the kernel function
as Ki j =

¬

ϕ(x i
1),ϕ(x

j
1)
¶

= k(x i
1, x j

1). Song et al. (2010) further show that an approximation of the
projection U can be expressed as

Û= ΦAD ∈ R∞×N , (3.37)

where A := {α1, . . . ,αN} ∈ Rm×N is the matrix of the top N eigenvectors αi and D ∈ RN×N is a diagonal
matrix that normalizes the singular vectors v = ΦA (see Equation (A.11)). Similar to the spectral
algorithm for discrete HMM, N denotes the assumed number of hidden states.

Using the definition of the marginal embedding from Equation (3.5), the embedding of the stationary
density can be estimated as µ̂1 =

1
m
Υ1m. By employing µ̂1 to Equation (3.25), the initial belief of the

observable representation can be estimated as

β̂1 = Ûᵀµ̂1 (3.38)

=
1

m
DᵀAᵀΦᵀΥ1m (3.39)

=
1

m
DᵀAᵀG1m ∈ RN×1, (3.40)

with the kernel matrix G= ΦᵀΥ ∈ Rm×m. The estimate of the second parameter β∞ can be derived from
Equation (3.26), with the estimates Û and Ĉ2,1 as

β̂∞ = Ĉ2,1

�

ÛᵀĈ2,1

�†
(3.41)

=
1

m
ΦΥᵀ

�

DᵀAᵀΦᵀ
1

m
ΦΥᵀ

�†

(3.42)

= ΦKLADΩ−1 ∈ R∞×N , (3.43)

with the diagonal matrix Ω = diag(w1, . . . , wN ) ∈ RN×N of the eigenvalues wi from the generalized
eigenvalue problem in Equation (3.36). A full derivation of β∞ can be found in Appendix A.1.

By applying the definition of a conditional embedding operator for tensor product features (Song et al.,
2013), they get

Ĉ3,1|2 =Ψdiag
�

�

L+λIm
�−1Φᵀ(·)

�

Υᵀ, (3.44)

with identity matrix Im and regularization factor λ. The conditioning on an observation x is done by
inserting its feature mapping for the free argument (·) of the conditional embedding operator. With Equa-
tion (3.44) the estimate of the third parameter of the observable representation (c.f. Equation (3.29))
becomes

B̄x =
�

ÛᵀĈ3,1|2ϕ(x)
��

ÛᵀĈ2,1

�†
(3.45)

= DᵀAᵀΦᵀΨdiag
�

�

L+λIm
�−1Φᵀϕ(x)

�

Υᵀ
�

DᵀAᵀΦᵀ
1

m
ΦΥᵀ

�†

(3.46)

= DᵀAᵀFdiag
�

�

L+λIm
�−1Φᵀϕ(x)

�

KLADΩ−1 ∈ RN×N . (3.47)
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with kernel matrix F = ΦᵀΨ ∈ Rm×m. The derivation of the last equation is similar to the derivation
of Equation (3.43) shown in Appendix A.1. With β̂1, β̂∞ and B̄x it is possible to express the estimated
conditional embedding

µ̂X t+1|x1:t
∝ β̂∞B̄x t:1

β̂1. (3.48)

Yet, this provides only an embedding of an improper conditional density, proportional to P(X t+1|x1:t). It
remains to find the most probable future state x t+1 which maximizes the function

f (x) =
¬

µ̂X t+1|x1:t
,ϕ(x)

¶

F , (3.49)

that is, we search for a state that, if interpreted as a delta distribution and embedded into the RKHS,
is most similar to µ̂X t+1

. Since this optimization problem is generally hard to solve, Song et al. (2010)
propose to search the given training data for the sample that maximizes f (x).
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4 Kalman Filtering in Reproducing Kernel
Hilbert Spaces

In this section, we will introduce our approach to extend hidden Markov models to continuous domains
and non-linear system dynamics by embedding Kalman filters into reproducing kernel Hilbert spaces.
Our model is based on data windows of the time series emitted from the underlying system. This is
similar to the concept of auto-regressive hidden Markov models, which compute the belief over the next
state directly from a window of the past states. Our approach, in contrast, evolves a probabilistic notion
of the data window and, additionally, allows for data windows that cover also an arbitrary number of
future time steps.

In Section 4.1, we will first explain the data windows in detail and show how to compactly represent
them using radial basis functions. In Section 4.2, we will define a non-embedded hidden Markov model
on these data windows and explain the transition and observation models required for Kalman filtering.
In Section 4.3, we will finally present our non-linear extension to Kalman filters by embedding these
models into reproducing kernel Hilbert spaces.

4.1 Weight-Based Representation of Data Windows

We assume a time series

D = {x1, . . . , xn} (4.1)

of observed states emitted from an underlying system as given and regard a subset of τ consecutive
states of D as a data window

xτt = [x t−τ− , . . . , x t , . . . , x t+τ+]
ᵀ. (4.2)

For a specific point in time t, the data window xτt captures an arbitrary number of past and future states,
τ− and τ+, respectively. Similar to Paraschos et al. (2013), we represent a data window as a linear
combination

xτt =

 

k
∑

i=1

ψi wt,i

!

+ εΨ (4.3)

=Ψwt + εΨ (4.4)

of k basis function vectors ψi with the weights wt,i. The basis functions are stationary with respect to
the data window, i.e., they do only depend on the relative time within a data window. We assume an
additive zero-mean Gaussian model error εΨ ∼N (0,ΣΨ) that incorporates both the noise on the data as
well as the reconstruction error of the data window from the weights. In vector-matrix notation we have
the product of the basis function matrix Ψ and the weight vector wt . We normalize the sum of all basis
functions to 1 at any given time. Thus, the entries of the basis function matrix are computed as

Ψi, j =
b j(i)

∑

k bk(i)
. (4.5)
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Common basis functions are the radial basis functions (RBFs), for example the squared exponential basis
function

bi(t) = exp

�

(t −µi)2

l

�

, (4.6)

with mean µi and length scale l. Alternatively, using the Dirac basis function

δi(t) =

¨

1 if t = ci

0 otherwise
, (4.7)

with center ci, is equivalent to omitting the basis transformation of the data windows xτ to a weight-
based representation, i.e., using the data windows directly as w. Nevertheless, the transformation of
the data windows into a weight space using RBFs provides not only a more compact (assuming k < τ)
but also a smoother, i.e., less noisy, representation of an observation window. Moreover, a weight-based
representation using continuous basis functions allows for non-isochronous data streams.

Usually, robotic systems emit many measured quantities as a multi-dimensional state. For such multi-
dimensional time series

D = {x1, . . . ,xn}, xi = [x1,i, . . . , xm,i]
ᵀ (4.8)

we use separate data windows xτd,t , d ∈ 1, . . . , m for each dimension d. We concatenate these windows
into a big window vector

xτt =
h

�

xτ1,t

�ᵀ
, . . . ,

�

xτm,t

�ᵀiᵀ
(4.9)

and use a block-diagonal matrix

Γ =













Ψ · · · 0
...

. . .
...

