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Abstract

In many application domains such as weather forecasting, robotics and ma-
chine learning we need to model, predict and analyze the evolution of pe-
riodic systems. For instance, time series applications that follow periodic
patterns appear in climatology where the CO2 emissions and temperature
changes follow periodic or quasi-periodic patterns. Another example can be
in robotics where the joint angle of a rotating robotic arm follows a periodic
pattern. It is often very important to make long term prediction of the evo-
lution of such systems.

For modeling and prediction purposes, Gaussian processes are powerful
methods, which can be adjusted based on the properties of the problem at
hand. Gaussian processes belong to the class of probabilistic kernel meth-
ods, where the kernels encode the characteristics of the problems into the
models. In case of the systems with periodic evolution, taking the period-
icity into account can simplifies the problem considerably. The Gaussian
process models can account for the periodicity by using a periodic kernel.

Long term predictions need to deal with uncertain points, which can be
expressed by a distribution rather than a deterministic point. Unlike the de-
terministic points, prediction at uncertain points is analytically intractable
for the Gaussian processes. However, there are approximation methods that
allow for dealing with uncertainty in an analytic closed form, such as mo-
ment matching. However, only some particular kernels allow for analytic
moment matching. The standard periodic kernel does not allow for analytic
moment matching when performing long term predictions.

This work presents an analytic approximation method for long term fore-
casting in periodic systems. We present a different parametrization of the
standard periodic kernel, which allows us to approximate moment matching
in an analytic closed form. We evaluate our approximate method on dif-
ferent periodic systems. The results indicate that the proposed method is
valuable for the long term forecasting of periodic processes.

Keywords: Gaussian Process, Periodic Kernel, Long Term Forecasting.
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y> transpose of vector y
|A| determinant of matrix A
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K covariance matrix K
l characteristic length-scale
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E[x] expectation of variable x
V(x) variance of variable x
p(x) a probability density function
∼ distributed according to; example: x ∼ N (µ, σ2)
N (µ,Σ) Gaussian (normal) distribution with mean vector µ and

covariance matrix Σ
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Chapter 1

Introduction

There are many systems around us whose evolutions follow periodic pat-
terns. Boosting and recession in economics, sleeping behavior of animals
and walking or running of a humanoid robot are only a few examples among
many others. The need to model, predict and analyze the evolution of
such periodic systems appears in many scientific disciplines, such as signal
processing, control, and Machine learning. Ideally, one needs to build rep-
resentative models that allow for precise prediction of the evolution of such
systems. Sometimes we even need to make predictions long time ahead, e.g.
to make informed decisions in advance.

1.1 Background and Related Work

For modeling purposes, Gaussian processes (GPs) are the state-of-the-art
methods in the machine learning community [1, 2]. We are interested in this
class of models for two main reasons. Firstly, GPs do not merely make pre-

Figure 1.1: Animals exhibit many periodic tasks, such as winging, walking
or running.
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CHAPTER 1. INTRODUCTION 3

dictions but also can express the uncertainty associated with the predictions.
This is especially important when predicting ahead in time (See Chapter 3).
GPs are also flexible models that can explicitly encode high-level prior as-
sumptions regarding the systems into the models. Often assumptions such
as smoothness and stationarity are made, see Section 2.1.1. The ingredient
of GPs that allows encoding the assumptions into the models, is the ker-
nel. The parametric form of the kernels imposes different characteristics on
the models. In case of a periodic system, a periodic kernel allows building
powerful models [3]. For instance, periodic kernels are used by Durrande et
al. [4] to detect periodically expressed genes and by Reece and Roberts [5]
in the context of target tracking. Rasmussen and Williams [2] use the peri-
odic kernel to capture the periodic pattern of the CO2 accumulation in the
atmosphere. This thesis is particularly concerned with the use of periodic
Gaussian processes for long term forecasting of the periodic systems.

MacKay [6] has proposed a periodic kernel, which is capable of capturing
the periodicity of the patterns. In this work, we refer to it as the standard
periodic kernel. Non-linear kernels such as the standard periodic kernel re-
quire approximations when it comes to long term forecasting with GPs, see
Chapter 3. The approximation in general can be based on either numerical
methods, see e.g. [7], or on analytic closed-form computations. Numerical
solutions are easy to implement but they can be computationally demand-
ing. An analytic solution based on moment matching (see Chapter 3) has
been proposed by Quinonero-Candela et al.[8] for long term forecasting with
GPs with the Gaussian kernel. Gaussian and polynomial kernels allow an
analytic approximation for long term forecasting [8]. However, analytic mo-
ment matching is intractable for the standard periodic kernel.

1.2 Contribution

Our contribution is to propose a double approximation method, which pro-
vides an analytic solution for long term forecasting with periodic GPs. The
key idea is to re-parametrize the standard periodic kernel in a way that al-
lows analytic approximate inference. For re-parametrization we exploit the
fact that analytic moment matching is possible for the Gaussian kernels.
Furthermore, we evaluate our double approximation method empirically.

In particular, we aim to answer the following research questions:

1. How robust is the proposed double approximation against varying the
test input distribution in one-step predictions?

2. How well does the Gaussian approximation with the proposed periodic
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kernel (double approximation) perform in comparison to the same ap-
proximation method with the Gaussian kernel, when applied to long-
term forecasting of a periodic system?

3. How does the double approximation method perform when applied to
the long term prediction of periodic systems?

1.3 Outline

Chapter 2 presents the necessary background on Gaussian processes, with
emphasis on the prediction. Furthermore, this chapter introduces the Gaus-
sian and the standard periodic kernels as well as their roles in GP modeling.
Different properties of the kernels and their performance on prediction of
periodic systems is discussed.

Chapter 3 presents the main contribution of the thesis. First, we dis-
cuss the concepts of the long term forecasting. Then, our proposed double
approximation method for long term forecasting of periodic systems is dis-
cussed.

In Chapter 4, the methods of the previous chapters are applied to the
prediction of periodic systems. We empirically evaluate our double approxi-
mation method for the one-step prediction as well as the long term prediction
of periodic systems. The results indicate that the proposed periodic kernel
surpasses the non-periodic ones in prediction of the periodic systems.





Chapter 2

Introduction to Gaussian
Processes

This chapter provides an overview of Gaussian process regression. In the
first section, we present how to utilize GPs for regression and how to predict
unknown continuous function values. In section 2.1.1, we introduce some
commonly used covariance functions and discuss their properties. In the
last section, we discuss model learning in the GPs.

