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Abstract— Tactile sensing stands to improve the manipulation
and perception skills of autonomous robots. Object and material
recognition stand as two important tasks, where tactile sensing
can aid robotics. While much work has been done on showing
the applicability of specific sensors to recognition tasks, a
comprehensive examination of the features used has not been
performed. In this paper we thoroughly examine the different
components of performing interactive object recognition with
tactile sensing. We use a state-of-the-art multimodal tactile
sensor, allowing us to compare features previously presented
for a number of different platforms. We examine the statistical
features, robot motions, and classification approaches used for
performing object and material recognition. We show that by
combining simple statistical features captured from five robot
motions our robot can reliably differentiate between a diverse
set of 49 objects with an average classification accuracy of
97.6± 2.12%.

I. INTRODUCTION AND MOTIVATION

Tactile sensing provides an exciting means for robots to iden-
tify objects and materials through touch. Object identification
in robotics traditionally relies on visual and geometric infor-
mation captured through cameras or lasers, however visual
recognition is not always feasible. Tactile recognition offers
a complementary method when vision is not available, along
with benefits compared to using visual identification alone.
For example during manipulation occlusion is inevitable. A
robot can use tactile sensing in its end effector to recognize
objects that its own arm occludes from a camera’s view.
Additionally, measurements received by the touch sensor can
quickly be localized using the robot’s forward kinematics
ignoring scale and pose ambiguity issues that arise in visual
recognition. Finally, visually similar materials may have very
different haptic properties, which a tactile sensor can easily
identify and use for discrimination.

A number of approaches for performing tactile recognition
have been proposed in the literature [1–9], but no systematic
identification of what features, interaction movements, and
learning methods are best suited to the task have been exam-
ined. In this work we set out a straightforward examination of
different feature extraction methods and interaction motions
for tactile object recognition using a set of popular statistical
classifiers. We have chosen to use the BioTac tactile sensor as
it provides a number of different sensing modalities allowing
us to compare features used across various tactile sensors in
the literature. We set out to compare not only recognition
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Fig. 1: The PA10 robot equipped with a Schunk force torque
sensor and a BioTac finger.

of specific object instances, but also recognition of material
classes, such as wood and plastic.

Some approaches to tactile object recognition have used
object shape and structure to identify objects [8, 9]. While
shape can be helpful in recognizing a specific object, objects
of the same (local) shape can be built from various materials.
As such the discriminative power is low. We instead choose
to focus on recognizing objects through their material prop-
erties.

In the past, different methods have been proposed to rec-
ognize objects through measuring surface features. Dallaire
et al. [1] used a turntable with a three-axis accelerometer to
distinguish between 28 disks made of different materials. A
similar sensor built into an artificial fingernail was used by
Sinapov et al. [2] to discriminate objects via five different ex-
ploratory scratching movements. Fishel and Loeb [3] present
a method that distinguishes between 117 textures with a
95.4% success rate using the BioTac. They use a Bayesian
active learning approach that selects from 36 different sliding
movements. This was done in a well calibrated environment
with sample texture swatches. In contrast we are interested
in examining recognition in a more natural setting using
real-world objects. Lepora et al. [7] also propose an active
perception approach that performs tapping motions in order
to improve knowledge of the examined object. They are
able to distinguish from a small set of different diameter
bars, while also localizing the finger with respect to the
environment. Tanaka et al. [6] also use an active learning
approach where a latent variable estimation is performed to
learn individual object models presented to the robot. The
robot chooses exploratory motions by modifying the parame-
ters to dynamic movement primitive. Apart from sliding there
are other stereotypical exploratory procedures human beings
perform, such as static contact or enclosing on an object [10].
Chu et al. [4] focus on testing such finger movements in



probing an object’s surface. They not only recognize objects,
but also use the collected data to learn and predict haptic
adjective, given by humans that also touched the object.
Xu et al. [5] provide a set of three physically motivated
features possible to distinguish objects. They are able to
reliably classify 10 objects using the three features relating to
temperature, compliance, and texture of the object’s surface.
Beyond object recognition, tactile sensing has been used
to perform other qualitative assessments of objects. Chitta
et al. determine if an object contains liquid [11], while
Bhattacharjee et al. detect if objects are deformable or rigid
as well as fixed or movable [12].

