
Learning Sequential Skills for

Robot Manipulation Tasks
Lernen von sequentiellen Fähigkeiten für Roboter-Manipulationsaufgaben

Master-Thesis von B.Sc. Simon Manschitz

Januar 2014

Department of Computer Science

Intelligent Autonomous Systems

Learning Sequential Skills for Robot Manipulation Tasks

Lernen von sequentiellen Fähigkeiten für Roboter-Manipulationsaufgaben

Vorgelegte Master-Thesis von B.Sc. Simon Manschitz

1. Gutachten: Prof. Dr. Jan Peters

2. Gutachten: Dr.-Ing. Michael Gienger

3. Gutachten: Dr.-Ing. Jens Kober

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit

den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die

aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit

hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 30. Januar 2014

(Simon Manschitz)

1

Abstract

We present an approach for learning sequential robot skills through kinesthetic teaching. The

demonstrations are represented by a sequence graph. Finding the transitions between consecutive

basic movements is treated as classification problem where both Support Vector Machines and

Hidden Markov Models are evaluated as classifiers. We show how the observed primitive order of

all trials can help to improve the classification results by choosing the feature vector depending

on the current primitive and its possible successors in the graph. The approach is validated with

an experiment in which a seven degree of freedom Barrett WAM robot learns to unscrew a light

bulb.

2

Contents

1. Introduction 5

1.1. Problem Statement . 5

1.2. Related Work . 7

2. Learning sequential skills 10

2.1. Proposed Approach . 11

2.2. Representing Skills with a Sequence Graph . 11

2.2.1. Local Sequence Graph . 13

2.2.2. Global Sequence Graph . 13

2.3. Sequence Graph Learning . 14

2.3.1. Local Sequence Graph . 15

2.3.2. Global Sequence Graph . 15

2.3.3. Characteristics of the Representations . 18

2.4. Learning the Switching Behavior . 19

2.4.1. Hidden Markov Models . 20

2.4.2. Support Vector Machines . 22

3. Experiments 23

3.1. Setup . 23

3.1.1. Automatic Demonstration . 25

3.1.2. Kinesthetic Demonstration . 26

3.2. Results . 27

4. Discussion 31

4.1. Experiments . 31

4.1.1. Sequence Graphs . 31

4.1.2. Classification . 32

4.1.3. Role of the Teacher . 33

4.2. Possible Enhancements . 35

4.2.1. Error Detection . 35

4.2.2. Learning from Failures . 36

4.2.3. Representing Multiple Skills . 37

5. Conclusion and Future Work 38

3

A. Appendix 39

A.1. Dynamic Movement Primitives . 39

A.2. Hidden Markov Models . 39

A.3. Support Vector Machines . 40

List of Figures 42

List of Algorithms 43

Bibliography 44

4

1 Introduction

Despite the wide use of robots in industry nowadays, their breakthrough in our everyday life is yet

to come. One underlying reason is their restriction to a small set of pre-programmed tasks that

they are capable to execute very precisely in designated environments. In these environments,

objects can be manipulated by using accurate sensors and well-known (non-)linear controllers.

To be applicable more generally, future robots have to learn from observing actions and to

generalize observed movements to new situations. Learning from observations is known as

“imitation learning” or “learning from demonstrations” in robotics [Argall et al., 2009]. As these

approaches can be used as an intuitive programming technique, they are also often referred to as

programming by demonstration. The overall concept can be subdivided into different learning

schemes depending on the human role in the learning process. Observing and mimicking humans

directly is challenging due to the correspondence problem [Nehaniv and Dautenhahn, 2002]

and expensive due to the need of a good measurement system for tracking the movements. We

therefore employ a kinesthetic teaching approach. Here, a human takes the robot by the hand

and guides it through the task several times, similar to how parents teach their child a task.

1.1 Problem Statement

A sequential skill is the ability to execute basic elementary movements in order to perform a

complex task. These movements are often referred to as movement primitives (MPs) in literature

[Flash and Hochner, 2005, Schaal et al., 2000]. As we are aiming at learning the sequential skills,

we assume for simplicity the primitives are given (as they have been previously learned) and we

do not have to learn them at this stage. Subdividing the task into smaller parts simplifies the

overall problem and introduces a two-level hierarchy, in which the lower-level primitives have to

be organized by the upper-level sequencing layer. Among other problems the main question that

arises when learning sequential skills on the upper-level is:

1. When to stop the execution of the current movement?

2. Which primitive to execute next?

These two questions can be treated as one single problem, leading to the question:

• When to execute which primitive?

In Section 2, we present our approach and show how this question can be answered. We use

kinesthetic demonstrations to learn a skill. The demonstration data is labeled manually and used

5

to create a graph as skill representation (see Figure 1.1). The nodes of the graph correspond to

movement primitives and the transition conditions are learned by applying machine learning

methods. We validate our approach with experiments where a Barrett whole arm manipulator

(WAM) robot with seven degrees of freedom (DOF) has to unscrew a light bulb. This task requires

fine force interaction between the robot and its environment in order to not break the bulb or slip

with the fingers during unscrewing. Also, the sequence of primitives is undetermined beforehand

as the amount of unscrewing repetitions depends on the position of the bulb in its socket. Hence,

the task has strong requirements on the generalization capabilities of the algorithm as well as on

the accuracy of the whole system.

Classifier

ClassifierClassifier

Data Training

Figure 1.1.: A 7-DoF WAM arm with a 4-DoF hand has to learn how to unscrew a light bulb

from kinesthetic demonstrations. We evaluate our approach with this example in

simulation as well as on the real robot.

6

1.2 Related Work

When performing manipulation tasks, the human brain seems to learn a connection between an

action and its corresponding sensor signals [Flanagan et al., 2006]. The learned model can be

used for a comparison of expected and actual sensor signals when reproducing the movement.

This comparison enables a monitoring of the movement progress as well as for error detection.

The remarkable object manipulation abilities of humans comes from their capabilities of adapting

the models over time and to generalize it to new situations. Instead of learning one complex

model, the task is separated into smaller subgoals such as contact events. In recent years, robot

researchers tried to transfer these abilities to the robotic domain. Therefore, a lot of effort has

been put into segmenting a demonstrated skill into smaller parts as well as on building models of

basic movements.

Dynamic movement primitives (DMP) are arguably the most prominent models for basic

movements [Degallier and Ijspeert, 2010]. A DMP consists of a set of differential equations that

encode an attractor behavior. A brief summary of the equations can be found in Appendix A.1

The models are robust to perturbations and and therefore widely used (e.g., Forte et al. [2012],

Muelling et al. [2010], Ude et al. [2010]). Also, many extensions of the original formulation

exist, such as encoding periodic motions [Ernesti et al., 2012] or joining consecutive primitives

with a non-zero velocity [Nemec and Ude, 2012]. Other prominent models used for MPs are

Hidden Markov Models [Kulic et al., 2007] or Gaussian Mixture Models [Calinon et al., 2007].

Segmenting a skill into smaller parts boils down to the question of finding the transition points

between consecutively executed primitives. In [Pais et al., 2013], a task is performed several

times and the variance of the parameters over time and trials is measured. The variance is used

as an indicator how important a certain parameter is for a certain part of the task. A task is

segmented into several parts by looking at changes of the control mode (position based versus

force based) and changes of the reference frame (which object is involved) or variables of interest.

In [Kulic et al., 2008] and [Takano and Nakamura, 2006], a primitive is considered to be a data

segment of fixed length in time. As this might produce good results for a predefined skill, the

resulting primitives are usually not generic enough to be applied to other tasks. Additionally,

the data has to be aligned in time before the segmentation to reduce the time-variations over

different demonstrations. Another possibility of finding transition points is by looking at the

velocity profile of sensor signals. In [Meier et al., 2012], a zero-crossing of a velocity is considered

to be a candidate of a primitive transition.

Many segmentation approaches additionally use a library of MPs. The authors of [Meier et al.,

2011] and [Meier et al., 2012] use a predefined library where the MPs are taught in isolation.

The segmentation than can be performed by finding the best matching sequence of known MPs.

Teaching MPs in isolation can also cause problems. A demonstrated skill is usually a smooth

movement. Therefore continuous primitives are blended together in a demonstration and the

7

actual sensor values at the beginning and end of a primitive can differ from the expected ones.

This blending of primitives is a general problem for segmentation algorithms and using primitives

learned in isolation can even aggravate the problem.

As soon as a sequence is segmented into MPs, these movements can be used to reproduce the

demonstrated skill. The drawback here is, that only the exact sequence can be reproduced. More

complex skills require a non-deterministic order of the sequence, e.g., repeating a movement

until a certain sensor event happens or choosing a succeeding movement dependent on the

state of the environment. The representation of the skill therefore has to incorporate such task

knowledge into its model.

The traditional way of modeling skills with a two-level hierarchy is by interpreting the switching

behavior as discrete events in a continuous system as illustrated in Figure 1.2 (left) [Pavlovic

et al., 2000, Peters, 2005]. Here, an event is often represented as a transition in a directed graph.

In [Kulić et al., 2012], an event is added for every observed switch of the demonstration, whereby

the transition connects the involved primitives and is labeled with the switching probability. A

sequence can then be generated by sampling randomly from the graph.

Primitive 1

Primitive 2

Primitive 3

Time

Hybrid System

Primitive 1

Primitive 2

Time

Primitive 3

Continous System

Figure 1.2.: Different views of a sequence of primitives. The left figure shows a hybrid system, in

which switches between primitives are seen as discrete events in a continuous system.

The right figure shows a continuous system. Here, primitives can be concurrently

(and gradually) active. The behavior of the system is a superposition of all primitives.