2.1 Gaussian Process Regression

Regression is the problem of estimating real valued function values from
inputs [9, 2]. In this section, we review the Bayesian treatment of the
regression problem. For the underlying function f , the regression model
becomes

y = f(x) + ε, x ∈ RD, y ∈ R (2.1)

where x is the input vector, y is the observed target value and ε ∼ N (0, σ2ε)
is additive identically independently distributed (i.i.d.) Gaussian noise with
variance σ2ε . In Figure 2.1, the red crosses denote the noisy observed data
points, called training data. The blue line in Figure 2.1 shows the under-
lying function. Note that the blue line is actually a finite number of data
points, which we display as a line. The shaded area denotes the uncertainty
associated with prediction at data points x. From the figure, it is clear that
the uncertainty shrinks near the observed data points. This happens be-
cause the observed data points provide information about the true function
values for the regression model.

Suppose f = (f(x1), f(x2), . . .) is a vector of random variables. In this
sense, f is a Gaussian process if the joint distribution over any finite subset

6
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Figure 2.1: Example of a regression problem. The horizontal axis represents
the inputs to the function f . The vertical axis represents the function values
evaluated at the input points. Observed data points are marked by red
crosses. The blue line illustrates the underlying function f . The shaded area
represents the uncertainty associated with the estimation of the function
values.

of the random variables f(x1), . . . , f(xn) becomes a multivariate Gaussian
distribution

p(f(x1), . . . , f(xn)|x1, . . . ,xn) = N (µ,σ2). (2.2)

We can look at the Gaussian process as a generalization of a Gaussian
distribution. While a Gaussian distribution can be fully characterized by its
mean and variance, a Gaussian process can be attributed by the mean func-
tion E[f(x)] = m(x) and the covariance function C(f(x), f(x′)) = k(x,x′)
such that

f ∼ GP(m, k). (2.3)

2.1.1 Covariance Functions

Covariance functions or kernels play an important role in the GP modeling.
A covariance function gives the correlation between function values, corre-
sponding to the inputs k(x,x′) = C(f(x), f(x′)). Kernels have different
parametric forms, which impose particular assumptions upon the functions,
e.g. smoothness or stationarity assumptions. In the following, we introduce
some commonly used kernels and discuss their properties.

The Gaussian kernel (Squared Exponential kernel) may be the most
widely-used kernel in the Machine Learning community [2] due to its prop-
erties such as smoothness and stationarity. A smooth function suggests that
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(a) α2 = 1,Λ = 0.25
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(b) α2 = 4,Λ = 1

Figure 2.2: Three sample functions drawn at random from the prior dis-
tribution with the Gaussian kernel with different hyper-parameters. The
higher length-scale (b) leads to smoother functions. Also note the differ-
ence of the vertical height of functions caused by different signal variance
α2 hyper-parameters.

if two data points are close in the input space, then the corresponding func-
tion values are highly correlated. A stationary kernel is a function of x−x′.
A Gaussian kernel is defined as

kSE(x,x′) = α2 exp
(
− 1

2(x− x′)>Λ−1(x− x′)
)
, x,x′ ∈ RD, (2.4)

where Λ = diag[l21, . . . , l
2
D] and α2 denotes the signal variance that controls

the vertical scale of the variation of the function. We call the parameters of
the covariance function hyper-parameters. li are called length-scale hyper-
parameters and control the degree of smoothness of the function. Figure 2.2
illustrates two GPs with Gaussian kernels with different hyper-parameter
sets. The comparison of Figure 2.2a and 2.2b shows that larger length-
scales lead to a smoother function.

It is clear from eq. (2.4) that the Gaussian kernel is stationary. It means
that the covariance between two function values does not depend on the
values of the corresponding input points, but only on the distance between
them.

Although stationarity may be a desired property for many applications,
it is restrictive in some cases. Figure 2.3 shows a periodic function, which
a GP with Gaussian kernel fails to model appropriately. A function is peri-
odic if it repeats on intervals called periods. The repeated parts have strong
correlation with each other, regardless of their distance. For example, in
Figure 2.3, the points on top of the waves have the same function values all
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Figure 2.3: Prediction of a sin signal with the Gaussian kernel. While the
red crosses represent the training set, the blue line represents the GP model
prediction. The shaded area shows the 95% confidence intervals. Note that
the shaded area enlarges at test points far from the training points, proving
that the Gaussian kernel fails to extrapolate from the training set to the
test set.

over the function, due to the periodicity. Stationarity in general cannot cap-
ture such a relation, in that it deduces the correlation between data points
only from their distances. Furthermore, in Figure 2.3 the shaded area grows
drastically for test points far from the training points, which indicates that
the Gaussian kernel fails to extrapolate from the training set to the test
set. Such periodic problems demand for more powerful kernels, which can
handle the periodicity property.

MacKay [6] proposed a periodic kernel, which can capture the periodicity
of the signals

k(x,x′) = α2 exp

(
−2 sin2

(
ax−ax′

2

)
l2

)
, (2.5)

where l and α2 have the same role as they have in case of the Gaussian
kernel. The additional parameter a is related to the periodicity. Figure 2.4
illustrates the performance of the periodic kernel for modeling the simple
periodic signal. The comparison of figure 2.3 and 2.4 reveals the advantages
of the periodic kernel over non-periodic one on modeling periodic functions.
Figure 2.4 illustrates that the GP with periodic kernel can predict test points
correctly with very small uncertainty.

2.1.2 Prior Distribution

In the Bayesian setting, a Gaussian process can be seen as a probability
distribution over functions p(f). Figure 2.5a shows three sample functions
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Figure 2.4: Prediction of a periodic signal with the periodic Gaussian pro-
cess. The GP with periodic kernel can successfully extrapolate from the
training set to the test set. The shaded area is almost zero throughout the
model.

drawn at random from the prior distribution p(f) specified by a particular
GP. The prior probability tells us about the form of the functions which
are more likely to represent the underlying function, before we observe any
data points [2]. In Figure 2.5a, we assume a zero mean prior distribution.
It means that if we keep drawing random functions from the distribution,
the average of the function values becomes zero for any x. In Figure 2.5a,
the shaded area is constant all over the function space, which demonstrates
that the prior variance does not depend on x.