0 · · · Ψ













(4.10)

to obtain the weight-based representation of the window vector xτt analog to Equation (4.4) as

xτt = Γwt + εΓ. (4.11)

For a given data window xτt , we can obtain the weights wt using the least squares method which results
in a multiplication of the left Moore-Penrose pseudo-inverse of Ψ (or Γ for multidimensional data) with
the data window

wt = (Ψ
ᵀΨ)−1Ψᵀxτt . (4.12)

We assume the weights wt to be the latent states of the hidden Markov model. This assumption is
based on two hypotheses. The first is that the least squares estimate filters out the noise on the data
windows and, thus, provides an adequate approximation of the true data. The second is that, similar to
the assumption of an auto-regressive HMM, a (noise-free) data window is sufficient to predict the next
state and, hence, the next data window.
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w1 wt−1 wt wt+1 wT

xτ1 xτt−1 xτt xτt+1 xτT

. . . . . .
P(wt+1|wt)

P(xτt |wt)

πw = P(w1)

Figure 4.1.: Graphical structure of the linear weight-based hidden Markov model, with the weight vectors
wi as hidden states and the data windows xτi as observations.

4.2 Linear Weight-Based Kalman Filter

In this section, we explain a probabilistic model that expresses the belief of the current data window xτt .
We will further introduce methods to advance this believe over time according to the dynamics of the
underlying system and to condition the belief of a data window on a new observation x t . In its essence,
the formalism that results from the derivations in this section is basically a Kalman filter in weight space.
The hidden Markov model that we assume on the weights is depicted in Figure 4.1.

From Equation (4.4), we get the conditional probability density of a data window xτt given the weights
wt and the model error of the basis transformation ΣΨ, which describes the observation model as

p(xτt |wt) =N (xτt |Ψwt ,ΣΨ). (4.13)

Additionally, we assume the belief over the hidden state wt to be Gaussian

p(wt |µw,t ,Σw,t) =N (wt |µw,t ,Σw,t), (4.14)

with mean µw,t and covariance Σw,t , which incorporates the current variance of the data windows. From
Equations (4.14) and(4.13), we obtain the distribution over the data windows by marginalizing out the
weights w as

p(xτt |µw,t ,Σw,t) =

∫

p(xτt |w)p(w|µwt
,Σwt

)dw (4.15)

=N (xτt |Ψµw,t ,ΨΣw,tΨ
ᵀ+ΣΨ). (4.16)

Hence, the sufficient statistic to expresses the belief about the current data window xτt are the mean µw,t ,
the variance Σw,t and the model error of the basis transformation ΣΨ. While the latter is stationary, the
mean µw,t and the variance Σw,t dependent on the past observations x1:t−1 as well as on the dynamics
of the underlying system. Therefore, these quantities need to be a) advanced over time by applying a
transitional model

Cw : µw,t 7→ µw,t+1+ εCw
, (4.17)

with noise εCw
∼N (0,ΣCw

), which we will define in Section 4.2.1 and b) updated when a new observa-
tions is emitted by conditioning on that new observation x t , which we will show in Section 4.2.2.

4.2.1 Transition Model

The transition model advances the belief of the weights wt at time t, given by the mean µw,t and the
variance Σw,t , to an a priori belief of the weights wt+1 at time t + 1, expressed by the a priori mean
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µ̂w,t+1 and the a priori variance Σ̂w,t+1. The advanced belief is called a priori belief, since it is solely
based on the transitional model, whereas the conditioning on a new observation has yet to be done. For
now, we assume linear dynamics on the weights

wt+1 = Cwwt + εCw
, (4.18)

with transition matrix Cw and zero-mean Gaussian noise εCw
∼N (0,ΣCw

). Note that the linear assump-
tion is, however, a very limiting constraint that most real-world systems do not satisfy. Based on the
linear dynamics, we can formulate a transition probability density of wt+1 given wt as

p(wt+1|wt) =N (wt+1|Cwwt ,ΣCw
) (4.19)

and obtain the a priori belief of wt+1 by applying this transition probability density to the belief of the
current weights wt and subsequently marginalizing over wt . Hence, we arrive at

p(wt+1|µ̂w,t+1, Σ̂w,t+1) =

∫

p(wt+1|wt)p(wt |µw,t ,Σw,t)dwt

=

∫

N (wt+1|Cwwt ,ΣCw
)N (wt |µw,t ,Σw,t)dwt

=N (wt+1|Cwµw,t ,CwΣw,tC
ᵀ
w+ΣCw

) (4.20)

with a priori mean µ̂w,t+1 = Cwµw,t and a priori variance Σ̂w,t+1 = CwΣw,tC
ᵀ
w+ΣCw

.

4.2.2 Conditioning on Observations

Given the a priori belief about the weights wt at time t, expressed by the mean µ̂w,t and the variance
Σ̂w,t , we need to update this belief by the incoming observation, i.e., infer the a posteriori mean µw,t and
variance Σw,t , by conditioning on a new observation x t .

At first, we formulate the probability of observing a single emission x t given the weights wt . This
probability density is similar to Equation (4.13), but for the conditioning of an single observation we
need only the probability of a single data point of the window. Hence, we get

p(x t |wt ,ΣΨ0
) =N (x t |Ψ0wt ,ΣΨ0

), (4.21)

where Ψ0 is the row of the basis function matrix Ψ and ΣΨ0
is the entry of the diagonal of ΣΨ that

correspond to the location of the current observation x t in the current data window xτt . Furthermore,
it is also possible to condition on observations that occur between two of the predefined time spots of
the basis function matrix by setting Ψ0 to the magnitudes of each basis function at that specific point in
time. With the probability density of x t given in Equation (4.21) and the a priori probability density of
the current weights

p(wt) =N (wt |µ̂w,t , Σ̂w,t), (4.22)

we can then formulate a marginal probability density of the current observation x t , analog to Equa-
tions (4.15) and (4.16), as

p(x t |θ) =
∫

p(x t |wt)N (wt |µ̂w,t , Σ̂w,t)dwt

=N (x t |Ψ0µ̂w,t ,Ψ0Σ̂w,tΨ
ᵀ
0+ΣΨ0

), (4.23)
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with parameters θ = {µ̂w,t , Σ̂w,t ,ΣΨ0
}.

Second, from Equations (4.22) and (4.23), we can derive a joint probability density of the weights wt
and the observation x t as

p(wt , x t |θ) = p(x t |θ)N (wt |µ̂w,t , Σ̂w,t) (4.24)

=N







wt

x t

�

�

�

�

�

�

µ̂w,t

Ψ0µ̂w,t

,
Σ̂w,t Σ̂w,tΨ

ᵀ
0

Ψ0Σ̂w,t ΣΨ0
+Ψ0Σ̂w,tΨ

ᵀ
0






.

Finally, we infer the conditional density of wt given x t from Equations (4.24) and (4.23) by applying
Bayes’ rule and obtain

p(wt |x t ,θ) =
p(wt , x t |θ)

p(x t |θ)
(4.25)

=N
�

wt |µw,t ,Σw,t

�

, (4.26)

with a posteriori mean

µw,t = µ̂w,t + Σ̂w,tΨ
ᵀ
0(ΣΨ0

+Ψ0Σ̂w,tΨ
ᵀ
0)
−1(x t −Ψ0µ̂w,t) (4.27)

and a posteriori variance

Σw,t = Σ̂w,t − Σ̂w,tΨ
ᵀ
0(ΣΨ0

+Ψ0Σ̂w,tΨ
ᵀ
0)
−1Ψ0Σ̂w,t . (4.28)

4.3 Hilbert Space Embedded Kalman Filter

The linear model presented in the last section has two major downsides: The first disadvantage is the
assumption that we made for the transition model, which is that the dynamics of the system are linear
in the weight space. This clearly is a constraint with which most real systems, especially robotic systems,
do not comply as the dynamics of robots are typically non-linear. The second problem of the linear
model is the representation of the probability distributions. The Kalman filter uses the first and the
second moment (i.e., the mean and covariance) as the representation of a probability density, which is
the sufficient statistic for a Gaussian density. However, a Gaussian density may not always provide a
sufficiently close approximation to the true density.