We organize the rest of the paper as follows. Section II
explains our experimental setup, followed by a description
of the recognition methods used in Section III. We give a
detailed presentation of results in Section IV and summary
of conclusions and future work in Section V.

II. EXPERIMENTAL SETUP

In this section, we explain our experiments in detail. First, we
describe the hardware used and environment setup. Then, we
detail the movements the robot performs in capturing object
data. Finally, we present the objects used and the criteria for
choosing them.

A. Hardware
For all experiments we use the BioTac sensor, a fingertip-
sized, multimodal, tactile sensor. It consists of a rigid core
enveloped by an elastic skin held fixed by a plastic fingernail.
An incompressible conductive fluid fills the skin. The skin’s
surface structure has ridges similar to a fingerprint. The Bio-
Tac provides three sensing modalities. Nineteen electrodes
attached to the core measure the impedance through the
conductive fluid which changes as the skin deforms during
contact events. A thermistor embedded in the finger measures
the fluid temperature. As the BioTac’s core temperature rests
approximately 10° C above room temperature, heat flow into
a touched object can also be measured by calculating the
signal derivative. A hydrophone measures the fluid pressure
in order to detect vibrations, such as those caused by texture
when the BioTac slides over a surface [3] [13]. This produces
five types of tactile signals: 19 electrical impedance elec-
trodes (Fig. 2), a low-frequency fluid pressure (PDC) signal,
a high-frequency fluid vibration (PAC) signal, temperature
(TDC), and temperature flow (TAC). This results in a total
of 23 distinct data channels. The PAC channel is sampled
at 2200 Hz, the others at 100 Hz. Producing 4400 total
measurements per second.

We mount the BioTac finger on a Mitsubishi PA10 robot
arm with seven degrees of freedom. An inverse manipulator
Jacobian controller drives the desired end effector velocities
of the robot. We allow the BioTac to warm up for approxi-
mately 20 minutes prior to data collection to reach its core
temperature [5]. The object of interest rests on a table in front
of the robot. The robot chooses a random starting position
for each movement execution to avoid overfitting and create
a more robust dataset for learning. The complete setup can
be seen in Figure 1.

Fig. 2: (Left) Layout of BioTac sensing electrodes. Electrode
18 is highlighted in red. (Right) Arrows indicate the sliding
movements the finger executes on the object surface.

B. Movements

According to Xu et. al [5] humans perform three typical
exploratory movements that require only cutaneous informa-
tion: applying pressure, static contact and lateral sliding. In
contrast to these movements, others such as enclosure or
hefting also need proprioceptive information [10]. As such
we decided to execute static contact and lateral sliding in
multiple directions yielding a total of five movements.

Static contact: The robot moves its end effector (the
mounted BioTac) down until it detects contact and stops.
We detect contact using a simple threshold (10 bits) on
the change in absolute pressure (PDC). The robot maintains
contact for 15 seconds. Experiments show (see Figure 5a)
that this timespan is necessary to reach a thermal equilibrium
with the object [5]. Afterwards, the robot retracts the finger
to its initial position.

Lateral sliding: For the sliding movements the robot es-
tablishes contact using the same method as for static contact.
Subsequently, the robot executes sliding movements in 4
different directions. Each movement translates a distance of
10 cm at a constant velocity of 2.5 cm/s. As can be seen in
Figure 2, the finger moves in the positive y-axis (robot base
frame) direction, the positive x-axis direction, the negative
y-axis direction, and then the negative x-axis direction one
after another, before retracting the finger upwards. In the
remainder of this paper these movements are referred to as
backward, left, forward and right. The control used by the
robot attempts to keep the height (z-position) of the finger
constant, ignoring any change in pressure or object height.