2.1.3 Posterior Distribution

We are not primarily interested in random functions drawn from the prior
distribution, but the functions that represent our observed data points. In
the Bayesian framework, it means moving from the prior distribution to the
posterior distribution. Our observed data points combined with the prior
distribution lead to the posterior distribution. Figure 2.5b illustrates what
happens if we know the function values at some particular points. The
figure illustrates wherever there is no observation the uncertainty increases.
If more observed points are available, the mean function tends to adjust
itself to pass through the observed points and the uncertainty reduces close
to these points. Note that since our observations are noisy, the uncertainty
is not exactly zero at the observed data.
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Figure 2.5: Panel (a) shows three sample functions drawn at random from
the prior distribution. The shaded area represents the prior variance and is
constant all over the function space. Panel (b) shows three sample functions
drawn randomly from the posterior distribution. The shaded region denotes
twice the standard deviation at each input value x. The observed points
are marked by red dots. Uncertainty shrinks near the observed data and
increases for data points far from the observations.

2.2 Evidence Maximization

We can exploit the training data to directly learn the free parameters θ
(parameters of the covariance function) of the model. The log marginal
likelihood (or evidence) (see e.g. [2]) is given by1

L(θ) = log p(y|X,θ) = −1
2y

TC−1y − 1
2 log |C| − D

2 log(2π), (2.6)

where C = Kθ+σ2I and |C| is the determinant of the matrix C. Kθ refers
to the covariance matrix which depends on the values of hyper-parameters
θ. Matrix X and vector y denote the training inputs and noisy observa-
tions, respectively. In the last term, D denotes the data dimension.

The goal is to find a set of free parameters θ that maximizes the log
marginal likelihood (evidence maximization). For evidence maximization,
we compute the derivatives2 of L(θ) with respect to each hyper-parameter

∂L(θ)

∂θj
= 1

2y
TC−1

∂C

∂θj
C−1y − 1

2Tr

[
C−1

∂C

∂θj

]
. (2.7)

1We usually work with the log of the marginal likelihood. The marginal likelihood is the
product of many small probability values. This can easily cause computational problems.
By taking the log, the product transforms to the sum of the log of probabilities.

2For more on the matrix derivatives refer to Appendix A.1.3.
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From eq. (2.7), it is clear that the computation of the derivatives de-
pends on the parametric form of the covariance function k.

2.3 Prediction at a Test Input

Most commonly, a model is used for making prediction at new points with
unknown targets. Suppose we have a training points set D = {xi, yi}ni=1,
consisting of n training input and output pairs. There is also a test input
x∗

3 with unknown target. From the definition of the Gaussian process, the
joint distribution of the function values at the training and test points is
normally distributed, see Appendix A.1,

p(f∗,y|x∗,X) = N
(

0,

[
K + σ2εI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
, (2.8)

whereK denotes the covariance matrix between each pair of observed points.
Here, we assume the prior on f∗ has a zero mean.

We can make predictions by conditioning the joint distribution p(f∗,y)
on the observation set D = {(X,y)}, see Appendix A.1. In a GP, the
predictive distribution is Gaussian with mean and covariance

µ(x∗) = k(x∗,X)[K + σ2I]−1y, (2.9)

σ2(x∗) = k(x∗,x∗)− k(x∗,X)[K + σ2I]−1k(X,x∗), (2.10)

respectively.

2.3.1 Multivariate Prediction

So far, we discussed about one dimensional targets y ∈ R. If the targets
has multiple dimensions y ∈ RE , we train an independent GP for each
target dimension. In other words, we train E models based on the same
training data X but different output targets {yi}Ei=1. In such a case, we
assume that the models are conditionally independent given the data set
X [10]. Hence, the mean and the variance of the function values for each
dimension are computed separately based on eq. (2.9) and eq. (2.10). For a
given multivariate test input x∗, the predictive distribution is a multivariate
Gaussian with mean and covariance

µ∗ = [mf1(x∗) . . . mfE (x∗)]
>, (2.11)

Σ∗ = diag([σ2f1 . . . σ2fE ]), (2.12)

respectively.

3Test points are shown with a subscript asterisk.





Chapter 3

Prediction at Uncertain
Inputs

In the previous chapter, we discussed how to predict at a deterministic input
with a GP model. In this chapter, we investigate what happens if our ob-
servations are subject to uncertainty. Uncertainty may arise due to different
reasons. For instance, a long term prediction of state evolution of a system
p(x1), p(x2),. . . needs to effectively deal with uncertainty, since the inputs
to the GPs are not deterministic points but uncertain data points.

In long term forecasting, we need to predict ahead in time, up to a
specific time horizon. One way to achieve this is to iteratively compute
one-step ahead prediction. In each step, the predictive distribution is given
by p(xt+l+1|xt+l), where xt+l serves as the input x∗ and xt+l+1 plays the
role of the target f(x∗). In such a setting, the input p(x∗) to the GP model
is a probability distribution, not a deterministic point. As a result, the
predictive distribution is obtained by

p(f(x∗)) =

∫∫
p(f(x∗)|x∗)p(x∗)dfdx∗, (3.1)

which requires to ingrate over test input x∗. Since p(f(x∗)) is a complicated
function of x∗, the integral is analytically intractable. In general, the predic-
tive distribution p(f(x∗)) is not a Gaussian. However, if the input p(x∗) is
Gaussian distributed, then the predictive distribution can be approximated
by a Gaussian by means of moment matching.

Moment matching consists of computing only the predictive mean and
covariance of p(f(x∗)), i.e., the first two moments of the predictive distri-
bution. Figure 3.1 illustrates moment matching with GPs when the input
is normally distributed. The shaded area in the left panel denote the exact
predictive distribution, which is not Gaussian and unimodal. The blue line,

14
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Figure 3.1: The bottom panel shows the Gaussian input, which is mapped
through the GP model (upper-right panel). The shaded area (left panel) is
the exact non-Gaussian output and the blue line is the result of the Gaussian
approximation.

in the left panel, represents the predictive distribution computed by moment
matching [11].

The exact Gaussian approximation is not analytically tractable for all
forms of the kernels. Gaussian and polynomial kernels are among kernels
that make the exact approximation possible [11]. On the contrary, moment
matching with the standard periodic kernel in eq. (2.5) is analytically in-
tractable. In this thesis, we present another parametric form of the standard
periodic kernel, which in combination of a double approximation, allows for
analytic long term forecasting of evolution of periodic systems.

3.1 Moment Matching with Gaussian Processes

Here, we detail the computation of the first two moments of the predictive
distribution with Gaussian processes, that is largely based on the work by
Deisenroth et al. [12]. Assume that input is normally distributed p(x∗) =
N (x∗|µ∗,Σ∗). From the law of iterated expectations (see Appendix A.2)
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the mean of p(f(x∗)), in eq. (3.1) becomes

m(x∗) = Ex∗ [Ef [f(x∗)|x∗]] = Ex∗ [µ(x∗)], (3.2)

where µ(x∗) is the mean function of the GP evaluated at x∗. By plugging
in eq. (2.9) for the predicted mean, we obtain

m(x∗) = β>
∫
k(X,x∗)p(x∗)dx∗, (3.3)

where β = (K + σ2εI)−1y and X is the matrix of training inputs.