Graphs can also represent subgoals or constraints of a task [Ekvall and Kragic, 2006, Nicolescu

and Mataric, 2003, Pardowitz et al., 2005]. Such constraints can be used to extract symbolic

descriptions which implicitly determine the sequence order. Symbolic approaches can perform

sufficiently well for predetermined settings, but lack generality as they rely on predefined

assumptions about the tasks. If these assumptions do not apply to the desired task, they are likely

to bias the system towards bad decisions.

Instead of modeling the system’s policy as an event-based switching behavior, it may be more

suitable to treat the overall system as continuous entity. For example, the authors of [Luksch

et al., 2012] model the system as a recurrent neural network (RNN) in which primitives can be

concurrently activated and are able to inhibit each other. This RNN architecture leads to smooth

movements of the robots. The drawback is that their model is hard to learn and the sequence has

to be defined by hand. In [Pastor et al., 2012], primitives are encoded as Dynamic Movement

8

Primitives (DMPs) and linked with expected sensory data. Succeeding movements are selected

by comparing the current sensor values with the expected ones and choosing the best match. The

sequence representation is thus implicit and relies only on the sensor data. In contrast to that,

the authors of [Niekum et al., 2013] use a finite state machine as explicit representation of a

skill. The switching behavior between the different primitives that are linked to these states is

learned using a classifier.

Learning directly from humans by observing their movements can be quite tedious because

of the required complex tracking systems and other difficulties such as the correspondence

problem [Nehaniv and Dautenhahn, 2002]. Kinesthetic teaching is therefore a widely used

alternative in movement learning [Billard et al., 2006, Calinon and Billard, 2007, Calinon et al.,

2007, Kober et al., 2010]. In addition, reinforcement learning allows for self-improvement of the

skill and/or the underlying primitives [Daniel et al., 2013, Morimoto and Doya, 1998, Pastor

et al., 2011]. It reduces the requirements on the number of necessary demonstrations and makes

the robot more independent, but finding the right policies or value and reward functions can be

a hard problem.

9

2 Learning sequential skills

In the following sections we will focus on our approach and explain it in more detail. Similar to

other work, the system is also modeled on two levels of abstraction. The upper level represents

the sequence of primitives and can be seen as the set of states the robot has to pass through in

order to perform the task. As this representation models the skill itself it is independent of the

reproduction and has to be learned from the demonstrations.

On the lower level, sensor values and other features represent the current state of the sequence.

As a sequential skill is the ability to guide the robot through a desired sequence of movements, it

is necessary to connect this lower level with the upper one in a way that it becomes possible to

classify the current state into the overall representation of the skill.

The straightforward way of applying machine learning methods to the sequencing of primitives

would be to train one overall classifier with the data sampled from the kinesthetic demonstrations.

As we assume that the data is labeled, the training could be performed with state of the art

methods. A reproduction then could be achieved by performing the classification based on the

current features of the system at every point in time. Although this solution sounds simple and

might work for very basic skills, it has some major drawbacks that come up with an increasing

complexity of a skill. Usually the feature set as well as the number of required primitives grow

with the complexity. As a result, the danger of misclassifications also increases as the classifier

has to choose between more classes. In addition, the classification will take more time which

might violate the real time constraints of the system.

Our approach therefore tries to reduce the number of involved classes and feature dimensions.

In our case, the upper layer of the two-level hierarchy is represented by a sequence graph in

which nodes correspond to movement primitives. The state of the sequence (or lower layer)

consists of the current node in the graph and a set of features which are based on the raw sensor

values. Compared to other approaches, the feature set is not fixed but also depends on the

current node in the graph. We show how this reduction of the feature set can help to improve

the overall reproduction result.

Instead of one single overall classifier, a different classifier is used for each node in the graph.

During reproduction, the classifier belonging to the current node in the graph decides whether to

keep on executing the current primitive or to switch to one of the possible successors in the graph.

We evaluate two different types of classifiers: A generative and a discriminative classifier. As

generative classifier, we evaluate Hidden Markov Models (HMMs) and as discriminative classifier

Support Vector Machine (SVMs). Using a sequence graph in conjunction with a set of classifiers

splits the overall classification problem into many smaller problems. These problems are easier

10

to solve and we will show that the reduction of the complexity makes the learning of a skill

manageable.

2.1 Proposed Approach

Before going into details about the graph representation and the learning algorithm, an overview

of the system is presented first. We assume a predefined set of primitives denoted as P =

{p1, p2, ..., pn}. In this work a primitive is a dynamical system (DS) with an attractor behavior.

Each DS has a goal in task space coordinates that should be reached if the primitive is executed.

A goal can be a desired position of a robot body, joint angle, force or a combination thereof and

can be defined relative between bodies using reference frames. The feature set is denoted as

x ∈ Rn. The features are not global but assigned as output vectors to primitives, leading to one

output vector x i per primitive pi.

Figure 2.1 shows the overall flow of our approach based on a simple example with only 3

different primitives. The primitives are illustrated by using different colors. They are chosen

arbitrarily and have no further meaning, but show the essential characteristics of our approach.

We start with (labeled) sampled data of at least one kinesthetic demonstration (Figure 2.1a).

Based on the observed sequential ordering of the primitives, the skill then gets represented by a

sequence graph in which every node is linked to a primitive (Figure 2.1b). The presentation will be

explained in detail in the following section, where we also present two different types of sequence

graphs, both showing different ways of incorporating the ordering into the representation.

After generating the sequence graph, one classifier is trained for each node in the graph

(Figure 2.1c). When reproducing the skill, always one node in the graph is then considered

as active and the corresponding primitive gets executed. The classifier belonging to the node

decides at every time step either to continue with the execution of the current primitive or to

switch to one of the possible successors in the graph.

In Section 2.2 the sequence graph representation is formalized. Here, also two different types

of graphs are presented. The learning algorithms for these graphs are then explained in detail

in Section 2.3. In Section 2.4 it is shown how the switching behavior between the connected

primitives is learned.

2.2 Representing Skills with a Sequence Graph

A sequence graph is a directed graph in which each node ni is linked to a movement primitive.

This mapping is not injective which means a primitive can be linked to more than one node.

During reproduction, a primitive gets executed if a linked node is considered active. Transitions

in the graph lead to primitives that can be executed next, whereby the switching behavior is

learned by a classifier. A transition tk,l is connecting the node nk with nl . Each transition is linked

11

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Sample

Fe
a
tu
re

V
a
lu
e

(a) Sampled (labeled) data of one kinesthetic demon-

stration. The background color indicates the acti-

vated primitive, while the plot colors show which

feature belongs to which primitive. In this simpli-

fied example each primitive has only one associated

feature.

25 60,110

175

85,140

220

(b) Based on the sequential order of the demonstrations,

the skill is represented with a sequence graph. The tran-

sitions are linked with the corresponding data points of

the transitions.

8
5
,1

4
0

60 80 100
0

0.2

0.4

0.6

0.8

1

Sample

Fe
a
tu
re

V
a
lu
e

120 140 160
0

0.2

0.4

0.6

0.8

1

Sample

(c) One classifier is created for each node in the

graph. Only the features of the previous primi-

tive and its possible successors are used for train-

ing. In this exemplary transition from the upper

sequence graph, the red primitive is not involved

and hence its feature is not used.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Feature Predecessor

Fe
a
tu
re

Su
cc
e
ss
o
r

(d) Classification result for a Support Vector Machine. Based

on the training data (colored dots) the classifier finds

a border separating both classes (background). During

reproduction, this border is used to decide either to keep

on executing the predecessor primitive or to switch to

the successor.

Figure 2.1.: Overall flow of our framework. First, the labeled data from a set of demonstrations

(a) is taken to extract a sequence graph (b). Then, one classifier is created for each

transition in the graph based on the linked data of the demonstrations (c, d). The

classifiers are then used together with the graph to decide which primitive to execute

during reproduction. We propose two different kinds of sequence graphs, as well as

two different classifiers.

with the corresponding data points at which it was observed during the demonstration (black

vertical lines in Figure 2.1a). As the same transition can be observed multiple times, multiple

data points are possible.

Having m nodes in the graph, we use a m×m transition matrix T to describe one sequence

graph. Note that it is possible to continue with the execution of the current primitive at each

time step. As a result, the transition tk,k exists for all k.

Before creating a sequence graph, the sequential order Si for each demonstration is extracted

from the sampled data, resulting in one directed acyclic graph with nodes ni for each trial. The

main step is now to combine these graphs into one representation of the skill, which can be a

hard problem as the algorithm has to work solely on the observations. For example, a skill can

be shown several times with different sequential orders of the primitives. From the algorithmic

point of view it is not clear if the ordering is arbitrary for the skill or if the differences can be

12

linked to some traceable sensor events. Hence, there are different ways of building the graph

structure for a skill and we show two possibilities by investigating two different kinds of sequence

graphs: The local graph presumes the ordering to be arbitrary and is not considering it in the

representation, while the global graph is trying to construct a more detailed description of the

skill based on the ordering of the primitives.

2.2.1 Local Sequence Graph

The local sequence graph assigns exactly one node to each executed primitive and hence the

number of nodes and primitives is equal. The graph is initialized with n nodes and no transitions.

For each observed pair of preceding and succeeding primitives a transition is added to the graph.

As only pairs and no history are considered, it is irrelevant at which point in the sequence a

transition occurs. The corresponding graph for the toy example is shown in Figure 2.2.

25

220

60,110

175 85,140

Figure 2.2.: Local sequence graph for the toy example. Each primitive appears only once in the

graph. Thus, there are less nodes and more involved classes for each transition.