With our approach to RKHS-embedded hidden Markov models, we try to evade at least the first prob-
lem. The dynamics are now only assumed to be linear in the kernel space, which—if choosing an
appropriate kernel function and a sufficient number of kernel samples—mostly all dynamical systems
satisfy. (A similar assumption is also inherent to the conditional embedding.) Nevertheless, by imposing
a Gaussian distribution of the kernel embeddings and by exploiting the analytic solutions to integrals
over Gaussians, we are still assuming Gaussian distributed data windows. Notwithstanding these restric-
tions, the embedding into an RKHS yields a much more expressive hidden state, which is the Hilbert
space embedding of the distribution over the weights w. Essentially, we define a Kalman filter over the
Hilbert space embedding of the Gaussian random variable representation of the state.

4.3.1 Hilbert Space Embedding of the Weight-Based Hidden Markov Model

We embed the weight-based hidden Markov model into a reproducing kernel Hilbert space H with a
scalar product 〈·, ·〉H that is inherent to a kernel function k(w,w′). Based on a set of N sample weights,
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we embed the probability density over the weights p(w), according to the empirical estimator of a
marginal distribution given in Equation (3.5), as

µ̂φ =
1

N

N
∑

i=1

φ(wi). (4.29)

Additionally, we embed the variance of the weight vectors using the same set of N samples into a tensor
product RKHS G = H ⊗ H, according to the empirical estimator of a joint distribution as shown in
Equation (3.10), by

Σ̂φ =
1

N − 1

N
∑

i=1

φ̂(wi)φ̂(wi)
ᵀ, (4.30)

where φ̂(wi) = φ(wi)− µφ are the centered feature mappings of the samples. With these two quanti-
ties, the mean map µ̂φ and the covariance operator Σ̂φ, we can express the probability density of the
embeddings φ(w) by an infinite dimensional Gaussian

p(φ(w)|µ̂φ, Σ̂φ) =N (φ(w)|µ̂φ, Σ̂φ). (4.31)

To retrieve a belief over the weights from the kernel embedding, we define a conditional operator Λ :
H 7→ Rk that maps an embedding φ(w) to the weights w ∈ Rk as

Λ :=W(ΦᵀΦ+λIN )
−1Φᵀ ∈ Rk×∞, (4.32)

where W=
�

w1, . . . ,wN
�

is the matrix of all weight samples and Φ =
�

φ(w1), . . . ,φ(wN )
�

is the matrix
of all sample embeddings. We assume here that the mapping

w= Λφ(w) + εΛ, (4.33)

from H back into the weight space, has a zero-mean Gaussian distributed model error εΛ ∼ N (0,ΣΛ).
With the conditional operator Λ, the mean embedding µ̂φ and the embedding of the covariance Σ̂φ, we
can express the probability density of the weights w by integrating out the sample embedding φ(w) as

p(w|µ̂φ, Σ̂φ) =

∫

p(w|φ(w))p(φ(w)|µ̂φ, Σ̂φ)dφ(w) (4.34)

=

∫

N (w|Λφ(w),ΣΛ)N (φ(w)|µ̂φ, Σ̂φ)dφ(w) (4.35)

=N (w|Λµ̂φ,ΛΣ̂φΛ
ᵀ+ΣΛ). (4.36)

Figure 4.2 depicts the hidden Markov model that we assume on the embeddings of the weights in
Hilbert space. Analog to the linear model, we have at a certain point in time t a belief over the weights
wt . Embedded into the RKHS, this belief is expressed by the mean map µφ,t and the covariance operator
Σ̂φ,t . Similar to the linear model, we will advance these quantities over time and update them when
we get new observations. The embeddings are, as aforementioned, sample-based estimators of the true
embeddings, but for the sake of readability we will omit the notational hint from now on. For the same
reason, we will also denote a sample embedding φ(wt) as φt .
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φ1 φt−1 φt φt+1 φT

xτ1 xτt−1 xτt xτt+1 xτT

. . . . . .
Cφ

ΨΛ

µ̂1

Figure 4.2.: Graphical structure of the Hilbert space embedded hidden Markov model, with the embed-
dings of the weight vectors φi as hidden states and the data windows wτi as observations.
The conditional relations between a hidden node at time t to the hidden node at time t+1 is
modeled by the transition operator Cφ , defined in Equation (4.37). The conditional relations
between a hidden node and an observable node is modeled by the conditional operator Λ,
defined in Equation (4.32), and the basis function matrix Ψ.

4.3.2 Transition Model in Hilbert Space

The data window evolves over time according to the system dynamics. In this section, we will show
how we can account for the dynamics by advancing an a posteriori belief of the data window in Hilbert
space, expressed by the mean map µφ,t and the covariance operator Σφ,t , to an a priori belief of the
succeeding data window, expressed by µφ,t+1 and Σφ,t+1. We define a transition operator Cφ that maps
an embedding of the weights φt = φ(wt) at time t to the successive embedding φt+1 by

φt+1 = Cφφt + εC, (4.37)

with a zero-mean Gaussian model error εC ∼ N (0,ΣCφ ). We can obtain this embedding according to
Equation (3.15) from the samples as

Cφ = Φ2(Φ
ᵀ
1Φ1+λI)−1Φᵀ1, (4.38)

where Φ1 =
�

φ(w1), . . . ,φ(wN−1)
�

is the matrix of all feature mappings but the last and analog Φ2 is the
matrix of all feature mappings but the first, assuming that the weights w1, . . . ,wN belong to consecutive
data windows.

The assumed Gaussian error on the transition model in Equation (4.37) implies a conditional Gaus-
sian density over the succeeding embedding φt+1 given the current embedding φt as p(φt+1|φt) =
N (φt+1|Cφφt ,ΣCφ ). With the probability density over the embeddings given in Equation (4.31), we
can then formulate the conditional probability density over the succeeding embedding φt+1 given the a
posteriori mean map µφ,t and the a posteriori covariance operator Σφ,t by integrating out the current
embedding φt as

p(φt+1|µ̃φ,t+1, Σ̃φ,t+1) =

∫

p(φt+1|φt)p(φt |µφ,t ,Σφ,t)dφt (4.39)

=

∫

N (φt+1|Cφφt ,ΣCφ )N (φt |µφ,t ,Σφ,t)dφt (4.40)

=N (φt+1|Cφµφ,t ,CφΣφ,tC
ᵀ
φ
+ΣCφ ). (4.41)

Hence, we obtain for the a priori successive mean map µ̃φ,t+1 = Cφµφ,t ∈ R∞×1 and for the a priori
successive covariance operator Σ̃φ,t+1 = CφΣφ,tC

ᵀ
φ
+ΣCφ ∈ R∞×∞.

23



4.3.3 Observation Model in Hilbert Space

Similar to the linear model, we update the a priori belief of the current state, expressed by µ̃φ,t and Σ̃φ,t ,
by conditioning on a new observation x t . To perform this conditioning, we need a mapping from the
RKHS-embedded representation to the mean µx ,t and the variance σ2

x ,t in state space, which represent
our belief over the state x t at the time of the current observation.