In the same manner, the predictive variance can be obtained by

v(x∗) = Ex∗ [Vf [f∗|x∗]] +Vx∗ [Ef [f∗|x∗]]
= Ex∗ [σ

2(x∗)] + Ex∗ [µ(x∗)
2]−m(x∗)

2,
(3.4)

where µ(x∗) is given in eq. (2.9). The last term contains the predictive mean
given in eq. (3.3). Plugging in the GP mean and variance from equations
(2.9) and (2.10), the first two terms in eq. (3.4) are given as

Ex∗ [µ(x∗)
2] =

∫
µ(x∗)

2p(x∗)dx∗

= β>
∫
k(X,x∗)k(x∗,X)p(x∗)dx∗β, (3.5)

and

Ex∗ [σ
2(x∗)] =

∫
k(x∗,x∗)p(x∗)dx∗

−
∫
k(x∗,X)(K + σ2εI)−1k(X,x∗)p(x∗)dx∗. (3.6)

The integrals in equations (3.4), (3.5), and (3.6) depend on the para-
metric form of the kernel function k. There is no analytic solution for these
integrals with the standard periodic kernel in eq. (2.5). In the next sec-
tion, we present a re-parametrization of the standard periodic kernel, which
allows for an analytic approximation of these integrals. In particular, we
propose a double approximation method to analytically compute the pre-
dictive mean and variance at uncertain points, by exploiting the fact that
the involved integrals can be solved analytically for the Gaussian kernel.

3.1.1 Re-parametrization of Periodic Kernel

For notational convenience, we consider one dimensional inputs x in the
following. Our periodic kernel uses a nonlinear transformation u = (sin(x),
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cos(x)) of the inputs x and is given by1

kper(x, x
′) = kSE(u(x), u(x′)) = α2 exp

(
−1

2z
>Λ−1z

)
, (3.7)

where

z =

[
sin(ax)− sin(ax′)
cos(ax)− cos(ax′)

]
,

and Λ = diag[l21, l
2
2], where we assume that l = l1 = l2, such that the sin and

cos terms are scaled by the same value. The length scales li and signal vari-
ance α2 play the same role as in the Gaussian kernel. The hyper-parameter
a denotes periodicity, which in the case of the one dimensional input it is a
scalar.

The periodic kernel in eq. (3.7) is just another representation of the
standard periodic kernel in eq. (2.5). To prove this claim, let us ignore the
diagonal scaling matrix Λ in eq. (3.7) for a moment. Multiplying out 1

2z
>z

yields

1
2z
>z = 1− sin(ax) sin(ax′)− cos(ax) cos(ax′). (3.8)

With the identity

cos(x− x′) = cos(x) cos(x′) + sin(x) sin(x′)

we obtain 1
2z
>z = 1− cos(a(x−x′)). Now, we apply the identity cos(2x) =

1− 2 sin2(x) and obtain

1
2z
>z = 2 sin2

(a(x−x′)
2

)
.

Incorporating the scaling l from eq. (3.7) yields

exp
(
− 1

2z
>Λ−1z) = exp

(
−

2 sin2
(a(x−x′)

2

)
l2

)
.

We see that our proposed kernel in eq. (3.7) is equivalent to the standard
periodic kernel in eq. (2.5).

The extension to the multivariate input x ∈ RD is straightforward. We
consider different length-scales for different input dimensions {li}Di=1. In the
case of the multivariate inputs, the periodic kernel in eq. (3.7) becomes

kper(x,x
′) = kSE(u(x), u(x′)) = α2 exp

(
−1

2

D∑
d=1

z>d Λ−1d zd

)
, (3.9)

where zd is the dth dimension of the trigonometrically transformed input
and Λd = diag[l2d, l

2
d]. Following the approach used for one dimensional case,

we can obtain the standard periodic kernel for the multivariate input.

1Whenever it is necessary to distinguish the periodic kernel from the Gaussian kernel,
they are denoted by kper and kSE, respectively.
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3.1.2 Approximate Inference with a Periodic Kernel

Here we present our proposed approximate inference method for long term
forecasting, which utilizes the periodic kernel in eq. (3.7). In particular, this
parametrization of the standard periodic kernel allows for analytic approxi-
mation of the intractable integrals in equations (3.2), (3.5), and (3.6). Figure
3.2 illustrates our proposed approximation method. The goal is to compute
the desired predictive distribution from a Gaussian distributed input. The
top red line shows that there is no analytic solution for the Gaussian ap-
proximation by the standard periodic kernel. Instead, we propose the double
approximation at the bottom of the figure, which contains two analytic ap-
proximations. In the first step, the first two moments of the input p(x) are
mapped to the trigonometric space p(u(x)). Subsequently, the transformed
input p(u(x)) is mapped through the GP with a Gaussian kernel. In the
following, we discuss both steps in detail.

3.1.3 Step 1: Mapping to Trigonometric Space

Mapping a Gaussian distribution p(x) to p(u(x)) = p(sin(ax), cos(ax)) does
not result in a Gaussian distribution. However, we use a Gaussian approx-
imation since it is convenient for the purpose of long term forecasting. It
turns out that the mean and variance of the trigonometrically transformed
variable u(x) ∈ R2D can be computed analytically. For notational conve-
nience, we will detail the computations in the following for x ∈ R, but the
extension to multivariate inputs x ∈ RD is given in Appendix C.1.

Let us assume that p(x) = N (x|µ, σ2). The mean vector µ̃ and covari-
ance matrix Σ̃ of p(u(x)) are given as

µ̃ =

[
E[sin(ax)]
E[cos(ax)]

]
, (3.10)

Σ̃ =

[
V[sin(ax)] C[sin(ax), cos(ax)]

C[cos(ax), sin(ax)] V[cos(ax)]

]
, (3.11)

where the covariance between two variables is denoted by C.