The graph contains only three nodes, one for each executed primitive. When reproducing the

movement, a switch from the red primitive to the blue one is always possible at this level of the

hierarchy and it is up to the classifier to prevent such incorrect transitions. The major drawback

of this representation therefore are the strong requirements on the feature set, as it has to be

meaningful enough to allow for a correct classification independent of the current state of the

actual skill sequence.

2.2.2 Global Sequence Graph

The global sequence graph tries to overcome the strong requirements on the feature set of the

local sequence graph by constructing a more detailed skill description. One essential characteristic

of the global sequence graph is that a node is not only linked to a primitive but can also be

considered to be a state of the actual sequence. A primitive can appear multiple times in one

representation as depicted in the global sequence graph of the toy example (Figure 2.3). Here,

two nodes are linked to the red primitive because the sequence was considered to be in two

different states when they were executed.

When comparing the primitive ordering (Figure 2.1a) with the sequence graph, it is notable

that the repeated appearance of the green-blue transition is represented by only two nodes in

13

25 60,110

175

85,140

220

Figure 2.3.: Global sequence graph for the toy example. Compared to the local sequence graph,

the global graph has more nodes, but less outgoing transitions per node.

the graph which are connected by a cyclic path. The reason is that consecutive sequences of the

same primitives are considered to be a repetition which can be demonstrated and reproduced

an arbitrary number of times. Repetitions are also advantageous when describing the task of

how to unscrew a light bulb, where you have to repeat the unscrewing movement several times

depending on how firm the bulb is in the holder. As the number of repetitions are fixed for each

single demonstration, the algorithm has to conclude that different numbers of repetitions of the

same behavior appeared in the demonstrations and incorporate this information into the final

representation of the task.

Demonstration 1 Demonstration 2

Merged Sequence

Figure 2.4.: The global sequence graph considers the sequence order when merging multiple

demonstrations into one representation. The orders are compared with each other

and branches are introduced if nodes differ.

In addition to interpreting repetitions of primitives as one state of a sequence, the global

sequence graph is able to consider different sequence orders of multiple demonstrations. The

orders are compared with each other and branches are introduced into the graph structure if

nodes differ. An illustration of this merging step is shown in Figure 2.4. As a primitive can be

linked to more than one node in a global sequence graph, the graph has in general more nodes

than the local sequence graph for the same kill. The resulting representation is flatter and hence

the nodes have less outgoing transitions. The classification therefore becomes easier as less

classes are involved in the decisions.

2.3 Sequence Graph Learning

In this section we discuss how the presented representations are learned as well as how the

classifiers are trained and which data is taken for the training.

14

2.3.1 Local Sequence Graph

The local sequence graph is created by simply looking at the primitive pairs. The starting point is

the sequential order of the primitives from the demonstrations. As the number of nodes is equal

to the number of primitives, the graph is initialized with n nodes.

Next, the algorithm steps through the order and for each switch of a primitive a corresponding

transition is added to the graph, leading from the node of the preceding primitive to the node of

the succeeding primitive. If a transition with the same predecessor and successor already exists

in the graph, only the corresponding data point is added to the existing transition.

Multiple demonstrations are processed one after the other and the starting point for each

demonstration is the generated graph of the previous demonstration. The algorithm is summa-

rized in Algorithm 1. Here, T all is the set of all demonstrations and G is the generated sequence

graph which is the output of the algorithm.

Algorithm 1 Local sequence graph generation

Require: T all

G = initializeGraph(Tall); {Initialize with n nodes}

for all T ∈ T all do

S = getSequenceOrders(T);

E = getTransitions(S);

for all e ∈ E do

if hasTransition(G, e.predecessor, e.successor) then

eexisting = getTransition(G, e.predecessor, e.successor);

addTransitionPoint(eexisting, e.transitionPoint);

else

addTransition(G, e.predecessor, e.successor, e.transitionPoint);

end if

end for

end for

return G;

2.3.2 Global Sequence Graph

For creating a global sequence graph three major steps have to be performed:

1. Create one acyclic graph T i for each demonstration.

2. Replace repetitions of primitives with cyclic transitions.

3. Create one global representation T of the skill based on the updated graphs T i.

The first point is trivial as the acyclic graph represents the primitive orders directly given by the

observations. Thus, the sequential orders can be taken directly from the main diagonal of T . The

15

second point is called folding and its pseudo code is shown in Algorithm 2. The algorithm starts

with the sequential order S with n elements and searches for a repetition of l = ⌊n/2⌋ primitives,

meaning longer repetitions are preferred over shorter ones. The method findRepetition starts

from the left and compares the primitives of the nodes {n0, n1, . . . , nl} with {nl+1, . . . , n2l+1}.

Algorithm 2 Graph folding

Require: T

S = getSequenceOrders(T);

repetition= findRepetition(S);

while repetition.found do

M = ;;

m= repetition.end− repetition.start+ 1;

for i = repetition.start to repetition.end do

mergeNodes(S(i +m),S(i));

M = M ∪ S(i);

end for

tail= findTail(S, repetition.end+ 1);

repetition= findRepetition(S);

if !repetition.found and tail.found then

for i = tail.start to tail.end do

mergeNodes(S(i +m),S(i));

M = M ∪ S(i);

end for

end if

removeNodes(M);

S = S \M;

end while

If both node chains match, the node pairs {n0, nl+1} . . . {nl , n2l+1} get merged. If the chains do

not match, the starting position is shifted to the right and the method starts from the beginning

with n1 as starting point. The shifting is done until the end of the list is reached. Next, l is

decremented by one and all previous steps are repeated. The algorithm terminates if the cycle

size is 1, which means no more cycles can be found.

When merging two nodes nA and nB, the input and output transitions of node nB become input

and output transitions of nA. If an equal transition already exists for nA, only the associated

transition points are added to the existing transition. Note that the cyclic transition is introduced

when merging the nodes n0 and nl+1, as this leads to the input transition t l,l+1 being bend to t l,0.

After each iteration of the algorithm, the nodes of the latter chain are not connected to the rest

of the graph anymore and can be removed from the representation.

To allow escaping a cycle not only at the end of a repetition, the algorithm also searches for an

incomplete cycle after a found repetition. This tail is considered to be part of the cycle and is

16

also merged into the cyclic structure, as shown in Figure 2.1b. Here, the green-blue repetitions

end incompletely with the green primitive.

The final step of creating a global sequence graph is called merging, as several separate graphs

are merged into one representation. The algorithm shown in Algorithm 3 merges two graphs and

thus gets called n−1 times for n demonstrations. The goal of the algorithm is to step through the

representations simultaneously from left to right, merging equal nodes and introducing branches

whenever the nodes differ.

Algorithm 3 Graph merging

Require: TA, TB

SA = getSequenceOrders(TA);

SB = getSequenceOrders(TB);

for all sB ∈ SB do

cmax = 0;

for all sA ∈ SA do

c =
∑

compare(sB, sA);

if c > cmax then

cmax = c;

sA,max = sA;

end if

end for

nodes= 1;

for all i ∈ SA,max do

if nodes≤ c then

mergeNodes(sA,max(i), sB(i));

else

addNode(TA, sB(i));

end if

nodes= nodes+ 1;

end for

end for

First, the sequence orders are extracted from both graph representations. Here, sequence

orders are paths through the graph where only left-to-right transitions are considered. The toy

example has two possible orders: red, green, blue and red, green, red, blue. The algorithm

considers two nodes as equal if the columns of the corresponding matrices are equal, which

means both nodes use the same underlying primitive and have the same input transitions. Before

merging the nodes, the algorithm looks for the best match between the sequence orders of both

representations. Doing it that way, branches are introduced at the latest possible point in the

combined graph. Once branched, both representations are separated and do not get merged

together at a later point in the sequence.

17

2.3.3 Characteristics of the Representations

Note that if a skill always requires the same number of repetitions of a sequence, both presented

sequence graphs will introduce a cycle in the representation. The system is then only able to

reproduce the movement properly if the classifier finds the transition leading out of the cycle

after the correct number of repetitions. While an improvement is not possible here for the local

graph, a fixed number of repetitions can be modeled with the global graph by turning off the

search for repetitions of primitives.

Although the global sequence graph has advantages over the local sequence graph due to

the more detailed representation, it also introduces some drawbacks. Figure 2.5 depicts an

exemplary sequence order in which two possible repetitions of (sub-)sequences exist.

Figure 2.5.: Exemplary sequence order in which multiple repetitions of (sub-)sequences occur.

Without additional knowledge about the task it is not clear how these cycles should

be represented in the graph.

In the beginning, the repetition red-green-blue can be found, followed by the repetition

blue-red in the end, both appearing two times. Without additional knowledge about the skill

there are many possibilities to build the global sequence graph. For example, it is not clear if the

second appearance of the blue primitive is belonging to the first repetition, the second one or

both. Depending on such an assumption about the skill the resulting graph may differ. Figure 2.6

depicts four possible sequence graphs for the exemplary sequence order.

As an assumption has to be made here, we chose to search from left to right and require a full

repetition of a (sub-)sequence in order to create a cycle in the graph as illustrated in Figure 2.6c.

In the following section it is explained how the search is performed and in which cases a cycle

will be introduced.

One characteristic of the local sequence graph is that it is not able to represent partial orders.

For example when baking a cake, it is irrelevant whether the eggs or the flour are put into

the bowl first. If both possibilities are demonstrated, the local sequence graph will introduce a

bilateral transition between both primitives. As a result, features are needed which prevent the

system from taking this transition more than one time. The global sequence graph instead would

introduce two different branches and after deciding for the eggs or flour first it would choose the

other one as successor.

18

(a) Two cycles are introduced. It is possible to

get back to the first cycle when being in

the second one.

(b) Two cycles are introduced. It is not possible to get

back to the first cycle once the transition leaving the

cycle was taken.