C. Objects

In choosing the objects to analyze we tried to fulfill several
requirements to help ensure similar conditions for data
collection and evaluation. First, each object needs to be
comprised of a single primary material and stand on a table
without any further support. All objects need to have a
relatively flat surface to simplify the interaction with the
sensor and the surface needs to be greater than 15 × 15cm
to ensure permanent contact with the BioTac finger during
data collection and to allow some variation in the position
of the measurements. As the BioTac’s silicone skin can be



damaged easily, objects with sharp edges had to be avoided.
Furthermore, we desired a set of objects belonging to a
few material classes to examine the difficulty in identifying
objects of the same class. At the same time we desired
objects varying in terms of thermal conductivity, texture,
roughness, and compliance. We found five objects for each
of the eight material classes: wood, ceramic, stone, plastic,
sponge, paper, metal and fabric. We chose nine additional
objects that do not belong to any of the classes or have very
different surface properties. This results in a set of forty-
nine objects; these are shown in Figure 3. The objects are
all common home, garden, or office items.

III. OBJECT RECOGNITION METHODS

In this section we describe the technical approaches we
evaluated in performing object recognition. We first discuss
processing of the raw sensory data followed by the different
types of features extracted. We then explain the classification
methods used for recognition.

A. Data Processing

For a given interaction with a specific object we split the sen-
sor data into five segments corresponding to each executed
movements. We trim the beginning of each motion in order to
avoid noisy sensor signals due to contact establishment. This
is especially important for sliding movements (see Figure 4),
because the elastic skin is pushed to the opposite direction
of the current movement. This occurs both in the case of
first establishing contact, as well as after a direction change.

Fig. 4: Sample electrode data.

We collected data over
a time period of a few
days. We noticed minor
environmental (tempera-
ture) changes resulted in
small shifts in the sensor
signals. We subtract the
mean of the first 50 sam-
ples from each channel
to calibrate the incoming
data to the current setting.B. Feature Extraction

We compare seven different methods of extracting features
from the processed data. The first two methods were specif-
ically designed for the BioTac sensors [4, 5]. The third and
fourth method are simple features computed from the sensory
signals. Two more methods are motivated by other examples
from the literature reported on different tactile sensors [1,
11]. The final feature extraction method was developed based
on preliminary results we found during data processing.

Physically motivated features (Xu): Xu et. al [5] pro-
vide one simple, physically-motivated feature per sensor
modality. The first feature attempts to measure compliance:
log(∆joint angle/∆E18). (See Figure 2 for position of E18.)
In their setup the angle between the BioTac and surface could
easily be measured, as we do not have access to such a
measurement, we instead examine only the electrode data
giving log(∆E18). The second feature stands as a proxy
for the surface texture: log (var (PACfiltered)), where the PAC

signal has been band-pass filtered between 20 and 500Hz.
And the final feature examines the thermal conductivity of
the object: ∆TAC = max(TAC)−min(TAC).

Temporal BioTac features (Chu): Chu et al. [4] suggest
a more complex featureset, which also takes the signal
changes over time into account. They first compute statistics
on the pressure channel: maximum PDC, mean PDC, and
the greatest change in PDC, computed from a smoothed
(Hanning window) version of the data signal. An energy
spectral density (ESD) is created from the high frequency
pressure data (PAC) and the following values were computed
as features: area under the ESD curve, weighted average
over ESD, spectral variance, spectral skewness, and spectral
kurtosis. Thermal features consisting of area under the TAC
curve and the time constant of an exponential function fit of
TDC time series data. Finally Principal Component Analysis
(PCA) was computed on the electrode data and fifth order
polynomials were fit to the first two principal components
over the time series. The polynomial coefficients of the
fit functions serve as additional features. The authors also
proposed a set of proprioceptive features which are not
available in our hardware setup.

PCA Raw Data: We concatenate the values for all 23 data
channels over time to produce one single vector, where every
sensory signal at each timestep is a feature. We reduce the
dimension of this feature vector using PCA. We found using
eight dimensions worked best, although it only maintained
≈ 54% of the variance from the original data.