Using results from convolving trigonometric functions with Gaussians [13],
we obtain

E[sin(ax)] =

∫
sin(ax)p(x)dx = exp(−1

2a
2σ2) sin(aµ), (3.12)

E[cos(ax)] =

∫
cos(ax)p(x)dx = exp(−1

2a
2σ2) cos(aµ), (3.13)

which allows us to compute the mean µ̃ in eq. (3.10) analytically.
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Figure 3.2: The red line on the top shows that there is no analytic so-
lution for the exact moment matching with the standard periodic kernel.
Instead, we use the two-step approximation approach to obtain an approxi-
mate solution (bottom path). First, the first two moments of the input are
mapped analytically to the trigonometric space. Subsequently, the input in
the trigonometric space is estimated with the Gaussian approximation with
the Gaussian kernel.
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To compute the covariance matrix Σ̃ in eq. (3.11), we need to com-
pute the variances V[sin(ax)], V[cos(ax)] and the cross-covariance terms
C[sin(ax), cos(ax)].

The variance of sin(ax) is given by

V[sin(ax)] = E[sin2(ax)]− E[sin(ax)]2, (3.14)

where E[sin(ax)] is given in eq. (3.12) and

E[sin2(ax)] =

∫
sin2(ax)p(x)dx (3.15)

= 1
2(1− exp(−2a2σ2) cos(2aµ)). (3.16)

Similarly, the variance of cos(ax) is given by

V[cos(ax)] = E[cos2(ax)]− E[cos(ax)]2, (3.17)

where E[cos(ax)] is given in eq. (3.13) and

E[cos2(ax)] = 1
2(1 + exp(−2a2σ2) cos(2aµ)). (3.18)

The cross-covariance term C[sin(ax), cos(ax)] is

C[sin(ax), cos(ax)] = E[sin(ax) cos(ax)]− E[sin(ax)]E[cos(ax)], (3.19)

where E[sin(ax)] and E[cos(ax)] are given in eq. (3.12) and (3.13), respec-
tively. The first term in eq. (3.19) is computed according to

E[sin(ax) cos(ax)] = 1
2 exp(−2a2σ2) sin(2aµ), (3.20)

where we exploited that sin(x) cos(x) = sin(2x)/2.

The results allow us to analytically compute the mean µ̃ and the co-
variance matrix Σ̃ of a trigonometrically transformed variable u(x). In the
following, we apply results from [10, 11] to map the trigonometric trans-
formed input through a GP with a Gaussian kernel to compute the mean
and the covariance of p(f(x∗)).

3.1.4 Step 2: Computing the Predictive Distribution

Now we turn to the second step of the double approximation, which is the
analytic computation of the terms in eq. (3.5) and eq. (3.6) with the trigono-
metrically transformed inputs u(x∗). For this purpose, we also map the GP
training inputs X trigonometrically into U . Many derivations in the follow-
ing are based on the work by Deisenroth [14, 12].
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The predictive mean m(x∗) in eq. (3.3) can now be written as

m(x∗) = β̃
>
∫
kSE(U ,u∗)N (u∗|µ̃∗, Σ̃∗)du∗ ,

where we define β̃ = (kSE(U ,U) + σ2εI)−1y ∈ Rn. Note that the kernel in
this integral is no longer a periodic kernel, but a Gaussian, applied to the
trigonometrically transformed inputs u∗. Since this integral is the product
of two Gaussian shaped functions it can be solved analytically [11]. We
define

q =

∫
kSE(u∗,U)p(u∗)du∗,

where the elements of q ∈ Rn are given by

qj = α2√
|Σ̃∗Λ−1+I|

exp(−1
2ζ
>
j (Σ̃ + Λ)−1ζj), (3.21)

for j = 1, . . . , n, where ζj = (uj − µ̃∗).

To compute the predictive covariance v(x∗), we need to solve the follow-
ing integrals, see equations (3.5)–(3.6):∫

kSE(u∗,u∗)p(u∗)du∗ , (3.22)∫
kSE(U ,u∗)kSE(u∗,U)p(u∗)du∗ . (3.23)

Note that the second integral in eq. (3.6) can be expressed in terms of eq.
(3.23) by using a>b = Tr(ba>). Since the Gaussian kernel kSE is stationary,
the integral in eq. (3.22) is simply given by the signal variance α2. The
integral in eq. (3.23) results in a matrix Q, whose entries are

Qij = |2Λ−1Σ̃∗ + I|−1/2 × kSE(ui, µ̃∗)kSE(uj , µ̃∗)

× exp(−1
2(ν − µ̃∗)>(12Λ + Σ̃∗)

−1(ν − µ̃∗))

for i, j = 1, . . . , n and with ν = (ui + uj)/2.

These results allow us to analytically compute approximations to the pre-
dictive distribution for Gaussian processes with periodic kernels. Although
all computations can be performed analytically, the additional Gaussian ap-
proximation of the trigonometrically transformed state variable u∗ (Step 1)
makes the computation of predictive mean and variance only approximate.





Chapter 4

Experiments

In this chapter, we shed light on the performance of our proposed approxi-
mation method. We present an empirical evaluation of the double approx-
imation. The comparison of the periodic with the Gaussian kernel for the
long term predictions is also presented. The experiments are evaluated on
different synthetic data sets.

For simulation, the gpml toolbox1 is used. The toolbox [15] is the MAT-
LAB implementation of the inference and prediction with Gaussian pro-
cesses. A numerical optimizer is already implemented, which is used for
training the GP models. The optimizer maximizes the log marginal likeli-
hood discussed in Section 2.2. We need to add two parts to the toolbox in
order to perform our experiments:

1. The periodic kernel in eq. (3.7), as well as the first order derivatives of
the function with respect to its parameters (signal variance, periodicity
and length-scale parameters) for evidence maximization (see Section
2.2). The derivatives are given in Appendix B.

2. The double approximation method discussed in Chapter 3, including
the mapping to the trigonometric space as well as the moment match-
ing with Gaussian kernel.

Both parts were implemented in MATLAB.

4.1 Evaluation of Double Approximation for One-
step Prediction

Here, we investigate how the double approximation method performs when
applied to a given periodic signal. In Chapter 3, we discussed that the true
predictive distribution at an uncertain input is not a Gaussian. We adopt our

1The gpml toolbox is publicly available at http://www.gaussianprocess.org/gpml.
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proposed double approximation method to approximate the non-Gaussian
predictive distribution with a Gaussian for periodic Gaussian processes.

We present the numerical evaluation of the double approximation method
on a synthetic data set. Numerical methods rely on sampling techniques that
evaluate the intractable integrals numerically. We need to sample from the
Gaussian distributed test inputs x∗. These samples are deterministic in-
puts whose predictive outputs are normally distributed. Hence, prediction
at these samples can be done analytically, see Section 2.3. As the number of
samples grows the approximate distribution will tend to the true distribu-
tion [7]. We approximate the resulted sampling distribution by a Gaussian.
Finally, the mean and variance of the sampling distribution are compared
with the mean and variance obtained by applying the double approximation
method.