This mapping can be obtained as a composition of the conditional operator defined in Equation (4.32),
which maps from the kernel space to the weight space, and of the basis function vector Ψ0 that consists
of the normalized magnitudes of all basis functions at the time of the new observation. As noted in
Section 4.2.2, the basis function vectorΨ0 is a row vector of the basis function matrixΨ if the observation
occurs at one of the predefined times of Ψ. We define

ξ :=Ψ0Λ (4.42)

as a shortcut of the mapping from the kernel space into the observation space (state space). The proba-
bility of observing an emission x t given a feature vector φt becomes then

p(x t |φt) =N (x t |ξφt ,Ψ0ΣΛΨ
ᵀ
0+ΣΨ0

), (4.43)

where ΣΨ0
is the model error of the basis function transformation at the time of the current observation.

With the probability density over the embeddings formulated in Equation (4.31), we can define a joint
probability density over the embeddings and the observations given the a priori mean map µ̃φ,t and the
a priori covariance operator Σ̃φ,t as well as the stationary quantities θ = [ΣΛ,ΣΨ0

] by

p(φt , x t |µ̃φ,t , Σ̃φ,t ,θ) = p(x t |φt , µ̃φ,t , Σ̃φ,t ,θ)p(φt |µ̃φ,t , Σ̃φ,t) (4.44)

=N







φt

x t

�

�

�

�

�

�

µ̃φ,t

ξµ̃φ,t

,
Σ̃φ,t Σ̃φ,tξ

ᵀ

ξΣ̃φ,t ξΣ̃φ,tξ
ᵀ+Ψ0ΣΛΨ

ᵀ
0+ΣΨ0






. (4.45)

Based on this joint distribution, we can obtain the conditional distribution of φt given the observation
x t by applying Bayes’ rule and arrive at

p(φt |x t , µ̃φ,t , Σ̃φ,t ,θ) =
p(φt , x t |µ̃φ,t , Σ̃φ,t ,θ)

p(x t |µ̃φ,t , Σ̃φ,t ,θ)
(4.46)

=
p(φt , x t |µ̃φ,t , Σ̃φ,t ,θ)

N (x t |ξµ̃φ,t ,Ψ0ΣΛΨ
ᵀ
0+ΣΨ0

)
(4.47)

=N (φt |µφ,t ,Σφ,t), (4.48)

with the a posteriori quantities µφ,t and Σφ,t that are given by

µφ,t = µ̃φ,t + Σ̃φ,tξ
ᵀ(Ψ0ΣΛΨ

ᵀ
0+ΣΨ0

+ ξΣ̃φ,tξ
ᵀ)−1(x t − ξµ̃φ,t) (4.49)

and

Σφ,t = Σ̃φ,t − Σ̃φ,tξ
ᵀ(Ψ0ΣΛΨ

ᵀ
0+ΣΨ0

+ ξΣ̃φ,tξ
ᵀ)−1ξΣ̃φ,t , (4.50)

respectively.
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4.3.4 Reasoning about Latent States

The model we described so far allows for predicting future states, filtering the current state or smoothing
past states. However, there are many applications in which it is important to reason about latent states.
Note that these latent states do not have to be the hidden states of the hidden Markov model depicted in
Figure 4.2. Rather, a latent state may refer to any unobservable state of the system that correlates with
the observations.

If we are given a time series labeled with latent states

D =
¨

x1, . . . , xN

h1, . . . , hN

«

, (4.51)

we can extend our model easily to provide additionally a conditional distribution over the latent states
given the current belief of the data window. Similar to the conditional operator that maps from the RKHS
back into the weight space (c.f. Equation (4.32)), we simply define an additional conditional operator
that maps from the kernel space into the domain of the latent states by

ζ := H(ΦᵀΦ+λI)−1Φᵀ, (4.52)

where H = [h1, . . . , hN] is the matrix of all latent states from the training data. As for the conditional
operator Λ, we assume a zero-mean Gaussian error εζ ∼N (0,Σζ) that incorporates both the model error
as well as the noise on the latent data. We can thus formulate a conditional probability density over the
latent states given an embedding of the RKHS as

p(ht |φt) =N (ht |ζφt ,Σζ). (4.53)

With the conditional probability density over the embeddings defined in Equation (4.31), we can then
formulate a conditional probability density over the latent states given the current mean map µφ,t and
the current covariance operator Σφ,t by marginalizing out the embeddings φt as

p(ht |µφ,t ,Σφ,t) =

∫

p(ht |φt)p(φt |µφ,t ,Σφ,t)dφt (4.54)

=

∫

N (ht |ζφt ,Σζ)N (φt |µφ,t ,Σφ,t)dφt (4.55)

=N (ht |ζµφ,t ,ζΣφ,tζ
ᵀ+Σζ). (4.56)

A possible application of such a mapping to latent states could be, for example, to estimate a Carte-
sian point attractor to which a robot arm is moving from embedded data windows of joint states and
velocities.

4.3.5 The RKHS Kalman Filter Algorithm

In this section, we will show how to employ the methodologies presented in the previous sections and
condense them into an easy to implement algorithmic formulation. The RKHS embeddings and opera-
tors, namely the mean and covariance embedding and the conditional operators Cφ, Λ and ζ, are defined
using feature matrices. However, the feature mappings are implicit to the kernel function and might be
into an infinite domain. Hence, the methods presented so far are generally not directly computable. Nev-
ertheless, it is possible to compute the statistics of the distributions we are interested in by employing
the “kernel trick”, which results in simple Gram matrix manipulations.
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The methods we described in the previous sections are all based on the application of conditional
operators to embeddings. Common to all definitions of conditional operators (see Equations (4.32),
(4.52) and (4.38)) is the transposed feature matrix Φᵀ on the right hand side. Hence, the embeddings
to which the operators are applied are always multiplied with Φᵀ and it is sufficient to represent the
embeddings in a subspace spanned by the feature mappings of the training samples. Thus, we obtain for
the mean map

m= Φᵀµφ =
1

N

N
∑

i=1

Φᵀφ(wi) =
1

N
ΦᵀΦ1N =

1

N
K1N , (4.57)

with the kernel matrix Ki, j = k(wi,w j), i, j ∈ {1, . . . , N} and the average kernel vector m ∈ RN . The same
holds for the covariance operator, where all operations involve the multiplication of Φᵀ from the left side
and Φ from the right side (as we always apply also the transpose of the conditional operators from the
right hand side). Hence, it is sufficient to represent the covariance operator by

S= ΦᵀΣφΦ =
1

N

N
∑

i=1

Φᵀφ̂(wi)φ̂(wi)
ᵀΦ (4.58)

=
1

N
Φᵀ

N
∑

i=1

�

(φ(wi)−µφ)(φ(wi)−µφ)ᵀ
�

Φ (4.59)

=
1

N
(K	m)(K	m)ᵀ, (4.60)

where 	 denotes to column-wise subtraction. If we apply now the transition operator Cφ to a mean
embedding µφ,t at time t, we get (neglecting the error term)

µφ,t+1 = Cφµφ,t (4.61)

= Φ2(Φ
ᵀ
1Φ1+λIN )

−1Φᵀ1µφ,t . (4.62)

By also representing the succeeding mean map µφ,t+1 in the subspace spanned by the embeddings of the
training samples, we obtain a transition matrix C that maps mt to mt+1

Φᵀ1µφ,t+1

mt+1

= Φᵀ1Φ2(Φ
ᵀ
1Φ1+λIN )

−1

C

Φᵀ1µφ,t

mt

(4.63)

mt+1 = K1,2(K+λIN )
−1

C

mt . (4.64)

Similar to the transition operator Cφ, the representation of the statistics using the basis spanned by the
embedded training samples allows us to replace the conditional embedding operators Λ and ζ by the
matrices L and Z as

Λ :=W(ΦᵀΦ+λIN )
−1

L

Φᵀ −→ L=W(K+λIN )
−1, (4.65)

ζ := H(ΦᵀΦ+λIN )
−1

Z

Φᵀ −→ Z= H(K+λIN )
−1. (4.66)

To learn our model, we consider a time series D = [x1, . . . , xN] as given, where we assume that
the single data points are isochronous. The isochronal assumption allows us to efficiently compute the
weight-based representation of the data windows with a single basis function matrix Ψ, which holds
the normalized magnitudes at the regularly distributed times. It should be also possible to apply this

26



Algorithm 1: Learning the RKHS-embedded Kalman filter

input : The training data D = [x1, . . . , xN], the window size τ, the basis function matrix Ψ and the
kernel function k.

output: The model matrices C, L and Z and the covariances of the model errors ΣΨ, ΣC, ΣL and ΣZ.