(c) Only one cycle is introduced. Here, the blue primitive belonging

to both repetitions is assigned solely to the first repetition. As a

result, the remaining order red -b lue-red is not considered to be

a repetition anymore and thus no second cycle is introduced.

(d) Only one cycle is introduced. Here, the blue primitive belonging to both repeti-

tions is assigned solely to the second repetition. As a result, the starting order

red -green-b lue-red -green is not considered to be a repetition anymore

and thus no second cycle is introduced.

Figure 2.6.: Possible sequence graphs for the exemplary sequence order of Figure 2.5. The

graphs differ significantly depending on their metric of finding the repetitions in the

sequence order.

2.4 Learning the Switching Behavior

After creating the graph representation, the next step is to learn the switching behavior between

the primitives. In our case, this is treated as classification problem. We therefore present in this

section how the classifiers are trained. Each node has its own classifier which is used if the node

is active during reproduction. It decides either to continue with the execution of the current

primitive or to switch to a possible successor node. As a node can have more than one outgoing

transition, this is a multiclass classification problem with the classes being neighbor nodes in the

graph. Due to the graph representation we do not have to learn a overall classification f (x) = p

with p ∈ P and x being the combined output vector of all primitives x = (x 1, x 2, ..., x n)
T , but

can restrict the classes ci of each classifier to a subset Pi ⊆ P and the data vector to the output

vectors of the elements in Pi. Restricting the number of classes increases the accuracy of the

system as unseen transitions between primitives are prevented. A reduction of the output vector

19

8
5

,1
4
0

60 80 100
0

0.2

0.4

0.6

0.8

1

Sample

Fe
a
tu
re

V
a
lu
e

120 140 160
0

0.2

0.4

0.6

0.8

1

Sample

Figure 2.7.: For each observed transition point the data between the start of the preceding

primitive and the end of the succeeding primitive is chosen as training data. Only the

features of the nodes that are linked to each other in the graph are considered for

the classification problem. In this exemplary transition of the toy example, the red

primitive is not connected to the blue primitive and hence its feature is not used.

can be seen as intuitive dimensionality reduction, as unimportant features used by uninvolved

primitives are not considered for the decision.

Before introducing the classifiers themselves, we show which data is used for the training

(see Figure 2.7). After the demonstrations, each transition in the acyclic graph is linked to one

transition point (TP) in the sampled data. During the merging and folding process of the global

sequence graph or the pair search for the local graph transitions are merged together, resulting

in multiple TPs for each transition. For each TP, the data points between the previous and next

transition point in the overall data are taken from the training and labeled with the primitive

that was active during that time. As all transitions have the same predecessor for one classifier,

the first part of the data will always have the same labels, while the second part may differ

depending on the successor node of the transition.

Next, a rough overview on the two used classifiers is given, starting with HMMs and then

introducing SVMs. As these methods are state of the art we focus on the specifics that are

important for our approach. For a deeper insight the interested reader is referred to [Bishop,

2006]

2.4.1 Hidden Markov Models

HMMs model a sequence of features as a set of m hidden states Z = {z1, z2, . . . , zm} with

observable outputs (emissions) that depend on probability distributions. The sequence is taken

into account by introducing transition probabilities between the states. Thus, the current state of

the system depends on the features as well as on the last state. We perform the classification by

introducing one state for each class. A state is modeled by a Gaussian Mixture Model (GMM)

20

and the number of Gaussians is determined by using the Bayes Information Criterion (BIC). To

prevent one class dominating the others, the number of Gaussians are first computed for each

class separately using the BIC and then the maximum is chosen as number of Gaussians for each

state.

The transitions can be represented by a m × m matrix T with element T (i, j) being the

probability of switching to state j when being in state i. As the demonstration data is labeled,

the probabilities can be estimated directly from the observations {l1, l2, . . . , ln}, li ∈ Z:

T (i, j) =

∑n

k=1
b(lk−1, zi)b(lk, z j)
∑n−1

k=0
b(lk, zi)

(2.1)

Here, b is a Boolean helper function which simply checks two labels for equality:

b(li, l j) =

(

1 if li = l j

0 otherwise
(2.2)

The numerator in (2.1) is equal to the number of transitions to state z j when being in state zi.

The denominator is equal to the number of times the state zi has been observed and can be

seen as scaling factor ensuring that each row of the matrix sums up to one, thus representing a

probability distribution.

Each GMM is learned separately with the expectation-maximization algorithm. For the classifi-

cation, the Viterbi algorithm is used to get the most probable state path for the input sequence

and the class with the last state is chosen as classification result. The behavior of probabilistic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Feature Predecessor

Fe
a
tu
re

Su
cc
e
ss
o
r

Figure 2.8.: Classification result of a Hidden Markov Model. The HMM approximates the training

data (colored dots) with Gaussian distributions (ellipsoids). Despite the correct mod-

eling of the data, the classification result for the white area often is not conclusive.

generative classifiers is often unpredictable when being faced with unseen data that is in a region

21

of the feature space where absolutely no data has been used for the training. Figure 2.8 shows

how the HMM approximates the training data of the toy example with Gaussian distributions.

Although the data itself is modeled properly, the classification result for data in the white region

of the feature space is often unpredictable.

2.4.2 Support Vector Machines

We chose SVMs as discriminative classifiers. SVMs are trying to separate the feature space into

hyperplanes and belong to the maximum margin classifiers. Each hyperplane represents one

class and data points are assigned to classes depending on their position in the feature space. We

decided to use the freely available LIBSVM library [Chang and Lin, 2011] as implementation for

the SVM and we use radial basis functions as kernels:

K(x n, x m) = exp(−γ‖x n− x m‖
2),γ > 0 (2.3)

The detailed SVM equations can be found in Appendix A.3. For the multiclass classification, the

standard SVM formulation is used together with the one-versus-one concept. Here, for k classes

k(k− 1)/2 binary classifiers are generated. The classification is done for each classifier and the

feature vector is assigned to the class that was chosen most frequently.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Feature Predecessor

Fe
a
tu
re

Su
cc
e
ss
o
r

Figure 2.9.: Classification result of a SVM trained with data of the toy example. In contrast to a

HMM, the SVM is finds a clear border between both classes.

The classification result for the toy example is depicted in Figure 2.9. The SVM is able to

separate the feature space into two different areas as indicated by the different background

colors. We will show in the succeeding section that this clear distinction indeed leads to better

results when reproducing the skill, despite both classifiers having similar misclassification rates

for the training data.

22

3 Experiments

In this section we present the results of our work. We evaluated our approach both in simulation

and with a real Barrett WAM robot. As a scenario we chose to unscrew a light bulb. In Section 3.1

we outline the details of the experiments. The results are then presented in Section 3.2 and

discussed in Section 4.1.

3.1 Setup

The Barrett WAM robot has seven DOF and its joints are torque controlled. The controller is

model based. The attached hand has four DOF. Each finger has two joints, whereby the joints

of each finger are kinematically coupled to each other. Therefore each finger has one DOF. The

remaining DOF can be used to spread two fingers of the hand. Strain gauges in the fingers

can be used to measure contacts between the hand and the environment. Additionally, one

six-dimensional force torque sensor is at the wrist of the robot’s hand.

For the representation of the skill we chose seven different movement primitives as depicted

in Figure 3.1. The robot starts in an initial position and first moves towards the bulb. Next,

the actual unscrewing movement starts which consists of four different primitives: The hand is

closed, rotated counterclockwise, opened and rotated clockwise. These primitives are executed

repeatedly until the bulb loosens. Subsequently, the robot puts the bulb into a bin and again

returns to its initial position. The detailed task flow is illustrated in Figure 3.2. We chose to

unscrew the light bulb by caging it. Here, the robot encloses the bulb with its hand and grasps it

below the point with the largest diameter. When unscrewing the bulb (rotating the closed hand

counterclockwise), a force in upward direction is applied to the robot’s hand to ensure contact

with the bulb.

Figure 3.1.: Seven primitives were used to unscrew the light bulb. The movements performed by

the primitives are going to the initial position (), going to the light bulb (), closing

the fingers (), rotating the hand counterclockwise (), opening the fingers (),

rotating the hand clockwise (), and going to the bin ().

23

One feature g is assigned to each primitive. The feature is called “goal distance” and can be

directly derived from the primitive’s goal in task space x goal:

∆ = x goal− x (3.1)

g = 1− e−0.5∆T
Σ
−1
∆. (3.2)

Figure 3.2.: Illustration of a successful unscrewing sequence. The robot starts in an initial position

() and first moves towards the bulb (). Then it repeats the unscrewing movement

(, , ,) until the bulb loosens () and subsequently, the bulb is put into a bin

() and the robot returns to its initial position ().

Here, x ∈ Rn is the current state of the robot in task space coordinates and Σ is a manually

defined n× n diagonal matrix. Equation (3.2) is dependent on the distance between the position

of the robot and the primitive’s target position. The goal distance has several advantages over

using the Euclidean distance as a feature. First, the values are in the range [0,1] and no further

data scaling is necessary. In addition, the feature variation around the robot’s goal can be shaped

with the parameters of Σ. For low parameter values, the goal distance starts to decrease only if

the robot is already close to its goal.

In addition to the goal distances, the velocity v of the hand is used as feature to check if the

light bulb is loose. To avoid the velocity dominating the other features, it is scaled using the

mean v̄ and standard deviation σ
v

with the equation

24

ṽ =
v − v̄

σ
v

+ 0.5 (3.3)

and then clipped to [0,1]. The scaling is done automatically for the complete data used for

training the classifiers. Given the goal distances and the velocity of the hand, the overall feature

dimension is 8 for 7 primitives.