Having this method of evaluation, we consider the system y = sin(x/2)+
cos(x+ 0.35) + ε, where the system’s noise is ε ∼ N (0, 1.6× 10−3). The GP
model with periodic kernel is trained by the evidence maximization method,
see Section 2.2. The training set is of size 400, where the training inputs xi
are linearly spaced between -17 and 17. The test data points are in the range
[−11π, 11π]. The function and the range of the training data are visualized
in Figure 2.4 in blue and red, respectively.

We define test input distributions p(xij0 ) = N (µi, σ
2
j ) from which we draw

100 samples x∗ at random and map them through the periodic function.
Then, we compute the root-mean-square error (RMSE) in eq. (4.1) and the
negative log predictive distribution (NLPD) in eq. (4.2) of the true function
values, evaluated by the sampling method, with respect to the predictive
distributions.

RMSEx∗ =
√
E[(ys − µx∗)2], (4.1)

NLPDx∗ =
1

2
log |Σx∗ |+

1

2
(ys − µx∗)>(Σx∗)

−1(ys − µx∗) +
D

2
log(2π).

(4.2)

While the RMSE only considers the error on means, the NLPD takes
the variances into account as well. The mean values µi of the test input
distributions p(xij0 ) are selected on a linear grid from −11π to 11π. The
corresponding variances σ2j are set to 10−j , j = 1, . . . , 4. Moreover, we test

the approximation for σ20 = 0, which corresponds to a deterministic input.
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Figure 4.1: Quality of the double approximation for the periodic function
shown in Figure 2.4. The average NLPD and RMSE values are given for
various input distributions whose means and variances are displayed on the
horizontal and vertical axes, respectively. Higher variance increases the
errors especially the NLPD error, but varying the mean does not have an
impact on the errors.

Figure 4.1 displays the RMSE and NLPD values for predictions with
the proposed double approximation. It can be seen that the NLPD values
are relatively equal for all input variances, see Figure 4.1a. The periodic
pattern of the function can be recognized in each row of Figure 4.1a: The
predictions were particularly accurate in the linear regimes of the function.
The average RMSE values in Figure 4.1b are generally small and do not
differ substantially as a function of the variance σ2j .
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Table 4.1: Average quality of the double approximation.

σ2j 0 10−4 10−3 10−2 10−1

NLPD 0.12 0.14 0.24 0.52 1.00
RMSE (×10−4) 6.5 6.5 6.5 6.7 8.0

Table 4.1 shows the average performance of the double approximation,
where we average the NLPD and RMSE values over all means µi of the test
input distributions. The RMSE values are relatively constant over vary-
ing input variances σ2j . This means that the mean estimate by the double
approximation is relatively robust. The NLPD values on the other hand in-
dicate that the coherence of the predictive variance suffers to from increasing
uncertainty in the input distribution.

4.2 Evaluation of Double Approximation for Long
Term Forecasting

We evaluate the performance of the Double approximation method for long
term forecasting. The experiment is the simulation of a pendulum motion,
shown in Figure 4.2. The state of the system x is given by the pair of an-
gle and angular velocity (ϕ, ϕ̇). ϕ is the angle of deviation of pendulum
from the vertical at a given moment, measured anti-clockwise in radians.
For more details regarding the physical properties of the motion we refer to
Appendix D. A constant force was applied to the pendulum, such that it
reached a limit-cycle behavior after about 2 s, in which both the angle and
the angular velocity followed a periodic pattern. We trained a GP on 300
data points, where the measurement noise variance was 10−2I.

For model learning, we train the hyper-parameters of the periodic GP
(2 periodicity a, 2 length-scales li, signal variance α2, and noise variance
σ2ε). Moreover, we train a GP with the Gaussian kernel, where the hyper-
parameters were two length-scales {l21, l22}, the signal variance α2, and the
noise variance σ2ε . The training targets for both GP models are the dif-
ferences between consecutive states, i.e., yi = xi − xi−1, which effectively
encodes a linear prior mean function m(x) = x. Both GP models are trained
by maximizing the marginal likelihood (evidence), see eq. (2.6).

To evaluate the performance of the models for long term forecasting, the
models are used to predict the pendulum’s state evolution for T = 100 time
steps ahead. We set the initial covariance to 0.01I. For long term forecasting
with periodic kernel, we repeat the double approximation (see Chapter 3)
for T times, where the output at each state serves as input for the successor
state p(xt+l+1|xt+l). In this setting, not only the mean is computed itera-
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u

ϕ

1

Figure 4.2: Pendulum.

tively but also the uncertainty is propagated through the time. It is worth
to say that, for the Gaussian approximation with the Gaussian kernel, we
follow a similar method as discussed in Chapter 3 with one difference. There
is no need to map the input to the trigonometric space, since that step is
done for encoding the periodicity into the model.

Figure 4.3 illustrates the result of the experiment. The first and second
rows show the result for the angle and the angular velocity, respectively. The
left column shows the result for the Gaussian kernel, while the right column
illustrates the results for the periodic kernel. The error bars are shown by
the blue vertical lines, corresponding to the mean plus and minus two times
the standard deviation. The small error on the training set indicates that
both kernels can predict well where the training data is available. For the
test set, however, the Gaussian kernel loses track of the data. In contrast,
the GP with the periodic kernel can predict the test points successfully up
to the time horizon T .

We also present the NLPD and RMSE errors on long term forecasting of
the pendulum motion. To have statistically meaningful results, the exper-
iment described above is repeated for 100 starting points drawn randomly
from 600 test points. From each of these starting points, we perform long
term forecasting up to the time horizon of 100.

Figure 4.4 illustrates the average NLPD error for 100 steps. This re-
sult is in alignment with what we observed previously. In Figure 4.3, as the
number of steps increases, the variance and difference between the predictive
means and the function values increase and as a result errors are growing.
The error has the same inclining trend for GPs with periodic and Gaussian
kernel. However, the error of the periodic GP is consistently smaller than
GP with the Gaussian kernel.