Mean features: We calculate the mean of each signal
channel over time, which results in a total of 23 features.
This differs from the features of Tanaka et al. [6], which
were computed on a subset of the BioTac signals. Reducing
these dimensions further with PCA helped improve learning.
We could capture ≈ 98% of the variance by keeping only
the first eight dimensions.

Pressure features: Dallaire et al. [1] defined a set of
features to pick up vibratory information from a MEMS
accelerometer. The features are: variance, skew, kurtosis, fifth
central moment, sum of the variation over time, number of
times 20 uniformly separated thresholds are crossed, and the
sum of upper half of the amplitude spectrum. We compute
the features for the PAC time series signal of the BioTac, as
it most closely represents the behavior of an accelerometer.

Electrode features: We extract electrode features following
Chitta et al. [11], who designed features for use on an array
of tactile pressure cells in the gripper of the PR2 robot. We
first filter the electrode data using a first-order Butterworth
filter and then calculate the Euclidean Norm to combine all
tactile signals into a single signal: f(t) =

(∑N
i signal2i

)1/2
We take the mean and variance of this signal as two features.

Temperature features: Based on our experience with the
above mentioned features we developed a set of features
considering only temperature data mainly for use with the
static contact movement. Distinguishing values for the analog
derivative of temperature (TAC) can be seen after about 6
seconds of contact (Figure 5a). After an initial spike the
temperature signal (TDC) remains nearly constant. We take



Fig. 3: Forty-nine objects grouped in columns by their material class. From left to right: plastic, metal, paper, fabric, ceramic,
stone, wood, and sponge. The last two columns of objects do not belong to any single material class.

(a) TAC data (b) TDC data

Fig. 5: Temperature signals over time for static contact on
the metal box (blue curves) and on the beige sponge (red).

the mean for both TAC and TDC value for the remaining 9
seconds. We augment this with change in TAC signal after
the initial peak (a slight modification of ∆TAC from above),
which we found to be more discriminative than computing
∆TAC on the entire signal. To avoid issues with numerical
instability and balance the importance of different features
for learning, we normalize each feature channel to have a
mean of 0 and standard deviation of 1 on the training data.
C. Learning Methods

We used several common supervised learning methods to
train object recognition classifiers. We did so to examine the
robustness of the features across different learners to find the
best overall performing features. We chose two generative
and two discriminative classifiers to compare.

The first generative model we used is a Naive Bayes
classifier. The naive Bayes classifier models each feature as
being generated from an independent Gaussian distribution
conditioned on the object class. This produces a classifiers
that is very efficient to learn, but can miss important cor-
relation in the data [14]. As such we chose a Gaussian
classifier, which fully models the covariance of the features,
conditioned on the object class, as our second generative
classifier.

We chose two popular discriminative classifiers to com-
pare, Support Vector Machines and Random Forests. A

support vector machine is a distribution-free, discriminative
model, which attempts to find the single decision bound-
ary that maximizes the margin between two classes [14].
We evaluate both a standard linear SVM as well as a
nonlinear SVM with an exponential kernel K(xi, xj) =
exp(−λ ‖xi − xj‖2) where λ is the kernel bandwidth. In
order to identify optimal parameters for the kernel function
and the penalty for missclassified samples, we executed a
grid search [15] on a validation set at training time.

A random forest classifier discriminates between object
classes using a set of binary decision trees. These trees
are independently trained classifiers using different random
feature subsets for the training data. A single classification
result is chosen by finding the average classification over
all trees in the forest [16]. We trained 100 trees to forest
with a maximal depth of 3 splitting nodes. We use the
scikit-learn [17] implementation of random forests and the
libSVM [18] SVM implementation.

IV. RESULTS

We collected data on each of the 49 objects in our data
set, executing the 5 exploratory actions on each object (4
sliding movements and 1 static contact). We performed each
motion ten times on every object, resulting in a total of
2450 samples. We outline in detail the effects of the different
features, classifiers, and motions used.