3.1.1 Automatic Demonstration

We first validated our approach in simulation before testing the movements with the real Barrett

WAM robot. Figure 3.3 shows the simulation environment that was used for the experiments.

The simulation framework is a commercial software and uses the Vortex physics engine. The

engine computes the contact forces between dynamic objects in the environment and hence

it was possible to simulate the interaction between the robot and the light bulb. To ensure

comparability between the results of simulation and real experiments we recreated the real setup

within the simulation framework. The necessary unscrewing repetitions were varied by changing

the position of the light bulb in the holder for each demonstration. Recreating the scenario within

the simulation allowed us to use the same underlying primitives in both simulation and for the

real experiments. The simulation was therefore also used as an easy rapid-prototyping method to

ensure that the primitives were defined properly and that they were sufficient for the execution

of the skill.

Figure 3.3.: The real setup was recreated within the simulation framework. The teaching was

done with automatic demonstrations in which primitives are executed in a predefined

order.

As a kinesthetic teaching is not possible in simulation, we used a teaching method we called

automatic demonstration. Here, the primitives are executed in a predefined order using a state

machine. For modeling variations in the switching behavior, the transition points are chosen

randomly from a certain range. For example when going down to the bulb, the succeeding

25

primitive can be activated if the goal distance of the primitive is in the range [0, 0.1]. The

exact transition point is chosen randomly from this range every time the primitive starts its

execution and hence the transition point could be for example 0.09 and 0.02 for two different

demonstrations. The intention of the automatic demonstration was to create a switching behavior

which is similar to that of a human teacher.

3.1.2 Kinesthetic Demonstration

For the kinesthetic teaching, we activated the gravity compensation mode of the robot and

executed the task by guiding its arm. Switches between primitives were indicated by pressing a

key every time we considered a movement as complete. We also chose to activate the opening

and closing of the hand by pressing a key rather than using compliant fingers in order not to

influence the force torque sensor at the wrist (see Figure 3.4).

Figure 3.4.: Kinesthetic demonstration with a Barrett WAM. The skill of unscrewing a light bulb

was taught to the robot by guiding its arm through the movement. Transitions

between primitives were indicated by pressing a key. Also, the closing and opening

of the hand was activated by pressing a key in order not to influence the force torque

sensor at the wrist of the robot.

Although only the transitions were indicated by pressing keys, the labeling could be performed

automatically after each demonstration. The reason is the definition of the skill, which is

deterministic in our case as both start and end of the sequence are the same for every trial. In the

beginning, the robot has to go down to the bulb and in the end it has to put the loose bulb into

the bin. In between the primitives responsible for unscrewing the bulb are executed arbitrary

times in a predefined order. Thus, a conclusion about the number of repetitions can be drawn

by dividing the difference of total and fixed primitives by the number of repetitive primitives.

Algorithm 4 depicts how the labeling was performed in detail. Note that this is not an automatic

data labeling algorithm in a sense that it labels data by choosing the best matching primitive

from a library. Instead, it is a fixed and manually defined algorithm which reduces the effort for

the teacher only for this skill.

26

Algorithm 4 Labeling of a kinesthetic demonstration

Require: X , t {Data and vector with transition points}

primitives= length(t) + 2;

datapoints= length(X);

repetitions= (primitives− 7)%4;

label s = vector(datapoints);

{Label start of sequence}

label s(1 : t(1)− 1) = Go to light bulb;

{Label arbitrary repetitions}

for id x = 0 to repetitions− 1 do

label s(t(4 ∗ id x + 1) : t(4 ∗ id x + 2)− 1) = Close hand;

label s(t(4 ∗ id x + 2) : t(4 ∗ id x + 3)− 1) = Rotate counterclockwise;

label s(t(4 ∗ id x + 3) : t(4 ∗ id x + 4)− 1) = Open hand;

label s(t(4 ∗ id x + 4) : t(4 ∗ id x + 5)− 1) = Rotate clockwise;

end for

{Label end of sequence}

label s(t(end − 5) : t(end − 4)− 1) = Grasp;

label s(t(end − 4) : t(end − 3)− 1) = Rotate counterclockwise;

label s(t(end − 3) : t(end − 2)− 1) = Go to initial position;

label s(t(end − 2) : t(end − 1)− 1) = Go to bin;

label s(t(end − 1) : t(end)− 1) = Open hand;

label s(t(end) : end) = Go to initial position;

return label s ;

3.2 Results

We evaluated our approach with multiple demonstrations along with all possible combinations

of classifiers and sequence graphs. For all demonstrations, our approach was able to find the

correct sequence graphs of the skill which are shown in Figure 3.5.

Figure 3.6 shows the classification recall for the simulation. As reference we trained a SVM

without creating a graph representation using the complete labeled data, hence no dimensionality

reduction was used.

Figure 3.7 shows the results for the reproduction of the movement. The table outlines the

percentages of successfully reproduced transitions between primitives compared to the overall

transitions that were necessary to perform the task. If an incorrect movement was chosen or the

robot got stuck the transition was marked as faulty. In that case the transition was blocked and

triggered manually in the next trial, so that all succeeding transitions could be tested. Dashed

entries indicate dangerous behaviors that could harm the robot or break the light bulb.

As our framework allows for incorporating an arbitrary number of demonstrations into one

task representation, we were able to test all possible trial combinations. For the teaching, we

performed 3 kinesthetic demonstrations, hence 7 different outcomes are possible. Figure 3.8 and

27

Initial

(a) Global sequence graph for the light bulb task.

(b) Local sequence graph for the light bulb task.

Figure 3.5.: Graph representations of the light bulb task. While the global graph gives a complete

description of the task, the local graph merges several nodes. The merging creates

paths in the presentation which were not demonstrated. An example is the sequence

marked as red which leads to a misbehavior of the robot if executed.

Figure 3.9 show the classification recall and reproduction results for the experiments on the real

robot. Here, the same reference classifier was used and again all combinations of SVMs, HMMs

and both sequence graph types were evaluated. First tests showed that the reference classifier

did not provide useful results. In order to not harm the robot we therefore skipped it for the

evaluation. The results of the experiments are discussed in Section 4.1.

28

1 1+2 1+2+3 1+2+3+4

88.0

90.0

92.0

94.0

96.0

92
.3

95
.2

95
.9 96
.2

96
.1

89
.9

89
.6

89
.1

96
.4

96
.2

95
.4

95
.1

96
.0

93
.4

93
.4

93
.2

95
.8

96
.7

96
.6

96
.6

Demonstration

R
e
ca
ll
Si
m
u
la
ti
o
n
[%

]

Reference Classifier Local Graph & HMM Global Graph & HMM Local Graph & SVM Global Graph & SVM

Figure 3.6.: Classification recall in percent based on 4 different demonstrations, using SVMs,

HMMs together with the global respective local sequence graph. The reference

classifier is a SVM which was created without using a sequence graph.

1 1+2 1+2+3 1+2+3+4

40.0

60.0

80.0

100.0

56
.3

81
.3

62
.5

81
.3

43
.8

62
.5

62
.5

37
.5

43
.8

50
.0

68
.8

75
.0

81
.3

93
.8

93
.8

93
.8

87
.5

10
0.
0

10
0.
0

10
0.
0

Demonstration

R
e
p
ro
d
u
ct
io
n
R
a
te

Si
m
u
la
ti
o
n
[%

]

Reference Classifier Local Graph & HMM Global Graph & HMM Local Graph & SVM Global Graph & SVM

Figure 3.7.: Reproduction results in percent of different demonstrations for SVMs and HMMs

both using the global and local sequence graph. Shown are the successfully per-

formed primitive switches compared to the overall switches. Dashed entries indicate

dangerous behaviors. The reference classifier is a SVM which was created without

using a sequence graph.

29

1 2 3 1+2 1+3 2+3 1+2+3

86.0

88.0

90.0

92.0 91
.9

92
.7

88
.1

92
.0

90
.5

90
.5

90
.5

90
.0

90
.9

90
.5

86
.9

86
.3

87
.4

85
.9

90
.8

91
.8

91
.7

91
.4

90
.2

92
.9

91
.2

90
.9

91
.0

92
.7

89
.3

90
.1

89
.0 89

.4

91
.4

91
.3

92
.9

91
.1

92
.0

92
.7

92
.7

Demonstration

R
e
ca
ll
R
e
a
lR

o
b
o
t
E
xp

e
ri
m
e
n
ts
[%

]

Reference Classifier Local Graph & HMM Global Graph & HMM Local Graph & SVM Global Graph & SVM

Figure 3.8.: Classification recall in percent based on three kinesthetic demonstrations for SVMs

and HMMs both using the global and local sequence graph.

1+2 1+31 2 3 2+3 1+2+3

40.0

50.0

60.0

70.0

80.0

90.0

100.0

60
.0

53
.3

53
.3

60
.0

40
.0

73
.3

66
.7

66
.7

80
.0

40
.0

80
.0

80
.0

80
.0

80
.0

86
.7

86
.7

80
.0

90
.0

80
.0

80
.0

90
.093

.3

93
.3

86
.7

10
0.
0

10
0.
0

10
0.
0

10
0.
0

Demonstration

R
e
p
ro
d
u
ct
io
n
R
a
te

R
e
a
lR

o
b
o
t
E
xp

e
ri
m
e
n
ts
[%

]

Local Graph & HMM Global Graph & HMM Local Graph & SVM Global Graph & SVM

Figure 3.9.: Reproduction results of different demonstrations for SVMs and HMMs both using

the global and local sequence graph. Shown are the successfully performed primitive

switches compared to the overall switches. For dashed entries the reproduction failed.

30

4 Discussion

In this chapter we will discuss the results of the simulation and the experiments with the Barrett

WAM. We will also propose some possible enhancements of our approach. The enhancements

might lead to even better reproduction results or make the approach applicable in more scenarios.