Compute the hankel matrix with τ rows of the training inputs to obtain the data windows. This results
in n= N −τ+ 1 data windows.
H = hankel (D,τ)

Compute the weight matrix using the basis function matrix Ψ.
W = (ΨᵀΨ)−1ΨᵀH
Estimate the model error of the basis function transformation from the reconstruction.
ΣΨ = cov (H−ΨW)

Compute the kernel matrices K and K2.
K= k(W1:n−1,W1:n−1),
K1,2 = k(W1:n−1,W2:n),
where Xi: j denotes the sub-matrix of X consisting only of columns i to j.

Compute the model matrices and estimate model errors from the reconstructions.
C= Kᵀ1,2(K+λCIn)−1 ΣC = cov (K1,2−CK)
L=W1:n−1(K+λLIn)−1 ΣL = cov (W1:n−1− LK)

if labels H= [h1, . . . , hn] are available then
Z= H1:n−1(K+λZIn)−1 ΣZ = cov (H1:n−1− ZK)

model to time series that are not sampled with a regular time interval, however, this would require a
more sophisticated method to obtain the weight-based representation of the data windows since these
representations have to be comparable.

In Algorithm 1, we show how to learn the RKHS-embedded Kalman filter based on a time series D, a
given window size τ, a given basis function matrix Ψ and a kernel function k.

Algorithm 2 describes the computations that are necessary for the transition update and the condi-
tioning on a new observation for a given belief in the RKHS, expressed by mt and St . Additionally, it
depicts the mapping to the statistics of the data windows, expressed by µxτt

and Σxτt
, and the latent

states, expressed by µht
and Σht

.

4.3.6 Learning with Large Training Data Sets

It is often the case that large training data sets, containing tens or hundreds of thousands data points, are
available to learn a model. However, up-to-date consumer PCs do not allow for an efficient manipulation
of Gram matrices built from data sets larger than a couple of thousands training points. In this section,
we present two simple additions to our algorithm that allow to use the full information of a large data
set, while preserving the sizes of the Gram matrices in a range such that efficient operations can be
maintained. The first is the use of the kernel data selection heuristic to select a subset of the training data
that is rich enough to describe the whole data set. The second are changes to the computation of the
model matrices C, L and Z that allow to train the model with the whole training data set.
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Algorithm 2: Transition and observation update with mapping to the density over the data windows
and the density over latent states

input : A posteriori statistic at time t, expressed by mt and St .
output: A posteriori statistic at time t + 1, expressed by mt+1 and St+1, statistics in state space

(µxτt+1
and Σxτt+1

), statistics in latent space (µht+1
and Σht+1

).

Advancing the a posteriori belief at time t to the a priori belief at time t + 1.

m̂t+1 = Cmt

Ŝt+1 = CStC
ᵀ+ΣC

Condition the a priori belief on an observation x t+1 to obtain the a posteriori belief.

V=Ψ0LŜt+1LᵀΨᵀ0+Ψ0ΣLΨ
ᵀ
0+ΣΨ0

mt+1 = m̂t+1+ Ŝt+1LᵀΨᵀ0V−1(x t+1−Ψ0Lm̂t+1)

St+1 = Ŝt+1− Ŝt+1LᵀΨᵀ0V−1Ψ0LŜt+1

Mapping to the density over the data windows.

µxτt+1
=ΨLmt+1

Σxτt+1
=ΨLSt+1LᵀΨᵀ+ΨΣLΨ

ᵀ+ΣΨ

Mapping to the density over the latent states.

µht+1
= Zmt+1

Σht+1
= ZSt+1Zᵀ+ΣZ

Kernel Data Selection Heuristic

The kernel data selection heuristic is a simple heuristic to select relevant data points for the basis that we
use to represent, for example, a mean mapping µφ,t as mt and a covariance operator Σφ,t as St . We
call this relevant data set the kernel data set in contrast to the whole training data set. The key idea of
this heuristic is that we iteratively grow the kernel data set by adding data points that add the largest
amount of information or, in other words, we add the data points about which the kernel data set that
we have gathered so far can tell us least. As a measure for this lag of information we take the sum of
the kernel activations of a data point with the current kernel data set. A condensed description of this
heuristic is shown in Algorithm 3. We decided to always start with first element of the training data set
as initialization for the kernel data set to make the heuristic deterministic, but a random initialization
works as well.

Learning the Model Matrices from Large Data Sets

The goal of the second modification is to use not only the kernel data set selected by the heuristic
presented in the previous section, but the whole training set with tens of thousands of data points to
learn our model. To achieve this goal, we use modified kernel matrices to learn the linear mappings C,
L and Z. Assuming we have the weight matrices Wkernel ∈ Rk×M of the kernel data and Wtrain ∈ Rk×N

of the training data, instead of computing square kernel matrices solely from the kernel data, we build
modified kernel matrices K′ with K′i, j = k(Wkernel(i),Wtrain( j)), i = 1, . . . , M , j = 1, . . . , N , where W(i) is
the i-th column of the respective weight matrix. Since the modified kernel matrices are not square, we
resort to the Moore-Penrose pseudo-inverse for the computations of the model matrices C, L and Z. The
learning of the model with these modified kernel matrices is depicted in Algorithm 4.
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Algorithm 3: Kernel data selection heuristic

input : Set of all weights W= {w1, . . . ,wN}, kernel size M << N , kernel function k.
output: Set of kernel weights WK .

Initialize the kernel weights set with the first weight vector.
WK = [w1]

Initialize a set of candidates for the kernel data set.
W̄=W/w1

Grow the kernel data set until M data points are gathered.
while size(WK)< M do

Compute the kernel activations for all candidates.
a= k(WK ,W̄)

Select the candidate with the smallest sum of kernel activations.
c =wi ∈ W̄, where

∑

j a ji <
∑

j a jk∀k 6= i, with i, k ∈ {1, . . . , |W̄|} and j = {1, . . . , |WK |}
Add the selected data point to the kernel data set and remove it from the candidates.
WK =WK ∩ c
W̄= W̄/c

Algorithm 4: Learning the RKHS-embedded Kalman filter from large data sets

input : Weight matrix W= [w1, . . . ,wn], the kernel function kand the kernel size M .
output: The model matrices C, L and Z and the covariances of the model errors ΣΨ, ΣC, ΣL and ΣZ.