The RMSE error is illustrated in Figure 4.5. Since there is no direct
way to generalize the RMSE to the multivariate case, the errors on two
features are computed separately. As we mentioned before, the only factor
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Figure 4.3: The x-axes represent the time, the y-axes represent the angle
of the pendulum at each time, in the top figures and the angular velocity,
in the bottom figures. The right and left columns illustrate the Gaussian
and the periodic kernel, respectively. T here is set to 100, which means we
concatenate one-step ahead prediction 100 times. The blue lines represents
the predictive mean plus and minus two times the standard deviation.
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that plays a role here is the difference between the predictive means and
the function values, see eq. (4.1). Note how this difference is changing with
respect to the time steps for each feature in Figure 4.3. For the periodic
GP, the RMSE slightly increases for both features, Figure 4.5 (right panels).
The lower-left panel in Figure 4.3 shows prediction of the angular velocity
with GP with the Gaussian kernel. The predictive distributions of the test
data are constant with respect to the time steps. Hence, the error is the
root-mean-square of the difference between a constant value and a periodic
signal, which result to what illustrated in Figure 4.5 (lower-left panel). The
figure demonstrates that for both features, the periodic GP performs signif-
icantly better than the GP with the Gaussian kernel.

Generally, the results show that the Gaussian kernel can make accurate
prediction in areas that the training inputs are provided. But it fails to
extrapolate from the training set to the test set. The experiments confirm
that the periodic GPs successfully extracts the periodic pattern of the un-
derlying function and generalizes to the new test data points. Both NLPD
and RMSE errors are small for the periodic GP for such a long time horizon
of 100 steps, which indicates that the double approximation is a rewarding
method for long term forecasting of periodic systems.
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Figure 4.4: The figure demonstrates the error on the long term prediction
of the pendulum motion. The left and right panel illustrate the negative log
predictive distribution error for a GP with the Gaussian and the periodic
kernel, respectively. Both errors grow as the steps increase. Although, the
error of the periodic GP is consistently smaller than the error of GP with
the Gaussian kernel.
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Figure 4.5: RMSE error is shown for two features of angle and angular
velocity for the periodic GP and GP with the Gaussian kernel. Smaller
errors for the periodic GP (right panels) proves that it outperforms the GP
with the Gaussian kernel (left panels) for long term forecasting of periodic
signals.





Chapter 5

Conclusion

We have discussed long term forecasting of periodic systems using Gaussian
processes. For long term forecasting, we have iteratively computed pre-
dictive distributions up to a time horizon T . It is necessary to propagate
uncertainty associated with the prediction at each state to the successor
states. In such a setting, we need to predict at uncertain inputs, which is
analytically intractable with the periodic GP models. We have seen that
the moment matching method allows analytic prediction at Gaussian dis-
tributed inputs. However, analytic moment matching is only possible for
some kernels, such as Gaussian and polynomial kernels. In case of the stan-
dard periodic kernel which is of interest in our work, long term forecasting
with analytic moment matching is intractable.

We have proposed an equivalent parametric form of the standard pe-
riodic kernel, which, in combination with a double approximation method,
allows for long term forecasting of periodic processes. At the first step of the
double approximation, the first two moments of the input distribution have
been mapped to the trigonometric space, to embed the periodicity property
of the underlying function into the model. Subsequently, we have mapped
the trigonometrically transformed input through the GP function with the
Gaussian kernel. Both steps have been an analytic approximation of a non-
Gaussian distribution to a Gaussian.

Furthermore, the empirical evaluation of the double approximation has
been presented. To answer the first research question regarding the robust-
ness of the double approximation against varying the test input distribution,
we examined it on a periodic example system, see Section 4.1. The results
indicate that the method is robust against varying the mean of the test
inputs but it suffers to some extent from increasing variance of the input
distribution, see Table 4.1.
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The next part of our experiments has provided a comparison of the peri-
odic kernel with the Gaussian kernel for long term forecasting of a periodic
system (second research question). The results show that non-periodic ker-
nels such as the Gaussian kernel fail to perform long term forecasting while
the periodic kernel have brought promising result in this regard, see Section
4.2. It indicates that using a periodic kernel for long term prediction of the
periodic systems is essential.

The last part of our experiments answers the last research question re-
garding the performance of the double approximation on long term fore-
casting, see Section 4.2. The results confirm that as the time steps increase
the prediction error grows. Nevertheless, errors stay small, which implies
that our double approximation method is a valuable method for long term
forecasting of the periodic Gaussian processes.

5.1 Future Work

In this work we examined the systems with exact periodic patterns. Real
world applications, however, may not always follow exact periodic patterns.
For instance, other trends may exist in systems in addition to the periodic
trend. Such situations may hinder modeling and prediction with periodic
Gaussian processes. In future, we will generalize our inference method to the
signals that are not exactly periodic. This can be achieved by multiplying
the periodic kernel with a Gaussian kernel, for instance, which has also been
suggested by Roberts et al. [16]. We will investigate the extension of these
models to long term forecasting.





Appendix A

Mathematical Tools

A.1 Gaussian Identities

Let x ∼ N (a,A) be a multivariate normally distributed random variable
with mean vector a and the covariance matrix A with the size of D× 1 and
D ×D respectively. Then the Gaussian density becomes

p(x) = (2π)−
D
2 |A|−

1
2 exp[−1

2(x− a)>A−1(x− a)]. (A.1)

A.1.1 Marginal and Conditional Distributions

Let y ∼ N (b,B). Then the joint normal distribution p(x,y) becomes

p(x,y) =

[
x
y

]
∼ N

([
a
b

]
,

[
A C

C> B

])
, (A.2)

where C is the matrix of cross-covariances between x and y.

The marginal distributions are then

p(x) = N (a,A), (A.3)

p(y) = N (b,B), (A.4)

and the conditional distributions

p(x|y) = N (a+CB−1(y − b),A−CB−1C>), (A.5)

p(y|x) = N (b+C>A−1(x− a),B −C>A−1C). (A.6)
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A.1.2 Product of Gaussians

N (x|a,A)N (y|b,B) = cN (c,C) (A.7)

c = C(A−1a+B−1b),C = (A−1 +B−1)−1, (A.8)

and with the constant c

c = (2π)−
1
2 |A+B|−

1
2 exp(−1

2(a− b)>(A+B)−1(a− b)) (A.9)

A.1.3 Matrix Derivatives

Derivative of an inverse matrix [17] becomes

∂

∂θ
A−1 = −A−1∂A

∂θ
A−1, (A.10)

where ∂A
∂θ is a matrix of element-wise derivatives. The derivative of the log

determinant of a positive definite symmetric matrix A is given by

∂

∂θ
log |A| = Tr(A−1

∂A

∂θ
). (A.11)

A.2 Law of Iterated Expectations

Suppose x and y are two random variables. The law of iterated expectations
can be expressed as

E[E[x|y]] = E[x], (A.12)