They were not implemented because they are beyond the scope of this thesis.

4.1 Experiments

The presented results in Figures 3.6-3.9 show that our system is able to reproduce the demon-

strated skill properly if the appropriate combination of sequence graph and classifier is chosen.

The results emphasize the advantages of the global over the local sequence graph as well as of

the SVMs over the HMMs. In the following, we will discuss the results in detail.

4.1.1 Sequence Graphs

Both created sequence graphs for the light bulb task are shown in Figure 3.5. The local graph

differs in two important aspects from the global graph. First, all nodes representing the same

primitive are merged into a single node. Second, this merging introduces paths in the graph that

have not been demonstrated, such as the one marked as red in the figure.

Executing the movement shown by the red path leads to the following sequence: The robot

unscrews the bulb, starts returning to its initial position and subsequently goes back to the

position above the light bulb holder instead of going to the bin. Normally the movement of going

down to the bulb is executed at the beginning of the task. At this point in the sequence the bulb

is in the holder. Therefore the robot additionally opens its hand when going down to the holder,

so that the bulb can be grasped as soon as the target position is reached. When executing the

movements shown by the red path, the bulb is already in the robot’s hand, but it is still trying

to go down to the holder and additionally opens its hand. As a result, the bulb slips out of the

fingers and falls on the ground.

Note that both transitions of the path are correct in a sense that they present valid transitions.

A wrong behavior only occurs if both transitions are chosen consecutively. When going to the

initial position, the classifier uses the goal distance of this primitive and additionally the two goals

distances of the possible successors in the graph as features. These features are not meaningful

enough to allow a correct classification and thus sometimes an incorrect transition was taken

during reproduction. An additional feature such as the state of the hand (closed or opened)

would enable a correct classification. This confirms our assumption, that a more enhanced feature

31

set is necessary when using the local sequence graph. The assumption is based on the more

compact description of the skill, which leads to more classes being involved in the classification

problem.

The problematic primitive is split up into two nodes in the global sequence graph. Both nodes

only have one possible successor, which simplifies the classification problem. In both cases, the

classifier only has to decide when to switch between the primitives instead of choosing between

multiple alternatives. As this is possible with the feature set of our setup, the problem is not

occurring here.

The global representation in general performs only better if the skill is modeled properly as

in our case. The algorithm creating the graph inherently makes assumptions about the skill,

such as preferring longer cycles over shorter ones. If such an assumption is not matching the

requirements of the skill, false transitions can be introduced by the algorithm. The system then

can be biased towards wrong decisions, resulting in a worse performance than by using the more

general local representation.

4.1.2 Classification

It is apparent from the presented results, that HMMs perform worse than SVMs. However,

the system still manages to reproduce most transitions for the global representation if enough

demonstrations are available. As the training of each state’s GMM is done locally, the models are

prone to overfit the data and the behavior for unseen data is uncertain in advance (see Figure 2.8).

Due to the overfitting HMMs achieve a similar classification recall as SVMs, but the reproduction

is not competitive. To avoid the overfitting, we suggest not using the expectation-maximization

algorithm for HMM training and recommend methods which are trying to find large margins

(e.g., Sha and Saul [2007]).

SVMs based on the global sequence graph perform best. Only two trials were necessary

to perform the skill properly both in simulation and with the real robot. Although the other

approaches were not able to execute the overall task completely, they were able to unscrew

the light bulb, which was the main goal of the project. The fixed amount of seen unscrewing

repetitions were generalized to an arbitrary number and most approaches were able to recognize

when the bulb was loose. Only when using a HMM together with the local sequence the robot

sometimes had to be shut off because the loose bulb was not detected by the system. As a force is

applied in upward direction during the unscrewing, the bulb is lifted up as soon as it gets loose.

If a loose bulb was not detected by the system, the applied force led to an uncontrollable lifting

of the arm and the execution of the task had to be stopped in order to avoid damaging the robot.

Using the reference classifier without dimensionality reduction sometimes yields better recall

results than using a graph based classifier (see Figure 3.6 and 3.8). Still, the reproduction shows

that a real benefit is achieved with a sequence graph. It is notable here, that our approach does

32

not require each feature to be assigned to a primitive. It is possible to use the whole feature

set. In that case, using a sequence graph still would be beneficial due to the disallowing of

unseen transitions. Assigning features to primitives can also reduce the accuracy of a system.

We discussed a related problem in the previous Section 4.1.1. Here, the information whether

the fingers of the robot are open or closed is needed for the classification when using the local

sequence graph. The information is globally available but not used by the classifier as it is not

assigned to one of the involved primitives. The main conclusion that can be drawn here is that

assigning features to primitives can lead to an intuitive dimensionality reduction, but attention

has to be paid on the choice of the features as well as on the assignment.

Although the reference classifier provided acceptable results in simulation, the reproduction

of the movement on the Barrett WAM failed completely. When starting the movement, the

classification outcome was always the same. As a result, the robot only opened its hand and did

not execute any other primitive. The fact that the robot was executing this primitive at a state

in the sequence and in a position of the robot where it has not been demonstrated shows the

drawbacks of a single overall classifier. Despite good classification results, the classifier was not

able to generalize from the demonstrations in a way that a reproduction was possible. The reason

is that the found hyperplanes separate the training data in wrong dimensions. For example, the

hyperplane of the primitive responsible for opening the hand is extended to an area in which

it should not be activated. The problem here is, that the feature space grows rapidly with an

increasing number of features and hence less training data is available compared to the volume

of the feature space. Finding the borders between the classes therefore gets harder, as it is not

clear how the empty space should be classified.

The poor reproduction result of the reference classifier shows the benefit of our approach. The

reduction of the classes as well as the reduction of the dimensionality simplifies the classification

problem and makes the overall problem of learning a sequential skill manageable.

4.1.3 Role of the Teacher

A successful reproduction of a skill also depends on the trainer. Although the robot can be trained

intuitively, attention has to be paid to some characteristics of kinesthetic teaching.

Figure 4.1a shows data of a bad demonstration. The snippet shows the samples at the beginning

of the task, when the robot’s end effector has to go down to the light bulb. Starting from around

data point 180 until the switch between the primitives (black vertical line), the trainer tries to

adjust the robot’s hand precisely above the bulb before initiating the primitive which closes the

fingers. The features are not changing significantly in this range and as more data points with

similar values exist for the preceding primitive, the state of being above the bulb is assigned

to this primitive as depicted in Figure 4.1b. As shown there, the activation of the succeeding

primitive gets triggered if its feature value drops below a certain value. The problem is, that the

33

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

0.2

0.4

0.6

0.8

1

Sample

Fe
a
tu
re

V
a
lu
e

(a) Sampled data. The black line indicates the transition point between the preceding rose primitive

and its orange successor. The gray line shows the classification border found by the classifier.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

·10−2

0.94

0.96

0.98

1

Feature Predecessor

Fe
a
tu
re

Su
cc
e
ss
o
r

(b) Classification result for the data in feature space. The data points are represented by the dots

and the classification results are indicated by the different background color. The activation of

the succeeding orange primitive is triggered if its feature value drops below a certain threshold.

As the feature value first starts to change after the triggering, the robot gets stuck because of

this chicken-and-egg problem.

Figure 4.1.: A snippet of sampled data from a bad demonstration where the trainer needs a lot of

time for adjusting the hand precisely above the light bulb. This leads to the features

at the actual transition point being labeled as belonging to the wrong primitive

and requires either a manual relabeling or a new demonstration for a successful

reproduction.

decrease of the feature value is a consequence of the activation of the primitive. Because of this

chicken-and-egg problem, the robot then gets stuck during the reproduction of the movement.

It is notable here that this is not a classification problem. The classifier separates the data

almost as good as possible as shown by the small distance between the black and gray line in

Figure 4.1a. Instead, it is a teaching problem that needs either a manual relabeling or a new

demonstration where the transitions are triggered faster. Another possibility is to use more

demonstrations for the training, as the influence of outliers is reduced with an increasing number

of successful demonstrations. The results of Section 3.2 also show that it is possible to learn the

skill more precisely when using more demonstrations.

34

Another problem occurs if a transition is triggered at a state of the robot which can not be

reached during reproduction. As the goals of the primitives are not learned from the demonstra-

tions but are predefined, the robot is expected to be in a certain state for each switch between

primitives. For example, when activating the initial primitive where the end effector has to

go down to the light bulb, the robot always reaches its target position above the bulb. When

being in the target position, the primitive’s goal distance feature is in a certain range, e.g.,

g ∈ [10−2, 10−1]. The value 0 will not be reached due to inaccurate sensors or friction. If the

transition was triggered when the feature value was in the range 0< g < 10−2, the classifier is

expecting this value for a switch during reproduction. As these values are never reached, the

robot can get stuck.

Note that this exemplary transition is only needed one time for the whole skill. To allow for a

generalization more than one demonstration can be used. Using multiple demonstrations usually

reduces the influence of a bad transition and increases the probability of finding a classification

border in the desired range.

4.2 Possible Enhancements

In this section some possible enhancements of the proposed approach are presented, that may

increase the accuracy of the system or its generalization capabilities. The presented enhancements

are only suggestions and it is unsure if a real improvement of the system could be achieved.

4.2.1 Error Detection

Our approach is not able to detect any errors in the movement. The most likely primitive is

chosen at every time step, regardless of how large the actual likeliness is. An error detection

requires a comparison between the expected and measured feature values. A potential error

occurs if the mismatch between the values is too large. Here, several difficulties arise which will

be discussed in the following. A mismatch between expected and measured feature values can

have different underlying reasons. Among others these are:

1. An incorrect transition in the sequence graph was taken due to a misclassification.

2. The skill is not modeled properly. The robot is considered to be in a different phase of the

sequence than it actually is (e.g., because a transition is in the graph which should not be

there).