Select the kernel weights WK using the kernel data selection heuristic from Algorithm 3.
WK = kernel_weights(W, k, M)

Compute the kernel matrices K′ and K′2.
K′ = k(WK,W1:n−1),
K′2 = k(WK,W2:n),
where Xi: j denotes the sub-matrix of X consisting only of columns i to j.

Compute the model matrices and estimate the model errors from the reconstructions.
C= K′2K′ᵀ(K′K′ᵀ+λCIM)−1 ΣC = cov (K′2−CK′)
L=W1:n−1K′ᵀ(K′K′ᵀ+λLIM)−1 ΣL = cov (W1:n−1− LK′)

if labels H= [h1, . . . , hn] are available then
Z= H1:n−1K′ᵀ(K′K′ᵀ+λZIM)−1 ΣZ = cov (H1:n−1− ZK′)
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5 Experimental Results
To evaluate the performance of the RKHS-embedded Kalman filter and compare it to alternative mod-
els, we performed two experiments on artificial data from a simulated pendulum. With a first simple
setup, we evaluated the performance of our model for one-step and long-term predictions of the angular
position of a pendulum. For this experiment, we initialized the pendulum randomly near the upright
position with a small random velocity. Subsequently, the pendulum fell either clockwise or counterclock-
wise and eventually came to a stop at the lower equilibrium. In a second experiment we rendered the
oscillations of an undamped pendulum into video frames. For the training data, we altered the gravi-
tational acceleration after every other swing and compared the performance of one-step predictions on
evaluation data with previously seen and unseen gravitational accelerations to the performance of the
Hilbert space-embedded spectral algorithm.

5.1 Pendulum Simulation

For our experiments we simulated a pendulum with unity rod length and unity mass using the well-
known ordinary differential equation (ODE)

θ̈ =− g

l
sin(θ)− a, (5.1)

where θ is the angular displacement (in rad) with respect to the lower critical point (i.e., the pendulum
hanging straight down corresponds to θ = 0) and θ̈ is the angular acceleration (in rad

s2 ), g is the gravita-
tional acceleration (in m

s2 ) and l is the rod length (in m). We can further apply a torque to the pendulum
that results in the angular acceleration a. This term allows, for example, to damp the pendulum or
control it to given point attractors.

We integrated Equation (5.1) using Euler’s method with a fixed time step of 0.001s. Optional system
and observation noise terms were added during and after the integration, respectively. For our experi-
ments we afterwards sampled the simulated time series down to 20 or 10 observations per second (i.e.,
time steps of 0.1 or 0.05 seconds).

5.2 One-Step and Long-Term Predictions of a 1D Pendulum State

To evaluate the performance of our model in doing one-step and long-term predictions, we chose a simple
but profoundly non-linear pendulum setup. The pendulum was initialized randomly in the range from
−1.5π to −0.5π with a random velocity of the range −8 rad

s
to +8 rad

s
. The pendulum was damped with a

damping factor of 2 and, additionally, system noise and observation noise were applied, both zero-mean
Gaussian distributed with standard deviations σsys = 0.05 and σobs, respectively. We generated two data
sets: a less noisy one with a standard deviation of σobs = 0.01 and a more noisy one with a standard
deviation of σobs = 0.1. The data we obtained by integrating the pendulum’s ODE in (5.1) consists of the
pendulums angular displacement and its angular velocity. However, for the prediction tasks we reduced
the data to consist only of the angular displacement.

During the simulation the pendulum fell either clockwise or counterclockwise and eventually came
to a rest at θ = −2π or θ = 0. We generated distinct data sets for learning the model, testing the
performance during the optimization of the model parameters λC , λL and the kernel length scales, and
for evaluating the model with the optimized parameters. Each training set consists of 50 sequences with
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(a) Data set with observation noise σobs = 0.01.
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(b) Data set with observation noise σobs = 0.1.

Figure 5.1.: Training data sets for the evaluation of the RKHS-embedded Kalman filter, generated from a
simulated pendulum. The pendulum was initialized randomly near the upright position with
a random angular velocity. Both sets consist of 50 sequences covering 4 seconds with 41 data
points per sequence. Both training data sets have the same system noise of σsys = 0.05.

41 data points per sequence. The training data sets with σobs = 0.01 and σobs = 0.1 are depicted in
Figures 5.1a and 5.1b, respectively.

We learned our model with a window size of τ = 4 and the Dirac basis functions, i.e., we used
directly the data windows instead of a weight-based representation. As kernel function we employed the
Gaussian-PCA kernel function

kgaussPCA(w,w′) = exp
�

−1

2
(w−w′)ᵀVQVᵀ(w−w′)

�

, (5.2)

where V is the basis transformation obtained by a principal component analysis (PCA) of the training
weights W and Q is a diagonal matrix containing the length-scales for each dimension. We optimized
the regularization parameters λC and λL as well as the length-scales in Q using the Evolution Strategy
with Covariance Matrix Adaptation (CMA-ES) method (Hansen and Ostermeier, 2001).

Model evaluation heuristics for an efficient optimization of the model parameters.
As a gradient-free optimization method, CMA-ES needs to evaluate the model for numerous different
parameter sets (e.g., for 8 parameters CMA-ES generates 9 parameter sets per iteration, where several
hundreds of iterations are required). Since already the evaluation of a single sequence of 41 data points
takes in the range of a second, evaluating the model using the update cycle presented in Sections 4.3.2
and 4.3.3 and all 50 sequences would render the optimization infeasible. Instead, we resorted to two
alternative approaches for measuring the performance of our model.

The first approach, which we call one-step evaluation, computes the kernel-embeddings m̄1:T−1 =
k(WK, w̄1:T−1) of all but the last weights of the data windows of a full sequence, where k is the kernel
function, WK are the kernel weights from the model, and w̄i are the weights from the testing sequence
for the optimization. The one-step approach evaluates the model then based on the one-step prediction
of the embeddings m̄2:T = Cm̄1:T−1.

The second approach computes only the kernel-embedding m̄1 = k(WK, w̄1) of the weights of the first
data window of a sequence and evaluates the model then based on the long-term predictions, which are
obtained by iteratively applying the transition model m̄t+1 = Cm̄t . We call this approach the long-term
evaluation. Both of these approaches leverage the optimization process with a significant reduction of
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processing time per evaluation. Here, the omission of large matrix multiplications, e.g., the transition
update of the covariance operator (c.f. Algorithm 2), contributes the most to the increase of speed.

Initial values for the mean embedding and the covariance operator.
We further compared two different methods, A and B, to obtain an initial mean embedding m1 and an
initial covariance operator S1. Both methods compute the initial covariance embedding S1 from the first
data windows of all training sequences, similar to Equation (4.30). Method A computes also the initial
mean embedding m1 from the first data windows of all training sequences, whereas the second method
B uses the embedding m̃1 = k(WK, w̃1) of the weights w̃1 of the first data window of the evaluation
sequence as initialization.

Impact of noise on the training data.
Finally, we compared the performance of our model when trained with noisy data against the perfor-
mance when trained with smoothed data. We obtained the noise-free data directly from the simulation,
in addition to the noisy data. However, for real environments a smoothed version of the noisy data
should be a sufficient replacement.

5.2.1 Performance Results of One-Step and Long-Term Predictions

The results in Table 5.1 were obtained by performing one-step predictions, which means that we initial-
ized the RKHS-embedded Kalman filter using one of the above proposed methods and iteratively applied
the transition model and conditioned on the new observation. In each iteration, we conditioned the most
recent entry of the data window on the new observation and applied the transition operator in Hilbert
space to advance the belief to the next state. After the transition update, we compared the most recent
entry of the data window to the corresponding true (i.e., noise-free) value.