A. Object Classification

We evaluate the various components of the recognition
methods using leave-one-out cross validation. We separate
the data based on the different movement and randomly
choose one test sample for each object. The remaining nine
examples are used as training samples. This results in 49
test samples and 441 training samples per classifier. We
repeat this split procedure 100 times. Figure 6 displays the
classification accuracy based on feature and movement type,
averaged over all classifiers. We note that the mean features
obtain the highest accuracy for all movements separately.



Fig. 6: Classification accuracy for each feature method and
each movement, averaged over all classification methods,
with 9 training samples per object. Error bars represent one
standard deviation.

Fig. 7: Classification accuracy for each feature method and
classification method, averaged over all movements, with 9
training samples per object. Error bars represent one standard
deviation.

In Figure 7 we report the results per classification method,
averaging over the different movements used. We see that
the Gaussian classifier and linear SVM perform the best with
the mean features. Rather unexpectedly in Figure 6 we see
that extracting features using static contact produces the best
results for four of the features and the second best results
for the remaining three sets. We can attribute this to the
thermal properties of the objects being highly discriminative.
The features proposed by Chu et al. performed second
best on average, attaining the highest accuracy using static
contact and the linear SVM. The raw data and temperature
features perform next best, with varying accuracy across the
different motions and classifiers. Classifiers trained using our
adaptation of the features proposed by Xu, as well as the
pressure and electrode features, perform much worse than
the top performing classifiers.

B. Movement Evaluation and Combination

We further evaluate the movements using the mean features
with both the linear SVM and Gaussian classifiers, as these
were the best performing methods reported above. We first
examine the movements separately according to their classi-
fication accuracy. In Figure 8 we see that all methods achieve
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Fig. 8: Classification accuracy for each movement using
mean features. Error bars represent one standard deviation.

Fig. 9: Classification accuracy for different movement com-
bination methods for an increasing number of movements
using the mean features. Error bars represent one standard
deviation.

above 70% classification accuracy with static contact as the
best performing movement achieving an accuracy rate of
87.5± 4.01% with the Gaussian classifier.

We use three different methods to combine the features
extracted from different movements executed on the same
object: concatenation, voting, and joint probability. For con-
catenation, we concatenate the features from the different
movements into a single feature vector for classification.
Voting consists of executing each movement classifier inde-
pendently and choosing the classification result that occurs
most often. For joint probability we classify each movement
separately and sum up the probabilities for each class. We
combine the linear SVM classification using the first two
methods. As SVMs produce no probability distributions,
the third method is not possible. We use the second two
methods with the Gaussian classifier approach, since we
found the dimensionality of the feature vectors produced
by concatenation to be too large and produce numerical
instability in computing the feature covariances.

We train classifiers with an increasing number of move-
ments and report the accuracy in Figure 9. Motions are added
from best to worst performing based on the results shown
in Figure 8. The SVM concatenation approach obtains the
highest classification accuracy as soon as two motions are



used. With all five motions it results in 97.6±2.12% classifi-
cation accuracy. We see that average performance with voting
actually decreases with two motions, since disagreements
must be resolved randomly. However with three or more
motions all methods increase their classification accuracy
over that of using one motion alone.

Fig. 10: Classification accuracy for the concatenation of
all movements with mean features, linear SVM, and an
increasing number of training samples per object. Shaded
region represents one standard deviation of error.

Figure 10 shows the classification accuracy of this ap-
proach depending on the number of training samples. With
four training samples per object the classification accuracy
already exceeds 90%. In the next sections we focus on the
results of the linear SVM concatenation combination.