A.3 Trigonometric Identities

Here we present some of trigonometric identities [13] that are used in our
computations

cos(2x) = 1− 2 sin(x)2, (A.13)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y), (A.14)

cos(x± y) = cos(x) cos(y)−+ sin(x) sin(y), (A.15)

sin(x) sin(y) = 1
2 [cos(x− y)− cos(x+ y)], (A.16)

cos(x) cos(y) = 1
2 [cos(x− y) + cos(x+ y)], (A.17)

sin(x) cos(y) = 1
2 [sin(x+ y) + sin(x− y)]. (A.18)



Appendix B

Derivatives of Periodic
Kernel

In this appendix, we present the derivatives of the proposed periodic function
in eq. (3.7) w.r.t. its hyper-parameters. For the input x ∈ RD the periodic
kernel becomes

K = kper(x,x
′) = α2 exp

(
−1

2

D∑
d=1

z>d Λ−1d zd

)
, (B.1)

where we have zd as the dth dimension of the trigonometrically transformed
input and Λd = diag[ld

2
, ld

2
]. Moreover, K is the covariance matrix and the

hyper-parameter vector is θ = (α2, l,a). The derivative of a matrix K can
be broken to the derivatives of the elements of the matrix Kij . Hence, the
first order derivative of Kij w.r.t. the α2 is given by

∂Kij

∂α2
= 2α×Kij . (B.2)

The first derivative w.r.t. the length-scales {ld}Dd=1 and periodicity hyper-
parameters {ad}Dd=1 are D × 1 vectors whose dth component can be written
as

∂Kij

∂ad
=

∂

∂ad

[
−1

2z
>
d Λ−1d zd

]
Kij

=
(

sin(adxdi ) cos(adxdj )− sin(adxdj ) cos(adxdi )
) (xdi − xdj )

ld2
Kij ,

(B.3)

and
∂Kij

∂ld
=

∂

∂ld

[
−1

2z
>
d Λ−1d zd

]
Kij

=
(
−Λ−Td zdz

>
d Λ−Td

)
Kij .

(B.4)

37



Appendix C

Appendix to Chapter 3

C.1 Mapping to Trigonometric Space for Multi-
variate Input

In Section 3.1.3, we discussed mapping the one dimensional inputs to the
trigonometric space. Here we discuss such a mapping for multivariate inputs
x ∈ RD. Assume that x is a Gaussian distribution. We map its first two
moments to the u = (sin(ax), cos(ax)). Note that we can learn a periodicity
hyper-parameter for each data dimension. As a result, the trigonometrically
transformed mean m̃ and covariance matrix Σ̃ becomes

m̃ =


E[sin(a1x1)]
E[cos(a1x1)]

...
E[sin(aDxD)]
E[cos(aDxD)]

 , (C.1)

and

Σ̃ =

 Σ̃11 Σ̃12 . . . Σ̃1D
...

. . .
. . .

...

Σ̃D1 . . . . . . Σ̃DD

 , (C.2)

where for two dimensions of i and j, if i = j

Σ̃ii =

[
V[sin(aixi)] C[sin(aixi), cos(aixi)]

C[cos(aixi), sin(aixi)] V[cos(aixi)]

]
, (C.3)

and if i 6= j

Σ̃ij =

[
C[sin(aixi), sin(ajxj)] C[sin(aixi), cos(ajxj)]
C[cos(aixi), sin(ajxj)] C[cos(aixi), cos(ajxj)]

]
, (C.4)
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where E is the expected value, V is the variance, and C is the covariance
function. In Section 3.1.3, computation of the elements of matrix Σ̃ij is
presented for i = j. Here, we present the computation when i 6= j.

C[sin(aixi), sin(ajxj)]

= E[sin(aixi) sin(ajxj)]− E[sin(aixi)]E[sin(ajxj)],
(C.5)

where both E[sin(aixi)] and E[sin(ajxj)] can be computed based on eq.
(3.12). Using sin(x) sin(y) = 1

2 [cos(x− y)− cos(x+ y)], the first term in eq.
(C.5) becomes

E[sin(aixi) sin(ajxj)]

=
1

2
E[cos(aixi − ajxj)− cos(aixi + ajxj)]

=
1

2
(E[cos(aixi − ajxj)]− E[cos(aixi + ajxj)]) .

(C.6)

We have xi ∼ N (µi, σ
2
ii), xj ∼ N (µj , σ

2
jj) and C(xi, xj) = σ2ij , then

p(aixi ± ajxj) = N (E[aixi ± ajxj ],C(aixi ± ajxj)), (C.7)

where mean and covariance are given by

E[aixi ± ajxj ] = aiE[xi]± ajE[xj ] = aiµi ± ajµj , (C.8)

C(aixi ± ajxj) = V(aixi) +V(ajxj)± 2C(aixi, ajxj)

= a2iσ
2
ii + a2jσ

2
jj ± 2aiajσ

2
ij .

(C.9)

From eq. (3.13), we have E[cos(x)] = exp(−1
2σ

2) cos(µ). Now by substitut-
ing the µ by E[aixi ± ajxj ] and σ2 by C(aixi ± ajxj), we can compute the
two terms of E[cos(aixi ± ajxj)] in eq. (C.6).

Other terms in the matrix Σ̃ij can be solved with the same fashion. First,
we change multiplication with a sum by using the trigonometric identities
given in equations (A.16) – (A.18). Then, the cross-covariances can be
computed based on the equations (3.12) – (3.19) with the means and the
variances on the equations (C.8) and (C.9).



Appendix D

Equations of Motion for
Pendulum

A pendulum shown in Figure 4.2 is a mass hung from a fixed point so that
it can swing freely backward and forward. Typical values for the weight of
pendulum m as well as its length l are 1kg and 1m respectively. ϕ is the
angle of deviation of pendulum from the vertical at a given moment. The
Cartesian coordinates of the fixed point are

x =
1

2
l sin(ϕ), (D.1)

y =
1

2
l cos(ϕ). (D.2)

The velocity is the derivative of the position vector with respect to time.
The squared velocity of pendulum is

v2 =
1

4
l2ϕ̇, (D.3)

where ϕ̇ denotes the angular velocity which is the derivation of angle ϕ with
respect to time.

There are two forces; gravitation g which is a downwards force, and also
an external force u. Considering the angle and angular velocity z = [ϕ̇, ϕ]>,
the motion of pendulum can be formulated as two ordinary differential equa-
tions

∂z

∂t
=

[
u−bϕ− 1

2
mlg sinϕ

1
4
ml2+I

ϕ̇

]
, (D.4)

where b denotes friction coefficient in eq. (D.4).
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The true periodicity T of the angle is determined according to eq. (D.5).

T = 2π

√
l

g
. (D.5)
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