The values in Table 5.1a were obtained by learning, optimizing and evaluating our model on data
sets with an observation noise of σobs,1 = 0.01. The training data set is depicted in Figure 5.1a. The
values in Table 5.1b were obtained by learning, optimizing and evaluating our model on data sets with
an observation noise of σobs,2 = 0.1. The corresponding training data set is depicted in Figure 5.1b. We
measured the performance by computing the root-mean-squared-error (RMSE) to the true data.

Likewise, the results in Table 5.2 were obtained by performing long-term predictions on the same
evaluation data sets that we used for the one-step predictions. In contrast to the one-step prediction
experiment, we observed the current emissions only during the first second of each sequence. For the
last three seconds of the sequence we performed the prediction by solely applying the transition operator
in Hilbert space.

Comparing one-step evaluation to long-term evaluation.
For the less noisy data sets, the models optimized with the long-term evaluation method yielded in both
experiments generally better results than the models optimized with the one-step evaluation method.
This result is quite intuitive since a model optimized for long-term predictions should perform at least
equally well as a model optimized for one-step predictions. However, for the more noisy data set it is the
other way around for the one-step prediction experiment and no obvious tendency can be encountered
in the long-term prediction experiment. A possible explanation for this result is that the optimization of
the model parameters often gets stuck in local optima that are, in terms of performance, far away from
the global optimum.

Comparing the initialization methods.
If comparing the results obtained on the less noisy data sets, it is generally the case that initialization
method B yields the better results. This is also quite intuitive, as the mean embedding of all initial
training data windows is in most cases a worse approximation to the true embedding than the embedding
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evaluation heuristic long-term evaluation one-step evaluation

training data noisy smooth noisy smooth

initialization method A B A B A B A B

RMSE [rad] 0.0255 0.0254 0.0247 0.0208 0.0316 0.0231 0.0301 0.0227

(a) Performance of the RKHS-KF on evaluation data with an observation noise standard deviation of σobs = 0.01.

evaluation heuristic long-term evaluation one-step evaluation

training data noisy smooth noisy smooth

initialization method A B A B A B A B

RMSE [rad] 0.1299 0.1807 0.1913 0.2121 0.1307 0.1079 0.1231 0.1008

(b) Performance of the RKHS-KF on evaluation data with an observation noise standard deviation of σobs = 0.1.

Table 5.1.: One-step prediction performance of the RKHS-embedded Kalman filter, trained with noisy
and smooth training data, using the evaluation and initialization methods presented in Sec-
tion 5.2, evaluated on two data sets with a different amount of observation noise. As perfor-
mance measure the root-means-squared-error (RMSE) of the predictions to the noiseless data
has been used.

evaluation method long-term evaluation one-step evaluation

training data noisy smooth noisy smooth

initialization method A B A B A B A B

RMSE [rad] 0.6621 0.5008 0.6587 0.5272 0.9314 0.7261 0.9172 0.7145

(a) Performance of the RKHS-KF on evaluation data with an observation noise standard deviation of σobs = 0.01.

evaluation method long-term evaluation one-step evaluation

training data noisy smooth noisy smooth

initialization method A B A B A B A B

RMSE [rad] 0.9511 0.5497 1.5021 2.4974 0.9577 0.7254 0.8783 0.6232

(b) Performance of the RKHS-KF on evaluation data with an observation noise standard deviation of σobs = 0.1.

Table 5.2.: Long-term prediction performance of the RKHS-embedded Kalman filter, trained with noisy
and smooth training data, using the evaluation and initialization methods presented in Sec-
tion 5.2, evaluated on two data sets with a different amount of observation noise. As perfor-
mance measure the root-means-squared-error (RMSE) of the predictions to the noiseless data
has been used.
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(a) Example of a long-term prediction experi-
ment on the data set with σobs = 0.01.
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(b) Example of a long-term prediction experi-
ment on the data set with σobs = 0.1.

Figure 5.2.: Examples of a long-term prediction experiment. The true data is plotted as a dashed black
line and the noisy data is plotted as a solid black line. The predictions of the kernel model
are plotted in red with a 2σ boundary. Likewise, the predictions of the linear model are
plotted in blue also with a 2σ boundary. Both models observed the noisy state until t = 0.9s
(indicated by the gray dashed line). Afterwards the belief is updated by solely applying the
transition model.

of the initial data window of the evaluation sequence. For the more noisy data, however, initialization
method B provided not always a better performance than method A. This might again be caused by a
poor local optimum, but also the larger difference between true and noisy data windows might contribute
to this result.

Comparing the impact of noisy training data on the performance.
Another observation is that the model generally benefits from being trained on smooth data. A reason
for this might be the use of Dirac basis functions, which have, in contrast to the radial basis functions,
no inherent smoothing mechanism.

Comparing the RKHS-embedded Kalman filter to the linear weight-based approach.
In Figure 5.2, two examples of long-term prediction experiments are depicted. Figure 5.2a shows an
experiment on the less noisy data set with σobs = 0.01 and Figure 5.2b shows an experiment on the
more noisy data set with σobs = 0.1. The models used for these examples have been learned with noisy
training data and the model parameters have been optimized with the long-term evaluation heuristic.
Note that these are examples on which the RKHS-embedded Kalman filter yielded fairly good results.
Though, our model also clearly outperformed the linear model even on sequences on which it performed
worse than in this example.

Comparing the RKHS-embedded Kalman filter to the kernel spectral algorithm.
We compared the long-term prediction performance of our model to the kernel spectral algorithm, where
we used 100 eigenvectors to compose the subspace projection U (c.f. Section 3.2.2). We trained our
model with noisy data, optimized the model parameters using the long-term evaluation heuristic and
used initialization method B. Both models observed the noisy emissions until t = 0.9s. Afterwards, the
RKHS-embedded Kalman filter updates its belief solely by applying the transition operator, whereas the
kernel spectral algorithm uses the predicted state as new observation. Figure 5.3 depicts the root-mean-
squared-error (RMSE) of both models to the true data. It can be seen that our model performs better
when conditioned on the observations (from t = 0s until t = 0.9s), but also that the kernel spectral
algorithm leads to much better results if no observations are available.
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(a) RMSE of long-term predictions on the data
set with σobs = 0.01.
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(b) RMSE of long-term predictions on the
data set with σobs = 0.1.

Figure 5.3.: Comparison of the RKHS-embedded Kalman filter to the kernel spectral algorithm. The mod-
els observe the first ten states until t = 0.9s (indicated by the gray dashed line) and predicted
the following states from t = 1s until t = 4s. The results were averaged over 50 episodes.

(a) t = 1 (b) t = 6 (c) t = 11 (d) t = 16 (e) t = 21

Figure 5.4.: Video frames generated from the pendulum data at times t = 1, 6,11, 16,21. The video
frames have a width and a height of 120 pixels. The pivot point of the pendulum is in the
center of the frame (red circle, not present in the video data). The pendulum has been
rendered with a radial basis function around its center using a length scale of 50 pixels. The
values are scaled from 0 (white) to 255 (black).