3. A part of the robot produced a malfunction, e.g., the robot hit an obstacle.

4. The current sensor values differ from the actual values, e.g., due to a measuring error.

35

The error rate of the two points depends on the feature set, accuracy of the classifiers, and

proper modeling of the sequence graph. While these points can be influenced by our system, the

other points are hardware errors. For the detection of an error, the classifiers have to provide a

confidence in their decision in addition to the classification result itself. The system can then be

trained to consider low confidence values as potential errors.

HMMs are probabilistic models and therefore directly supply a confidence of their decision in

addition to the classification itself. The standard formulation of SVMs instead is not providing a

confidence value. However, it is possible to get probability estimates from a SVM, e.g., by using

the output for the training of the parameters of a sigmoid function [Platt, 1999]. The confidence

score for a SVM can be seen as distance measurement between the current data point and the

border of the separating hyperplane. It is also possible to get probability estimates when using

the LIBSVM library, whereby the authors use the method presented in [fan Wu et al., 2003].

Despite having a confidence score for the classification, an error detection can still be a hard

problem. The reason is that it is often not clear whether the confidence score is low because of a

wrong model (or one of the other presented points) or because the current state of the robot

differs too much from the demonstrations. When using simple thresholds for the confidence

score, a low threshold might lead to errors being ignored (false negatives). As opposed to this, a

large threshold might lead to the detection of too many errors (false positives). As variations are

considered as errors in such cases, this would limit the generalization capabilities of the system.

Due to the problem of finding a good threshold, a more sophisticated model for detecting errors

is necessary in most cases. Instead of interpreting a low confidence score, another possibility is

to simply ask the teacher for help. Incorporating this additional knowledge into the decision is

called “active learning”.

4.2.2 Learning from Failures

The presented system is not able to learn over time when reproducing the movement. The

classifiers are trained with the demonstration data and the parameters are not changed after that.

Also, the sequence graph has a fixed structure which is created solely from the demonstrations.

A possible enhancement of our approach therefore could be to use reinforcement learning (RL),

which allows for a self-improvement based on a reward function. Reinforcement learning has

been widely used in robotics (e.g., Daniel et al. [2013], Kober et al. [2010], Morimoto and Doya

[1998], Pastor et al. [2011]). In our case, RL could be used to adapt the graph representations,

for example by removing false transitions or adding additional ones. RL could also be used to

improve the underlying primitives, e.g., by adapting the goals. However, applying RL affords

much effort and goes out of scope of this work.

Learning from failures also requires an adaption of the classifier parameters. SVMs are batch

mode classifiers that usually require the complete data set for a retraining. In consequence

36

of that either the demonstration data has to be available and a complete training has to be

performed after each faulty reproduction or a modified training algorithm has to be used. For

an online learning algorithm for SVMs, the interested reader is referred to the literature (e.g.,

Diehl and Cauwenberghs [2003], Kivinen et al. [2004]). HMMs are usually trained using an

expectation-maximization algorithm (EM). Here, also online learning algorithms exist, such as

[Mongillo and Deneve, 2008]. In our case, the transition matrix needs to be adapted and the

GMMs have to be trained again. We also use an EM algorithm for the training of the GMMs.

Here, an incremental learning algorithm is proposed by the authors of [Zhang et al., 2010], for

example.

4.2.3 Representing Multiple Skills

For this work, only the skill of unscrewing a light bulb was taught. By representing more than

one skill with a single sequence graph, it would be possible to teach a robot different skills. The

robot then could choose which skill it performs automatically depending on the environment.

Another possibility would be to chose the skill manually, e.g., by choosing a path in the graph or

by determining the final node in the representation.

In the following, we briefly discuss the suitability of the two presented sequence graphs for

modeling multiple skills. When using the local sequence graph and a fixed set of primitives, the

number of nodes remains the same with an increasing number of skills. However, the number of

transitions grows and the graph becomes more and more fully connected. To ensure taking the

right transitions when reproducing a movement, it is very likely that more features are necessary

and hence the feature dimension would grow rapidly. We therefore suggest not using the local

sequence graph for the representation of multiple skills.

Although it is not implemented, the global approach is inherently able to model multiple

skills. The merging algorithm presented in Section 2.3.2 can incorporate two different sequence

graphs into one representation. The algorithm merges equal sequences into the same nodes

and introduces branches in the graph as soon as two nodes differ. Introducing branches leads

to a higher number of nodes compared to the local graph. The resulting graph is flatter and a

node has in average less outgoing transitions. Due to this, the classifiers have to choose between

less alternatives, which makes the classification easier. In our opinion, the more sophisticated

representation of the global sequence graph therefore better fits the requirements.

Note that the proposed approach uses a fixed feature set which all skills would have to use. A

dynamic feature set depending on the skill would require further adaptions of the approach as

well as of the software framework.

37

5 Conclusion and Future Work

In this thesis, we proposed to use a graph structure for representing sequences of robot move-

ments. Based on this, a sequential manipulation skill was learned by creating a classifier for each

node in the graph, which decided either to continue with the execution of the current movement

or to switch to another one by taking a transition in the graph. We showed how the observed

sequence order of kinesthetic demonstrations can be incorporated into the graph representation.

This leads to an intuitive class and dimensionality reduction which is the main benefit of our

approach and allows for a reproduction of the skill. We evaluated two different classifiers (SVMs

and HMMs) for their skill learning suitability, as well as two different types of sequence graphs.

Our approach was validated with an experiment in which the robot unscrews a light bulb, both

in simulation and with a real Barrett WAM.

In future work some simplifications made in this thesis will be relaxed. We aim at learning

more complex skills that require co-articulation and parallel execution of primitives. Therefore

we have to synchronize concurrently active primitives which for example control two different

end effectors. This synchronization requires that the causal and temporal characteristics of a

skill are considered in the representation. For the learning, we still plan to use a predefined set

of MPs. However, the set may contain irrelevant and redundant primitives. Additionally, we

plan to use a segmentation algorithm instead of labeling the data manually. In Section 4.2 we

presented other possible enhancements that could improve the accuracy of the system. These

enhancements will be considered when extending the presented approach to a more complex

sequential skill learning system.

38

A Appendix

A.1 Dynamic Movement Primitives

A Dynamic Movement Primitive (DMP) consists of a set of ordinary differential equations:

τv̇ = K(g − x)− Dv + f (A.1)

τ ẋ = v (A.2)

τṡ = −αs (A.3)

The first two equations build the transformation system. It can be seen as a basic point attractor

system in which a damped spring is attached to a goal position g. The system is perturbed by a

non-linear acceleration f using the equations

f (s) =

∑

iψi(s)wi
∑

iψi(s)
s(g − x0) (A.4)

ψi(s) = e−hi(s−ci)
2
. (A.5)

The perturbation forces the system to follow the desired trajectory. Eq. (A.3) is known as the

canonical system. It is initially set to 1 and converges to 0, thus monitoring the task progress. It

can be easily seen, that lims→0 f (s) = 0. Thus f vanishes and the combined system converges to

the unique attractor point g. The parameters of f can be learned with state of the art regression

methods.

The advantages of the DMP formulation are the compact description and the time-invariance

due to the canonical system. The representation is very robust to perturbations and allows a

good reproduction of the movement in noisy environments.

A.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a simple dynamic Bayesian network. A model consists of

a fixed amount of states whereby each state produces an observable output. The output is a

probabilistic function which means each possible output can be produced by a state with a certain

39

probability. The states itself are hidden from the observer and can only be guessed by the output

observations. Formally, a HMM is a 5-tuple

λ = (S; V ; A; B;π) (A.6)

S = {s1; ...; sn}V = {v1; ...; vm} (A.7)

where S is the set of states, V is the alphabet of the possible observations, which are called

emissions in the context of the HMM. A∈ ℜn×n is the transition matrix. The element ai j of the ith

row and jth column of the matrix represents the probability of switching to state j when being in

state i. B ∈ ℜn×m is the observation matrix, with the element bi(v j) depicting the possibility of

making the observation v j in state si. π ∈ ℜ
n is a vector with

πi = P(X1 = si) (A.8)

The presented equations describe a discrete output HMM. A continuous output can be used by

replacing V and B with a Gaussian distribution. Each emission of a state is then represented by

the mean and variance of the Gaussian. In general, every distribution function can be used like

for example multiple Gaussians for each state.

The parameters of the HMM can be learned by using the Baum Welch algorithm, an implemen-

tation of the expectation-maximization algorithm. In our case, the transition probabilities can be

estimated directly as the data is completely labeled. It is crucial to have a good guess for the

initial parameters of the model. Otherwise the algorithm can give a sub-optimal result. To avoid

overfitting and encode a sequence correctly, the number of states has to be chosen carefully. The

Bayesian information criterion (BIC) can be used to get a good hint for the number of states.