C. Material Classification

We take a closer look at the accuracy rates for each object
in order to determine the possible reasons for missclassi-
fications. The confusion matrix (Figure 14) shows that the
majority of missclassifications are between objects of the
same material class. This is especially true for the ceramic,
fabric, and wood material classes which account for ≈ 85%
of errors. To further investigate this we trained classifiers
to only distinguish objects coming from the same material
class. For example we take only the objects from the fabric
class and train a classifier to distinguish the five objects
from one another. We do this as with fewer objects to
distinguish the classifier may achieve better performance.
The results are displayed in Figure 11. We see that the
above mentioned materials (wood, ceramic, fabric) obtain the
lowest classification accuracies. This observation suggests,
that the objects belonging to these classes have a low in-
class variance. The objects made of paper, sponge, or plastic
are perfectly distinguishable with nine training samples per
object.

This leads us to examine classifying objects not by in-
stance identify, but by material class. We train a classifier
on the data belonging to the 40 objects from the material
classes plastic, metal, paper, fabric, ceramic, stone, wood,
and sponge. The nine objects that do not belong to any
material class are left out. We again use a linear SVM with

Fig. 11: Classification accuracy for objects of each material
class separately with concatenation of all movements, feature
calculation mean features, linear SVM and an increasing
number of training samples per object.

Fig. 12: Classification accuracy of material class classifi-
cation. Classifiers trained using concatenation of all move-
ments, mean features, linear SVM, and an increasing number
of training samples per class.

mean features and all motions concatenated. We produce
training and validation data sets as before, but label all
objects made from the same material identically. The results
shown in Figure 12 correspond to our previous observations.
Those materials, whose objects are the most difficult to
distinguish, such as wood or ceramic, achieve the highest
material classification accuracies. However a low in-class
variance is no requirement for high material accuracy as the
material class sponge shows.

To further examine the utility of material class classifi-
cation, we examine how the robot would classify objects
it has not previously encountered. We do this by training
our eight material class classifier, holding out all examples
from one specific object (e.g. “DVD case”). We then take
the held out object as a test case and perform classification.
The results can be seen in Figure 13. The majority of
objects are classified into the correct material class, even
though the robot has never encountered them before. We
see that the highly confused wood objects are all correctly
classified even when not being seen before. However, the
ceramics class does not perform as well with the emaille



Fig. 13: Confusion matrix for each material with leave one out classification per object. Classifier trained on concatenation
of all movements, mean features, and linear SVM. Left column is classified class label. Top label is held out test object.

pot always classified as wood and the ceramic baking dish
being confused as stone, metal, or plastic. The resulting class
sponge contains all objects we assigned to this class and
few other objects. In contrast, the paper class has more false
positives than objects actually made of paper. The ceramics
class that achieved good results in the last section now
achieves a relatively low accuracy of 58%. We additionally
classified the nine objects for which we did not name a
specific material class. These were mostly assigned to the
wood class. The mirror was assigned to the ceramic class
for 9 of its 10 cases, which is the most intuitive class for
glass.

V. CONCLUSION AND FUTURE WORK

We have presented a comprehensive examination of tactile
object recognition using the BioTac sensor. Our robot col-
lected data covering 49 objects with five different motions
creating a dataset of 2450 total interactions. We analyzed
a diverse set of seven feature extraction methods using a
number of different classification approaches. Our results
suggest that rather simple features, dimensionality-reduced
mean values of filtered data signals performed better than
more outperform more elaborate and physically motivated
feature extraction. This best performing method achieves a
very high average classification accuracy above 97%. Most
important was extracting these features from a varying set
of motions to gather more discriminative information across
the diverse set of objects. Our material classification results
suggest that some objects are more naturally categorized
through touch at the material class level than the instance
level. However, our results in classifying held out objects
by material type suggest that the boundaries between some
materials are difficult to correctly set without seeing all
objects of interest from those categories.

We wish to see how our results perform in the context
of object manipulation, such as grasping or searching for
objects in clutter. In such contexts the robot will be more
constrained in selecting interaction motions and the location
of object boundaries may not be known. Additionally we
believe that it should be possible
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Fig. 14: Confusion matrix for all 49 objects, with concatenation of all movements, mean feature and linear SVM. Labels
on page right are ground truth. Top of page labels are classifier output. Thicker lines indicate material classes.