5.3 Predicting Video Frames

In a second experiment we evaluated our model on high-dimensional data. As experiment setup we chose
again the pendulum presented in Section 5.1. We initialized the pendulum at a fixed angle θ0 = 0.7π and
simulated the undamped movements for 60 seconds with system noise σsys = 0.0005 and observations
noise σobs = 0.001. We rendered the pendulum movements into square video frames with a width of
120 pixels. Five examples of these video frames are depicted in Figure 5.4. We generated two data sets
that incorporated swings under the gravitational accelerations g1 = 5 m

s2 , g2 = 10 m
s2 and g2 = 15 m

s2 , where
we altered the gravitational acceleration after every other full swing. Additionally, to demonstrate the
ability of our model to previously unseen data, we generated a third data set under the gravitational
acceleration g4 = 7 m

s2 .
To learn our model, we treated each video frame as a vector consisting of the concatenated columns

and reduced the dimensionality of these vectors from 14400 to 30 by performing a principal compo-
nent analysis (PCA). We employed the Dirac basis functions and used windows of four downscaled
frame-vectors. As kernel function, we used the Gaussian kernel with a kernel size of 300 samples. The
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Figure 5.5.: Absolute error of one-step predictions of video frames, where the gravitational accelerations
were present in the training data. The figure depicts two full swings with g = 15 m

s2 . It can
be seen that the RKHS-embedded Kalman filter (red) maintains a similar magnitude of the
error for every swing, while the error of the RKHS-embedded spectral learning method (blue)
differs significantly.
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Figure 5.6.: Absolute error of one-step predictions of video frames, with a gravitational acceleration of
g = 7m

s
, which was not present in the training data. The figure depicts approximately 1.5 full

swings. The RKHS-embedded Kalman filter (red) maintains an error magnitude similar to the
evaluation on known data, whereas the RKHS-embedded spectral learning method (blue)
performs worse.

regularization parameters λC and λL were each set to 10−4. We tuned the length-scale parameter of the
kernel function, using a multiplicative of the mean difference of successive data windows until we got
reasonable kernel activations in the matrix K.

We compared our model to the kernel spectral algorithm trained with a subspace projection U con-
sisting of 100 eigenvectors. To compare the resulting video frames to the true data obtained from the
pendulum simulator, we extracted the angular displacement of the pendulum from the video frames with
a weighted sum of the pixel locations using the pixel intensities as weights. Figure 5.5 shows the absolute
error of one step predictions on evaluation data that was simulated with a gravitational acceleration of
15 m

s2 , which was also present in the training data. Depicted are approximately two full swings, i.e., two
swings to the left and two swings to the right. The error of both models is higher when the pendulum
has a higher angular velocity. From this plot, it can be seen that our model already generalizes better
for data seen during learning, as it maintains an similar error for both full swings, whereas the kernel
spectral algorithm has a lower error for the first full swing and a higher error for the second one.

Figure 5.6 depicts the absolute error of one step predictions on evaluation data that was simulated with
a gravitational acceleration of 7 m

s2 , which was not present in the training data. It can be clearly seen that
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the kernel spectral algorithm does not generalize well to this unknown data, while the RKHS-embedded
Kalman filter has an error of the same magnitude as for the known data.
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6 Conclusions
In this thesis we proposed a novel way to extend the applicability of hidden Markov models to continu-
ous, non-linear dynamical systems. We built on the well established concept of Kalman filters, which we
employed on a probabilistic representation of state, expressed by a Gaussian random variable in Hilbert
space. We provided a Hilbert space analog to the transition model and showed how to condition the
RKHS embedding of the Gaussian probability density over the state on new observations in state space.
In addition, the Hilbert space embedded Kalman filter allows also to reason about latent states, if a
labeled data set is available for training. In a condensed algorithmic formulation, our method consists
mainly of simple and easy to implement Gram matrix manipulations. We further provided an extension
to our algorithm that allows to train the Hilbert space embedded Kalman filter using large data sets
without rendering the Gram matrix manipulations infeasible.

The evaluations show that our model scales with high dimensional data and provides a good gener-
alization to data that was not represented in the training set. However, the evaluations also show that
we still need to work on the optimization process of the model parameters, as the heuristics we used
for faster evaluations are likely to emphasize on the performance of the transition model, but do not
represent the conditioning on new observations properly. Likewise, the we need to address the problem
of poor local optima, in which the optimization of the model parameters gets stuck, by finding better
initial values or running the optimization from many different starting points.

Furthermore, embedding also the conditioning on new observations into Hilbert space by making use
of the kernel Bayes’ rule might also yield better performances. Moreover, performing fully Bayesian
inference entirely in Hilbert space would render the Gaussian assumption in Hilbert space obsolete and,
thus, allow for an extension to arbitrary probability distributions.
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A Appendix

A.1 Derivation of the Observable Parameter β∞ in Section 3.2.2

From Equation (3.26), we obtain the definition of β∞ in terms of the subspace projection U and the joint
embedding C2,1 as

β∞ := C2,1

�

UᵀC2,1

�†
, (A.1)

where X † is the Moore-Penrose pseudo-inverse of X . We can apply the definition of the right pseudo-
inverse, which is X † = X ᵀ (X X ᵀ)−1, and obtain

β∞ = C2,1

�

UᵀC2,1

�ᵀ�
UᵀC2,1

�

UᵀC2,1

�ᵀ�−1
(A.2)

= C2,1C
ᵀ
2,1U

�

UᵀC2,1C
ᵀ
2,1U

�−1
. (A.3)

We can now put in the estimates of the joint embedding C2,1 given in Equation (3.31) and of the subspace
projection given in Equation (3.37) and obtain

β∞ =

C2,1
︷︸︸︷

ΦΥᵀ
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= Φ ΥᵀΥ
︸︷︷︸

K

ΦᵀΦ
︸︷︷︸

L

AD
�

DᵀAᵀ ΦᵀΦ
︸︷︷︸

L

ΥᵀΥ
︸︷︷︸

K

ΦᵀΦ
︸︷︷︸

L

AD
�−1 (A.5)

= ΦK LAD (DᵀAᵀLK LAD)−1 . (A.6)

From Equation (3.36) we can use the identity LK LA= LAΩ, with Ω := diag(w1, . . . , wN ) and get

β∞ = ΦK LAD (DᵀAᵀLAΩD)−1 . (A.7)

The next step is to employ the definition of the diagonal matrix D which normalizes the singular vectors
v i, that is

D := diag
�

�‖v1‖2
�−1 , . . . ,

�‖vN‖2
�−1� (A.8)

= diag
�

�

v
ᵀ
1 v1

�− 1
2 , . . . ,

�

v
ᵀ
N vN

�− 1
2

�

(A.9)

= diag
�

�

α
ᵀ
1Φ
ᵀΦα1

�− 1
2 , . . . ,

�

α
ᵀ
NΦ
ᵀΦαN

�− 1
2

�

(A.10)

= diag
�

�

α
ᵀ
1 Lα1

�− 1
2 , . . . ,

�

α
ᵀ
N LαN

�− 1
2

�

(A.11)

= (AᵀLA)−
1
2 , (A.12)

where the facts that the eigenvectors αi form an orthonormal eigen-basis, i.e., αᵀi α j = 0 for all i, j ∈
{1, . . . , N} with i 6= j, and that the inverse of an diagonal matrix is the inverse of its elements (and vice
versa), allow the transition from (A.11) to (A.12). Equation (A.12) allows us to replace AᵀLA with D−2

and together with the commutativity of diagonal matrices (i.e., ΩD = DΩ) we obtain

β∞ = ΦK LAD
�

DᵀD−2DΩ
�−1

(A.13)

= ΦK LADΩ−1. (A.14)
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