A.3 Support Vector Machines

SVMs belong to the maximum margin classifiers and are trying to separate the feature space

into hyperplanes. Every hyperplane represents one class and data points are assigned to classes

depending on their position in the feature space. For a binary classification the goal is to minimize

the equation

min
w ,b,ξ

1

2
w

T
w + C

N
∑

n=1

ξn (A.9)

40

under the constraints

yi(w
Tφ(xn) + b)≥ 1− ξn (A.10)

ξn ≥ 0, n= 1, ..., N . (A.11)

Here, b is the bias, w is a weight vector, ξn are the slack variables and C is a regularization

parameter which controls the penalty of the slack variables. The latter two parameter allow

for misclassifications and make the algorithm more robust against outliers. For φ any kernel

function

K(xn, xm) = φ(xn)
Tφ(xm) (A.12)

can be used. It maps the features into a higher dimensional space in which the margin between

the classes is maximized based on the previous equations. The assignment of a feature vector x

to one of the two classes is done by evaluating

sgn(w Tφ(x) + b). (A.13)

Equations (A.9)–(A.11) form a quadratic programming problem that can be solved by intro-

ducing Lagrange multipliers. The approach can be extended to multiclass classification by using

the one-versus-one concept. Here, for k classes k(k− 1)/2 binary classifiers are generated. The

classification is done for each classifier and the feature vector is assigned to the class that was

chosen most often. We decided to use the freely available LIBSVM library [Chang and Lin, 2011]

as implementation for the SVM and we use radial basis functions as kernels:

K(xn, xm) = exp(−γ‖xn− xm‖
2),γ > 0 (A.14)

The regularization parameter C of (A.9) and the kernel parameter γ of (A.14) are parameters

which have to be defined manually. As LIBSVM allows for a different regularization parameter for

each class, k+ 1 parameters have to be set beforehand. If the dimensionality of the feature space

is not too high they can be found by doing a grid search, hence simply systematically testing

different values of the parameters.

41

List of Figures

1.1. Overview of Approach . 6

1.2. Different Views on a Sequence of Primitives . 8

2.1. Detailed Overview of Approach . 12

2.2. Toy Example: Local Sequence Graph . 13

2.3. Toy Example: Global Sequence Graph . 14

2.4. Toy Example: Merging Two Sequences . 14

2.5. Ambiguous Repetitions: Sequence Order . 18

2.6. Ambiguous Repetitions: Possible Sequence Graphs . 19

2.7. Choosing the Training Data . 20

2.8. Toy Example: Hidden Markov Model . 21

2.9. Toy Example: Support Vector Machine . 22

3.1. Primitives Light Bulb Task . 23

3.2. Illustration of a Successful Unscrewing Sequence . 24

3.3. Simulation Environment . 25

3.4. Kinesthetic Demonstration . 26

3.5. Unscrewing a Light Bulb: Graph Representations . 28

3.6. Classification Recall Simulation . 29

3.7. Reproduction Results Simulation . 29

3.8. Classification Recall Real Robot Experiments . 30

3.9. Reproduction Results Real Robot Experiments . 30

4.1. Bad Demonstration . 34

42

List of Algorithms

1. Local sequence graph generation . 15

2. Graph folding . 16

3. Graph merging . 17

4. Labeling of a kinesthetic demonstration . 27

43

Bibliography

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

A. Billard, S. Calinon, and F. Guenter. Discriminative and Adaptive Imitation in Uni-Manual and

Bi-Manual Tasks. Robotics and Autonomous Systems, 54(5), 2006.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., 2006.

ISBN 0387310738.

S. Calinon and A. Billard. Active teaching in robot programming by demonstration. In IEEE Int.

Symp. on Robot and Human Interactive Communication, 2007.

S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing a task in a

humanoid robot. IEEE Trans. on Systems, Man, and Cybernetics, 37(2):286–298, 2007.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. on

Intelligent Systems and Technology, 2011.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Learning sequential motor tasks. In IEEE Int.

Conf. Robotics and Automation, 2013.

S. Degallier and A. Ijspeert. Modeling discrete and rhythmic movements through motor primitives:

a review. Biological Cybernetics, 103(4):319–338, 2010.

C. Diehl and G. Cauwenberghs. Svm incremental learning, adaptation and optimization. In Proc.

Int. Joint Conf. Neural Networks, 2003.

S. Ekvall and D. Kragic. Learning task models from multiple human demonstrations. In IEEE Int.

Symp. on Robot and Human Interactive Communication, 2006.

J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal. Encoding of periodic and their transient

motions by a single dynamic movement primitive. In IEEE/RAS Int. Conf. Humanoid Robots,

2012.

T. fan Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise

coupling. Journal of Machine Learning Research, pages 975–1005, 2003.

J. R. Flanagan, M. C. Bowman, and R. Johansson. Control strategies in object manipulation tasks.

Current Opinion in Neurobiology, 16(6):650–9, 2006.

44

T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current Opinion in

Neurobiology, 15(6):660 – 666, 2005.

D. Forte, A. Gams, J. Morimoto, and A. Ude. On-line motion synthesis and adaptation using a

trajectory database. Robotics and Autonomous Systems, 60:1327 – 1339, 2012.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE Trans. on Signal

Processing, 52(8):2165–2176, 2004.

J. Kober, K. Muelling, O. Kroemer, C. H. Lampert, B. Schölkopf, and J. Peters. Movement templates

for learning of hitting and batting. In IEEE Int. Conf. Robotics and Automation, 2010. doi:

10.1109/ROBOT.2010.5509672.

D. Kulic, W. Takano, and Y. Nakamura. Representability of human motions by factorial hidden

markov models. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2007.

D. Kulic, W. Takano, and Y. Nakamura. Combining automated on-line segmentation and incre-

mental clustering for whole body motions. In Int. Conf. Robotics and Automation, 2008.

D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura. Incremental learning of full body motion

primitives and their sequencing through human motion observation. Int. J. Rob. Res., 31(3):

330–345, 2012.

T. Luksch, M. Gienger, M. Muehlig, and T. Yoshiike. Adaptive movement sequences and predictive

decisions based on hierarchical dynamical systems. In IEEE/RSJ Int. Conf. Intelligent Robots

and Systems, 2012.

F. Meier, E. Theodorou, F. Stulp, and S. Schaal. Movement segmentation using a primitive library.

In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2011.

F. Meier, E. Theodorou, and S. Schaal. Movement segmentation and recognition for imitation

learning. Journal of Machine Learning Research, 22:761–769, 2012.

G. Mongillo and S. Deneve. Online learning with hidden markov models. Neural Comput., 20(7):

1706–1716, 2008.

J. Morimoto and K. Doya. Reinforcement learning of dynamic motor sequence: Learning to stand

up. In IEEE Int. Conf. Intelligent Robots and Systems, 1998.

K. Muelling, J. Kober, and J. Peters. Learning table tennis with a mixture of motor primitives. In

IEEE/RAS Int. Conf Humanoid Robots, 2010.

C. Nehaniv and K. Dautenhahn. Imitation in animals and artifacts, chapter The Correspondence

Problem, pages 42–61. MIT Press, 2002.

45

B. Nemec and A. Ude. Action sequencing using dynamic movement primitives. Robotica, 30:

837–846, 2012.

M. N. Nicolescu and M. J. Mataric. Natural methods for robot task learning: Instructive demon-

strations, generalization and practice. In Int. Joint Conf. Autonomous Agents and Multi-Agent

Systems, 2003.

S. Niekum, S. Chitta, A. Barto, B. Marthi, and S. Osentoski. Incremental semantically grounded

learning from demonstration. 2013.

A. L. Pais, K. Umezawa, Y. Nakamura, and A. Billard. Learning robot skills through motion

segmentation and constraints extraction. HRI Workshop on Collaborative Manipulation, 2013.

M. Pardowitz, R. Zollner, and R. Dillmann. Learning sequential constraints of tasks from user

demonstrations. In IEEE/RAS Int. Conf. Humanoid Robots, 2005.

P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task

outcome prediction for manipulation. In IEEE Int. Conf. Robotics and Automation, 2011. doi:

10.1109/ICRA.2011.5980200.

P. Pastor, M. Kalakrishnan, L. Righetti, L. Righetti, and S. Schaal. Towards Associative Skill

Memories. In IEEE/RAS Int. Conf. Humanoid Robots, 2012.

V. Pavlovic, J. M. Rehg, and J. Maccormick. Learning switching linear models of human motion.

In Neural Information Processing Systems, 2000.

J. Peters. Machine learning of motor skills for robotics. Technical Report 05-867, USC, 2005.

J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized

likelihood methods. In Advances in Large Margin Classifiers, pages 61–74. MIT Press, 1999.

S. Schaal, S. Kotosaka, and D. Sternad. Nonlinear dynamical systems as movement primitives. In

IEEE/RAS Int. Conf. Humanoid Robots, 2000.

F. Sha and L. K. Saul. Large margin hidden markov models for automatic speech recognition. In

Advances in Neural Information Processing Systems, 2007.

W. Takano and Y. Nakamura. Humanoid robot’s autonomous acquisition of proto-symbols through

motion segmentation. In IEEE/RAS Int. Conf. Humanoid Robots, 2006.

A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-specific generalization of discrete and periodic

dynamic movement primitives. IEEE Trans. Robotics, 26(5):800–815, 2010.

Y. Zhang, L. Chen, and X. Ran. Online incremental em training of gmm and its application to

speech processing applications. In IEEE Int. Conf. Signal Processing, 2010.

46

	Introduction
	Problem Statement
	Related Work

	Learning sequential skills
	Proposed Approach
	Representing Skills with a Sequence Graph
	Local Sequence Graph
	Global Sequence Graph

	Sequence Graph Learning
	Local Sequence Graph
	Global Sequence Graph
	Characteristics of the Representations

	Learning the Switching Behavior
	Hidden Markov Models
	Support Vector Machines

	Experiments
	Setup
	Automatic Demonstration
	Kinesthetic Demonstration

	Results

	Discussion
	Experiments
	Sequence Graphs
	Classification
	Role of the Teacher

	Possible Enhancements
	Error Detection
	Learning from Failures
	Representing Multiple Skills

	Conclusion and Future Work
	Appendix
	Dynamic Movement Primitives
	Hidden Markov Models
	Support Vector Machines

	List of Figures
	List of Algorithms
	Bibliography

